Part Number Hot Search : 
A6595KLW 936909 GBJ8005 GKCB32PX U74LV 85C51 2N5152U3 TECHNO
Product Description
Full Text Search
 

To Download A2I09VD015NR1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  A2I09VD015NR1 a2i09vd015gnr1 1 rf device data nxp semiconductors rf ldmos wideband integrated power amplifiers the a2i09vd015n wideband integrated circuit is designed with on--chip matching that makes it usable from 575 to 960 mhz. this multi--stage structure is rated for 48 to 55 v operation and covers all typical cellular base station modulation formats. 900 mhz ? typical single--carrier w--cdma characterization performance: v dd =48vdc,i dq1(a+b) =16ma,i dq2(a+b) =84ma,p out = 2 w avg., input signal par = 9.9 db @ 0. 01% probability on ccdf. (1) frequency g ps (db) pae (%) acpr (dbc) 920 mhz 32.9 19.3 ?45.9 940 mhz 33.0 19.7 ?45.5 960 mhz 32.8 19.6 ?44.9 features ? on--chip matching (50 ohm input, dc blocked) ? integrated quiescent current te mperature compensation with enable/disable function (2) ? designed for digital predistorti on error corre ction systems ? optimized for doherty applications figure 1. functional block diagram figure 2. pin connections note: exposed backside of the package is the source terminal for the transistor. quiescent current temperature compensation (2) v ds1a rf ina v gs1a rf out1 /v ds2a v gs2a quiescent current temperature compensation (2) v ds1b rf inb v gs1b rf out2 /v ds2b v gs2b v ds1a rf ina n.c. rf inb rf out1 /v ds2a 1 2 3 4 7 8 15 v gs1b 9 10 11 v gs2a v gs1a n.c. n.c. v gs2b n.c. v ds1b rf out2 /v ds2b 13 6 12 (top view) 5 14 n.c. 1. all data measured in fixture w ith device soldered to heatsink. 2. refer to an1977, quiescent current thermal tracking circ uit in the rf integrated circuit family , and to an1987, quiescent current control for the rf integrated circuit device family .goto http://www.nxp.com/rf and search for an1977 or an1987. document number: a2i09vd015n rev. 0, 06/2018 nxp semiconductors technical data 575?960 mhz, 2 w avg., 48 v airfast rf ldmos wideband integrated power amplifiers A2I09VD015NR1 a2i09vd015gnr1 to--270wb--15 plastic A2I09VD015NR1 to--270wbg--15 plastic a2i09vd015gnr1 ? 2018 nxp b.v.
2 rf device data nxp semiconductors A2I09VD015NR1 a2i09vd015gnr1 table 1. maximum ratings rating symbol value unit drain--source voltage v dss ?0.5, +105 vdc gate--source voltage v gs ?0.5, +10 vdc operating voltage v dd 55, +0 vdc storage temperature range t stg ?65 to +150 ? c case operating temperature range t c ?40 to +150 ? c operating junction temperature range (1,2) t j ?40 to +225 ? c input power p in 20 dbm table 2. thermal characteristics characteristic symbol value (2,3) unit thermal resistance, junction to case case temperature 74 ? c, 2 w, 940 mhz stage 1, 48 vdc, i dq1(a+b) 16 ma stage 2, 48 vdc, i dq2(a+b) 78 ma r ? jc 7.2 3.1 ? c/w table 3. esd protection characteristics test methodology class human body model (per js--001--2017) 1b charge device model (per js--002--2014) c0b table 4. moisture sensitivity level test methodology rating package peak temperature unit per jesd22--a113, ipc/jedec j--std--020 3 260 ? c 1. continuous use at maximum temperature will affect mttf. 2. mttf calculator available at http://www.nxp.com/rf/calculators . 3. refer to an1955, thermal measurement methodology of rf power amplifiers. go to http://www. nxp .com/rf and search for an1955.
A2I09VD015NR1 a2i09vd015gnr1 3 rf device data nxp semiconductors table 5. electrical characteristics (t a =25 ? c unless otherwise noted) characteristic symbol min typ max unit stage 1 -- off characteristics (1) zero gate voltage drain leakage current (v ds = 105 vdc, v gs =0vdc) i dss ? ? 10 ? adc zero gate voltage drain leakage current (v ds =55vdc,v gs =0vdc) i dss ? ? 1 ? adc gate--source leakage current (v gs =1.2vdc,v ds =0vdc) i gss ? ? 1 ? adc stage 1 -- on characteristics gate threshold voltage (1) (v ds =10vdc,i d =1 ? adc) v gs(th) 1.3 1.8 2.3 vdc gate quiescent voltage (v ds =48vdc,i dq1(a+b) =16madc) v gs(q) 2.2 2.4 2.6 vdc fixture gate quiescent voltage (v dd =48vdc,i dq1(a+b) = 16 madc, measured in functional test) v gg(q) 4.4 4.8 5.2 vdc stage 2 -- off characteristics (1) zero gate voltage drain leakage current (v ds = 105 vdc, v gs =0vdc) i dss ? ? 10 ? adc zero gate voltage drain leakage current (v ds =55vdc,v gs =0vdc) i dss ? ? 1 ? adc gate--source leakage current (v gs =1.2vdc,v ds =0vdc) i gss ? ? 1 ? adc stage 2 -- on characteristics gate threshold voltage (1) (v ds =10vdc,i d =6 ? adc) v gs(th) 1.3 1.8 2.3 vdc gate quiescent voltage (v ds =48vdc,i dq2(a+b) =78madc) v gs(q) 2.0 2.2 2.4 vdc fixture gate quiescent voltage (v dd =48vdc,i dq2(a+b) = 78 madc, measured in functional test) v gg(q) 4.0 4.4 4.8 vdc drain--source on--voltage (1) (v gs =10vdc,i d =60madc) v ds(on) 0.1 0.3 0.5 vdc 1. each side of device measured separately. (continued)
4 rf device data nxp semiconductors A2I09VD015NR1 a2i09vd015gnr1 table 5. electrical characteristics (t a =25 ? c unless otherwise noted) (continued) characteristic symbol min typ max unit functional tests (1,2) (in nxp production test fixture, 50 ohm system) v dd =48vdc,i dq1(a+b) =16ma,i dq2(a+b) =78ma, p out = 2 w avg., f = 920 mhz, single--carrier w--cdma, iq magnit ude clipping, input signal par = 9.9 db @ 0.01% probability on ccdf. acpr measured in 3.84 mhz channel bandwidth @ ? 5mhzoffset. power gain g ps 31.0 32.8 34.0 db power added efficiency pae 18.0 18.8 ? % adjacent channel power ratio acpr ? ?43.9 ?41.0 dbc p out @ 3 db compression point, cw p3db 16.6 18.5 ? w load mismatch (in nxp production test fixture, 50 ohm system) i dq1(a+b) =16ma,i dq2(a+b) =78ma,f=940mhz vswr 10:1 at 55 vdc, 24 w cw output power (3 db input overdrive from 19 w cw rated power) no device degradation typical performance (3) (in nxp characterization test fixture, 50 ohm system) v dd =48vdc,i dq1(a+b) =16ma,i dq2(a+b) =78ma, 920?960 mhz bandwidth p out @ 1 db compression point, cw p1db ? 17.7 ? w p out @ 3 db compression point (4) p3db ? 18.5 ? w am/pm (maximum value measured at the p3db compression point across the 920?960 mhz frequency range.) ? ? ?9 ? ? vbw resonance point (imd third order intermodulation inflection point) vbw res ? 270 ? mhz quiescent current accuracy over temperature (5) with2k ? gate feed resistors (--30 to 85 ? c) stage 1 with2k ? gate feed resistors (--30 to 85 ? c) stage 2 ? i qt ? ? 2.9 3.2 ? ? % gain flatness in 40 mhz bandwidth @ p out =2wavg. g f ? 0.2 ? db gain variation over temperature (?30 ? cto+85 ? c) ? g ? 0.036 ? db/ ? c output power variation over temperature (?30 ? cto+85 ? c) ? p1db ? 0.007 ? db/ ? c table 6. ordering information device tape and reel information package A2I09VD015NR1 r1 suffix = 500 units, 44 mm tape width, 13--inch reel to--270wb--15 a2i09vd015gnr1 to--270wbg--15 1. part internally input and output matched. 2. measurements made with device in straight lead configuration before any lead forming oper ation is applied. lead forming is used for gull wing (gn) parts. 3. all data measured in fixture w ith device soldered to heatsink. 4. p3db = p avg + 7.0 db where p avg is the average output power measured using an uncli pped w--cdma single--carrier input signal where output par is compressed to 7.0 db @ 0.01% probability on ccdf. 5. refer to an1977, quiescent current thermal tracking circ uit in the rf integrated circuit family , and to an1987, quiescent current control for the rf integrated circuit device family .goto http://www.nxp.com/rf and search for an1977 or an1987.
A2I09VD015NR1 a2i09vd015gnr1 5 rf device data nxp semiconductors r5 figure 3. A2I09VD015NR1 production test circuit component layout r3 c9 c10 r4 c28 c18 c12 c17 c11 c15 c7 c8 r2 r1 r8 c20 c23 c14 c27 c16 c13 v gs1 v gs2 v ds1 v gs3 v gs4 v ds1 v ds2 a2i09vd015n rev. 2 cut out area v ds2 c1 c2 c3 c4 c5 c6 z2 c19 c21 c22 c26 r9 r10 c24 r6 z1 r7 c25 table 7. A2I09VD015NR1 production test circuit component designations and values part description part number manufacturer c1, c2, c3, c4, c5, c6, c7, c8, c9, c10 10 ? f chip capacitor c5750x7sa106m230kb tdk c11, c12, c13, c14 10 ? f chip capacitor c3225x7s1h106m250ab tdk c15, c16, c17, c18 10 nf chip capacitor c0805c103k5rac kemet c19, c20, c21, c22, c23, c24, c25, c26, c27, c28 47 pf chip capacitor atc600s470jt250xt atc r1, r2, r3, r4 2.2 k ? , 1/8 w chip resistor crcw08052k20jnea vishay r5 50 ? , 8 w termination chip resistor c8a50z4a anaren r6 50 ? , 20 w termination chip resistor c20a50z4 anaren r7, r8, r9, r10 10 ? , 1/8 w chip resistor crcw080510r0fkea vishay z1, z2 800--1000 mhz, 90 ? , 3 db hybrid coupler x3c09p1-03 anaren pcb rogers ro4350b, 0.020 ? , ? r =3.66 ? mtl
6 rf device data nxp semiconductors A2I09VD015NR1 a2i09vd015gnr1 figure 4. A2I09VD015NR1 characterizatio n test circuit compone nt layout ? 920?960 mhz r3 c9 c10 r4 c28 c18 r5 c12 c17 c11 c15 c7 c8 r2 r1 r8 c20 c23 c14 c27 c16 c13 v gs1 v gs2 v ds1 v gs3 v gs4 v ds1 v ds2 d99736 a2i09vd015n rev. 2 v ds2 c1 c2 c3 c4 c5 c6 z2 r7 c19 c21 c22 c26 r9 r10 c24 r6 q1 note: all data measured in fixture with device soldered to heatsink. production fixt ure does not include device soldered to heatsink. z1 c25 table 8. A2I09VD015NR1 characterization test ci rcuit component designati ons and values ? 920?960 mhz part description part number manufacturer c1, c2, c3, c4, c5, c6, c7, c8, c9, c10 10 ? f chip capacitor c5750x7sa106m230kb tdk c11, c12, c13, c14 10 ? f chip capacitor c3225x7s1h106m250ab tdk c15, c16, c17, c18 10 nf chip capacitor c0805c103k5rac kemet c19, c20, c21, c22, c23, c24, c25, c26, c27, c28 47 pf chip capacitor atc600s470jt250xt atc q1 rf power ldmos amplifier a2i09vd015n nxp r1, r2, r3, r4 2.2 k ? , 1/8 w chip resistor crcw08052k20jnea vishay r5 50 ? , 8 w termination chip resistor c8a50z4a anaren r6 50 ? , 20 w termination chip resistor c20a50z4 anaren r7, r8, r9, r10 10 ? , 1/8 w chip resistor crcw080510r0fkea vishay z1, z2 800--1000 mhz, 90 ? , 3 db hybrid coupler x3c09p1-03 anaren pcb rogers ro4350b, 0.020 ? , ? r =3.66 d99736 mtl
A2I09VD015NR1 a2i09vd015gnr1 7 rf device data nxp semiconductors typical characteristics ? 920?960 mhz v dd =48vdc,p out = 8 w (pep), i dq1(a+b) =16ma i dq2(a+b) =84ma 820 acpr f, frequency (mhz) figure 5. single--carrier output peak--to--average ratio compression (parc) broadband performance @ p out = 2 watts avg. 32.5 32 20 18 16 14 ?43 ? d , drain efficiency (%) ? d g ps , power gain (db) 840 860 880 900 920 940 960 980 12 acpr (dbc) parc figure 6. intermodulation distortion products versus two--tone spacing figure 7. output peak--to--average ratio compression (parc) versus output power p out , output power (watts) ?1 ?3 2 0 ?2 ?4 output compression at 0.01% probability on ccdf (db) 1346 10 40 35 30 25 20 15 ? d ? drain efficiency (%) 5 ? d acpr acpr (dbc) ?48 ?30 ?33 ?36 ?42 ?39 ?45 32.9 g ps , power gain (db) 32.8 32.7 32.6 32.5 32.4 32.3 ?5 g ps 1 31.5 31 30.5 30 29.5 ?48 ?47 ?46 ?45 ?44 two--tone spacing (mhz) 10 ?90 ?30 ?45 ?75 1 100 imd, intermodulatio n distortion (dbc) ?60 im5--u im5--l im7--l im7--u im3--l 400 im3--u ?15 parc 33.5 33 29 parc (db) ?1.5 ?.9 ?1.8 ?1.2 3.84 mhz channel bandwidth input signal par = 9.9 d b @ 0.01% pr obabilit y on ccdf v dd =48vdc,i dq1(a+b) =16ma,i dq2(a+b) =84ma f = 940 mhz, single--carrier w--cdma ?1 db = 2.3 w g ps single--carrier w--cdma, 3.84 mhz channel bandwidth input signal par = 9.9 d b @ 0.01% pr obabilit y on ccdf v dd =48vdc,p out =2w(avg.) i dq1(a+b) =16ma i dq2(a+b) =84ma 28.5 ?.6 ?.3 two--tone measurements, (f1 + f2)/2 = center frequency of 940 mhz ?3 db = 4.1 w ?2 db = 3.1 w
8 rf device data nxp semiconductors A2I09VD015NR1 a2i09vd015gnr1 typical characteristics ? 920?960 mhz 1 acpr p out , output power (watts) avg. figure 8. single--carrier w--cdma power gain, drain efficiency and acpr versus output power ?25 ?30 29 35 0 60 50 40 30 20 ? d , drain efficiency (%) g ps , power gain (db) 34 33 10 20 10 ?50 acpr (dbc) 32 31 30 ?35 ?40 ?45 figure 9. broadband frequency response 24 36 f, frequency (mhz) 32 30 28 gain (db) 34 26 750 800 850 900 950 1000 1050 1150 gain g ps 1100 ? d ?20 920 mhz 920 mhz 940 mhz 960 mhz 920 mhz 960 mhz 940 mhz v dd =48vdc p in =0dbm i dq1(a+b) =16ma i dq2(a+b) =84ma 940 mhz 960 mhz v dd =48vdc,i dq1(a+b) =16ma,i dq2(a+b) =84ma single--carrier w--cdma, 3.84 mhz channel bandwidth input signal par = 9.9 db @ 0.01% probabilit y on ccdf
A2I09VD015NR1 a2i09vd015gnr1 9 rf device data nxp semiconductors table 9. load pull performance ? maximum power tuning v dd =48vdc,i dq1 =8ma,i dq2 = 39 ma, pulsed cw, 10 ? sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max output power p1db z load (1) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 920 51.0 ? j3.11 65.8 + j7.62 35.3 + j33.2 31.6 40.2 10 59.5 ?2 940 49.2 + j1.23 60.4 + j2.53 32.5 + j32.9 31.5 40.2 11 59.6 ?3 960 50.9 + j2.55 54.2 + j0.33 29.7 + j32.1 31.3 40.2 10 58.7 ?4 f (mhz) z source ( ? ) z in ( ? ) max output power p3db z load (2) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 920 51.0 ? j3.11 66.2 + j7.48 33.7 + j31.8 29.6 41.1 13 62.1 ?3 940 49.2 + j1.23 60.0 + j2.49 31.3 + j31.1 29.5 41.1 13 61.5 ?4 960 50.9 + j2.55 52.8 + j1.10 28.8 + j30.7 29.3 41.0 13 61.1 ?5 (1) load impedance for optimum p1db power. (2) load impedance for optimum p3db power. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. note: measurement made on a per side basis. table 10. load pull performance ? maximum efficiency tuning v dd =48vdc,i dq1 =8ma,i dq2 = 39 ma, pulsed cw, 10 ? sec(on), 10% duty cycle f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p1db z load (1) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 920 51.0 ? j3.11 67.5 + j6.05 18.5 + j45.3 33.7 38.5 7 70.0 ?4 940 49.2 + j1.23 60.9 + j1.05 14.3 + j44.7 33.8 37.5 6 68.8 ?5 960 50.9 + j2.55 54.3 + j0.28 18.0 + j40.8 32.9 38.8 8 67.5 ?4 f (mhz) z source ( ? ) z in ( ? ) max drain efficiency p3db z load (2) ( ? ) gain (db) (dbm) (w) ? d (%) am/pm ( ? ) 920 51.0 ? j3.11 67.3 + j4.87 18.5 + j45.7 31.7 39.4 9 71.1 ?3 940 49.2 + j1.23 59.2 ? j0.18 13.0 + j46.5 32.0 38.1 6 69.9 ?4 960 50.9 + j2.55 53.5 ? j0.45 18.3 + j40.8 30.9 39.8 10 69.4 ?2 (1) load impedance for optimum p1db efficiency. (2) load impedance for optimum p3db efficiency. z source = measured impedance presented to the input of th e device at the package reference plane. z in = impedance as measured from gate contact to ground. z load = measured impedance presented to the output of the device at the package reference plane. note: measurement made on a per side basis. input load pull tuner and test circuit device under test z source z in z load output load pull tuner and test circuit
10 rf device data nxp semiconductors A2I09VD015NR1 a2i09vd015gnr1 p1db ? typical load pull contours ? 940 mhz imaginary ( ? ) 10 5 25 15 30 20 35 40 45 50 55 real ( ? ) 20 15 25 35 30 40 45 50 55 60 imaginary ( ? ) 10 5 25 15 30 20 35 40 45 50 55 real ( ? ) 20 15 25 35 30 40 45 50 55 60 imaginary ( ? ) 10 5 25 15 30 20 35 40 45 50 55 real ( ? ) 20 15 25 35 30 40 45 50 55 60 imaginary ( ? ) 10 5 25 15 30 20 35 40 45 50 55 real ( ? ) 20 15 25 35 30 40 45 50 55 60 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power figure 10. p1db load pull output power contours (dbm) figure 11. p1db load pull efficiency contours (%) figure 12. p1db load pull gain contours (db) figure 13. p1db load pull am/pm contours ( ? ) 40 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power 64 30.5 33 39 39.5 60 66 62 68 32.5 34 54 33.5 38.5 58 56 ?10 ?8 38 p e 39.5 40 39 38.5 38 37 39 36 e p 52 e p 32 31.5 31 e p ?6 ?4 ?2 ?4 ?4
A2I09VD015NR1 a2i09vd015gnr1 11 rf device data nxp semiconductors p3db ? typical load pull contours ? 940 mhz imaginary ( ? ) 10 5 25 15 30 20 35 40 45 50 55 real ( ? ) 20 15 25 35 30 40 45 50 55 60 imaginary ( ? ) 10 5 25 15 30 20 35 40 45 50 55 real ( ? ) 20 15 25 35 30 40 45 50 55 60 imaginary ( ? ) 10 5 25 15 30 20 35 40 45 50 55 real ( ? ) 20 15 25 35 30 40 45 50 55 60 imaginary ( ? ) 10 5 25 15 30 20 35 40 45 50 55 real ( ? ) 20 15 25 35 30 40 45 50 55 60 note: = maximum output power = maximum drain efficiency p e gain drain efficiency linearity output power figure 14. p3db load pull output power contours (dbm) figure 15. p3db load pull efficiency contours (%) figure 16. p3db load pull gain contours (db) figure 17. p3db load pull am/pm contours ( ? ) 40 39 39.5 38.5 38 41 37 p e 40.5 40.5 40 39.5 39 38 40 64 60 66 62 68 54 58 56 p e p e 28.5 31 30.5 32 31.5 30 29.5 29 p e ?6 ?4 0 ?2 ?8 ?14 ?12 ?10
12 rf device data nxp semiconductors A2I09VD015NR1 a2i09vd015gnr1 package dimensions
A2I09VD015NR1 a2i09vd015gnr1 13 rf device data nxp semiconductors
14 rf device data nxp semiconductors A2I09VD015NR1 a2i09vd015gnr1
A2I09VD015NR1 a2i09vd015gnr1 15 rf device data nxp semiconductors
16 rf device data nxp semiconductors A2I09VD015NR1 a2i09vd015gnr1
A2I09VD015NR1 a2i09vd015gnr1 17 rf device data nxp semiconductors
18 rf device data nxp semiconductors A2I09VD015NR1 a2i09vd015gnr1 product documentation, software and tools refer to the following resources to aid your design process. application notes ? an1907: solder reflow attach method for high power rf devices in over--molded plastic packages ? an1955: thermal measurement methodology of rf power amplifiers ? an1977: quiescent current thermal tracking circuit in the rf integrated circuit family ? an1987: quiescent current control for the rf integrated circuit device family engineering bulletins ? eb212: using data sheet impedances for rf ldmos devices software ? electromigration mttf calculator ? rf high power model ? .s2p file development tools ? printed circuit boards to download resources specific to a given part number: 1. go to http://www .nxp.com/rf 2. search by part number 3. click part number link 4. choose the desired resource from the drop down menu revision history the following table summarizes revisions to this document. revision date description 0 june 2018 ? initial release of data sheet
A2I09VD015NR1 a2i09vd015gnr1 19 rf device data nxp semiconductors information in this document is provided solely to enable system and software implementers to use nxp products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. nxp reserves the right to make changes without further notice to any products herein. nxp makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does nxp assume any li ability arisi ng out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or i ncidental damages. ?typical? parameters that may be provided in nxp data sheets and/ or specifications can and do vary in different applications, and actual performance may vary over time. all operating parameters, including ?typicals,? must be validated for each customer application by customer?s technical experts. nxp does not convey any license under its patent rights nor the rights of others. nxp sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/ salestermsandconditions . nxp, the nxp logo and airfast are trademarks of nxp b.v. all other pr oduct or service names are the property of their respective owners. e 2018 nxp b.v. how to reach us: home page: nxp.com web support: nxp.com/support document number: a2i09vd015n rev. 0, 06/2018


▲Up To Search▲   

 
Price & Availability of A2I09VD015NR1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X