![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
www.irf.com 1 4/20/10 IRG6B330UDpbf descriptionthis igbt is specifically designed for applications in plasma display panels. this device utilizes advanced trench igbt technology to achieve low v ce(on) and low e pulse tm rating per silicon area which improve panel efficiency. additional features are 150c operating junction temperature and high repetitive peak currentcapability. these features combine to make this igbt a highly efficient, robust and reliable device for pdp applications. features advanced trench igbt technology optimized for sustain and energy recovery circuits in pdp applications low v ce(on) and energy per pulse (e pulse tm ) for improved panel efficiency high repetitive peak current capability lead free package gc e g ate collector em itter to-220ab e g n-channel c v ce min 330 v v ce(on) typ. @ i c = 70a 1.69 v i rp max @ t c = 25c 250 a t j max 150 c key parameters absolute maximum ratings parameter units v ge gate-to-emitter voltage v i c @ t c = 25c continuous collector current, v ge @ 15v a i c @ t c = 100c continuous collector, v ge @ 15v i rp @ t c = 25c repetitive peak current p d @t c = 25c power dissipation w p d @t c = 100c power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature for 10 seconds mounting torque, 6-32 or m3 screw n thermal resistance parameter typ. max. units r jc (igbt) thermal resistance junction-to-case-(each igbt) CCC 0.80 r jc (diode) thermal resistance junction-to-case-(each diode) 1.6 2.4 r cs case-to-sink (flat, greased surface) 0.24 CCC c/w r ja junction-to-ambient (typical socket mount) CCC 40 weight 6.0 (0.21) CCC g (oz) 250300 -40 to + 150 10lb in (1.1n m) 160 63 1.3 max. 40 70 30 e c g downloaded from: http:/// 2 www.irf.com half sine wave with duty cycle = 0.1, ton=2sec. r is measured at t j of approximately 90c. pulse width 400s; duty cycle 2%. electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv ces collector-to-emitter breakdown voltage 330 CCC CCC v ? v ces / ? t j breakdown voltage temp. coefficient CCC 0.34 CCC v/c CCC 1.18 1.48 CCC 1.36 1.68 CCC 1.69 2.09 v CCC 2.26 2.76 CCC1.93CCC v ge ( th ) gate threshold voltage 2.6 CCC 5.0 v ? v ge ( th ) / ? t j gate threshold voltage coefficient CCC -11 CCC mv/c i ces collector-to-emitter leakage current CCC 2.0 25 a CCC 5.0 CCC CCC 100 CCC i ges gate-to-emitter forward leakage CCC CCC 100 na gate-to-emitter reverse leakage CCC CCC -100 g fe forward transconductance CCC 50 CCC s q g total gate charge CCC 85 CCC nc q gc gate-to-collector charge CCC 31 CCC t d(on) turn-on dela y time 47 i c = 25a, v cc = 196v t r rise time 37 ns r g = 10 ? , l=200 h, l s = 200nh t d(off) turn-off dela y time 176 t j = 25c t f fall time 99 t d(on) turn-on dela y time 45 i c = 25a, v cc = 196v t r rise time 38 ns r g = 10 ? , l=200 h, l s = 200nh t d(off) turn-off dela y time 228 t j = 150c t f fall time 183 t st shoot through blocking time 100 CCC CCC ns e pulse energy per pulse j c iss input capacitance CCC 2297 CCC c oss output capacitance CCC 141 CCC pf c rss reverse transfer capacitance CCC 74 CCC l c internal collector inductance CCC 5.0 CCC between lead, nh 6mm (0.25in.) l e internal emitter inductance CCC 13 CCC from package diode characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units i f ( av ) average forward current at t c =155c i fsm non repetitive peak surge current CCC CCC 100 a t j = 155c, pw = 6.0ms half sine wave v f forward voltage CCC 1.19 1.3 v CCC 0.94 1.0 t rr reverse recovery time CCC 35 60 ns C C C4 3C C C t j = 25c C C C6 7C C C t j = 125c i f = 8a q r r reverse recovery charge CCC 60 CCC nc t j = 25c di/dt = 200a/s CCC 210 CCC t j = 125c v r = 200v i rr peak recovery current CCC 2.8 CCC a t j = 25c CCC 6.3 CCC t j = 125c static collector-to-emitter voltage v ce(on) v ge = 15v, i ce = 70a, t j = 150c CCC 834 CCC v ce = v ge , i ce = 500 a v ce = 330v, v ge = 0v v ce = 330v, v ge = 0v, t j = 150c CCC 985 CCC v ce = 25v, i ce = 25a v ce = 200v, i c = 25a, v ge = 15v v cc = 240v, v ge = 15v, r g = 5.1 ? v cc = 240v, r g = 5.1 ?, t j = 25c l = 220nh, c= 0.40f, v ge = 15v v cc = 240v, r g = 5.1 ?, t j = 100c and center of die contact v ge = 30v v ge = -30v ? = 1.0mhz, see fig.13 v ge = 0v l = 220nh, c= 0.40f, v ge = 15v conditions v ge = 0v, i ce = 1 ma reference to 25c, i ce = 1ma v ge = 15v, i ce = 120a v ge = 15v, i ce = 25a v ge = 15v, i ce = 70a v ge = 15v, i ce = 40a v ce = 330v, v ge = 0v, t j = 100c i f = 8a i f = 8a, t j = 150c i f = 1a, di/dt = -50a/s, v r =30v v ce = 30v conditions CCC CCC 8.0 a downloaded from: http:/// www.irf.com 3 fig 1. typical output characteristics @ 25c fig 3. typical output characteristics @ 125c fig 4. typical output characteristics @ 150c fig 2. typical output characteristics @ 75c fig 5. typical transfer characteristics fig 6. v ce(on) vs. gate voltage 0481 21 6 v ce (v) 0 40 80 120 160 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 0481 21 6 v ce (v) 0 40 80 120 160 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 0481 21 6 v ce (v) 0 40 80 120 160 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 0 4 8 12 16 v ce (v) 0 40 80 120 160 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 2 4 6 8 10 12 14 16 v ge (v) 0 50 100 150 200 250 300 i c e ( a ) t j = 25c t j = 150c 0 5 10 15 20 v ge (v) 0 2 4 6 8 10 12 14 v c e ( v ) t j = 25c t j = 150c i c = 25a downloaded from: http:/// 4 www.irf.com fig 7. maximum collector current vs. case temperature fig 8. typical repetitive peak current vs. case temperature fig 10. typical e pulse vs. collector-to-emitter voltage fig 9. typical e pulse vs. collector current fig 11. e pulse vs. temperature fig 12. forward bias safe operating area 0 25 50 75 100 125 150 t c , case temperature (c) 0 10 20 30 40 50 60 70 80 i c , c o l l e c t o r c u r r e n t ( a ) 170 180 190 200 210 220 230 240 i c , peak collector current (a) 400 500 600 700 800 900 1000 e n e r g y p e r p u l s e ( j ) v cc = 240v l = 220nh c = variable 100c 25c 25 50 75 100 125 150 t j , temperature (oc) 200 400 600 800 1000 1200 1400 e n e r g y p e r p u l s e ( j ) v cc = 240v l = 220nh t = 1s half sine c= 0.4f c= 0.3f c= 0.2f 180 190 200 210 220 230 240 v ce, collector-to-emitter voltage (v) 400 500 600 700 800 900 1000 e n e r g y p e r p u l s e ( j ) l = 220nh c = 0.4f 100c 25c 25 50 75 100 125 150 case temperature (c) 0 100 200 300 r e p e t i t i v e p e a k c u r r e n t ( a ) ton= 2s duty cycle = 0.1 half sine wave 1 10 100 1000 v ce (v) 1 10 100 1000 i c ( a ) 10 s 100 s 1ms downloaded from: http:/// www.irf.com 5 fig 15. maximum effective transient thermal impedance, junction-to-case (igbt) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.146 0.0001310.382 0.001707 0.271 0.014532 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri fig 13. typical capacitance vs. collector-to-emitter voltage fig 14. typical gate charge vs. gate-to-emitter voltage fig 16. maximum effective transient thermal impedance, junction-to-case (diode) 0 100 200 300 v ce (v) 10 100 1000 10000 c a p a c i t a n c e ( p f ) cies coes cres 0 20 40 60 80 100 120 q g total gate charge (nc) 0 5 10 15 20 25 v g e , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 240v vds= 200v vds= 150v i d = 25a 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) ? (sec) 0.07854 0.000637 0.829201 0.000532 1.002895 0.003412 0.490875 0.055432 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 downloaded from: http:/// 6 www.irf.com ! " #$!$!! " fig 21a . t st and e pulse test circuit fig 21b . t st test waveforms fig 21c . e pulse test waveforms 1k vcc dut 0 l fig. 22 - gate charge circuit (turn-off) dri ver dut l c vcc rg rg b a ipul se energy v ce i c current pulse a pulse b t st fig.20 - switching loss circuit 100 1000 di f / dt - (a / s) 20 30 40 50 60 70 80 90 t r r - ( n s ) i f = 8.0a, t j =125c i f = 8.0a, t j =25c 0.0 0.5 1.0 1.5 2.0 2.5 v fm , forward voltage drop (v) 0.1 1 10 100 i f , i n s t a n t a n e o u s f o r w a r d c u r r e n t ( a ) tj = 150c tj = 25c 100 1000 di f / dt - (a / s) 0 100 200 300 400 q r r - ( n s ) i f = 8.0a, t j =125c i f = 8.0a, t j =25c downloaded from: http:/// www.irf.com 7 data and specifications subject to change without notice. this product has been designed for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 04/2010 note: for the most current drawing please refer to ir website at http://www.irf.com/package/pkigbt.html to-220ab packages are not recommended for surface mount application. !"!# $% $&' ( ) ( ** +, - ( ( ) . )/, *0 downloaded from: http:/// |
Price & Availability of IRG6B330UD
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |