Part Number Hot Search : 
2SK30 A5800 SM200 335P3I3M KST10MTF 90814 FIN1102 M50V5
Product Description
Full Text Search
 

To Download STGIPQ3H60T-HL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  march 2017 docid 027219 rev 5 1 / 26 this is information on a product in full production. www.st.com stgipq3h60t - hl, stgipq3h60t - hz sllimm? nano - 2 nd series ipm, 3 a, 600 v, 3 - phase igbt inverter bridge datasheet - production data features ? ipm 3 a, 600 v, 3 - phase igbt inverter bridge including 3 control ics for gate driving and freewheeling diodes ? 3.3 v, 5 v, 15 v ttl/cmos input comparators with hysteresis and pull - down/pull - up resistors ? internal bootstrap diode ? optimized for low electromagnetic interference ? undervoltage lockout ? v ce (sat) negative temperature coefficient ? smart shutdown function ? interlocking function ? op - amp for advanced current sensing ? comparator for fault protection against overcurrent ? ntc (ul 1434 ca 2 and 4) ? isolation ratings of 1500 vrms/min. ? up to 2 kv esd protec tion (hbm c = 100 pf, r = 1.5 k) ? ul recognition: ul 1557 file e81734 applications ? 3 - phase inverters for motor drives ? dish washers, refrigerator compresso rs, heating systems, air - conditioning fans, draining and recirculation pumps description this second series of sllimm (small low - loss intelligent molded modul e) nano provides a compact, high performance ac motor drive in a simple, rugged design. it is composed of six improved igbts with freewheeling diodes and three half - bridge hvics for gate driving, providing low electromagnetic interference (emi) characteris tics with optimized switching speed. the package is designed to allow a better and more easily screwed - on heatsink and is optimized for thermal performance and compactness in built - in motor applications or other low power applications where assembly space is limited. this ipm includes a completely uncommitted operational amplifier and a comparator that can be used to design a fast and efficient protection circuit. sllimm? is a trademark of stmicroelectronics. table 1: device summary order code marking package packing stgipq3h60t - hl gipq3h60t - hl n2dip - 26l type l tube stgipq3h60t - hz gipq3h60t - hz n2dip - 26l type z n2dip-26 l type l n2dip-26 l type z
contents stgipq3h60t - hl, stgipq3h60t - hz 2 / 26 docid027219 rev 5 contents 1 internal schematic diagram and pin configuration ....................... 3 2 electrical ratings ................................ ................................ ............. 5 2.1 absolute maximum ratings ................................ ................................ 5 2.2 thermal data ................................ ................................ ..................... 6 3 electrical characteristics ................................ ................................ 7 3.1 inverter part ................................ ................................ ....................... 7 3.2 control part ................................ ................................ ....................... 9 3.2.1 ntc thermistor ................................ ................................ ................. 12 3.3 waveform definitions ................................ ................................ ....... 14 4 smart shutdown function ................................ ............................. 15 5 application circuit example ................................ .......................... 17 5.1 guidelines ................................ ................................ ....................... 18 6 package information ................................ ................................ ..... 20 6.1 n2dip - 26l type l package information ................................ .......... 20 6.2 n2dip - 26l type z package information ................................ .......... 22 6.3 n2dip - 26l packing information ................................ ...................... 24 7 revision history ................................ ................................ ............ 25
stgipq3h60t - hl, stgipq3h60t - hz internal schematic diagram and pin configuration docid027219 rev 5 3 / 26 1 internal schematic diagram and pin configuration figure 1 : internal schematic diagram o p- ( 8) v cc w ( 3) h i n w ( 4) t / sd / o d ( 15) h i n v ( 10) v cc v ( 9) h i n u ( 14) v cc u ( 13) li n w ( 5) li n u ( 16) v, o u t v (22) w, o u t w (25) u , out u (19) p ( 18) n w (26) o p o u t ( 7) t/ sd / o d ( 2) g nd ( 1) c i n ( 12) o p + ( 6) li n v ( 11) n v (23) n u ( 20) vboo t u ( 17) vboo t v (21) vboo t w (24) n t c gnd opout lin vcc hvg op+ op- sd/od out lvg vboot hin gnd lin vcc hvg cin sd/od out lvg vboot hin gnd lin vcc hvg sd/od out lvg vboot hin
internal schematic diagram and pin configuration stgipq3h60t - hl, stgipq3h60t - hz 4 / 26 docid027219 rev 5 table 2: pin description pin symbol de scription 1 gnd ground 2 t/ sd / od ntc thermistor terminal / shutdown logic input (active low) / open - drain (comparator output) 3 v cc w low voltage power supply w phase 4 hin w high - side logic input for w phase 5 lin w low - side logic input for w phase 6 op+ op - amp non - inverting input 7 op out op - amp output 8 op - op - amp inverting input 9 v cc v low voltage power supply v phase 10 hin v high - side logic input for v phase 11 lin v low - side logic input for v phase 12 cin comparator input 13 v cc u low voltage power supply for v phase 14 hin u high - side logic input for v phase 15 t/ sd / od ntc thermistor terminal / shutdown logic input (active low) / open - drain (comparator output) 16 lin u low - side logic input for u p hase 17 v boot u bootstrap voltage for u phase 18 p positive dc input 19 u, out u u phase output 20 n u negative dc input for u phase 21 v boot v bootstrap voltage for v phase 22 v, out v v phase output 23 n v negative dc input for v phase 24 v boot w bootstrap voltage for w phase 25 w, out w w phase output 26 n w negative dc input for w phase
stgipq3h60t - hl, stgipq3h60t - hz electrical ratings docid027219 rev 5 5 / 26 2 electrical ratings 2.1 absolute maximum ratings table 3: inverter part symbol parameter value unit v ces collector - emitter voltage each igbt (v in (1) = 0 v) 60 0 v i c continuous collector current each igbt 3 a i cp (2) peak collector current each igbt (less than 1 ms) 6 a p tot total dissipation at t c =25 c each igbt 12 w notes: (1) applied among hin x , lin x and gnd for x = u, v, w. (2) pulse width limited by max. junction temperature. table 4: control part symbol parameter min. max. unit v cc low voltage power supply - 0.3 21 v v boot bootstrap voltage - 0.3 620 v v out output voltage applied among out u , out v , out w - gnd v boot - 21 v boot + 0.3 v v cin comparator input voltage - 0.3 v cc + 0.3 v v op+ op - amp non - inverting input - 0.3 v cc + 0.3 v v op - op - amp inverting input - 0.3 v cc + 0.3 v v in logic input voltage applied among hinx, linx and gnd - 0.3 15 v ? ? / ?? ? ? ? ? / ?? open - drain voltage - 0.3 15 v ?v out/dt allowed output slew rate 50 v/ns table 5: total system symbol parameter value unit v iso isolation withstand voltage applied to each pin and heatsink plate (ac voltage, t = 60 s) 1500 v t j power chip operating junction temperature - 40 to 150 c t c module case operation temperature - 40 to 125 c
electrical ratings stgipq3h60t - hl, stgipq3h60t - hz 6 / 26 docid027219 rev 5 2.2 thermal data table 6: thermal data symbol parameter value unit r th(j - c) thermal resistance junction - case single igbt 10 c/w thermal resistance junction - case single diode 15 r th(j - a) thermal resistance junction - ambient 44
stgipq3h60t - hl, stgipq3h60t - hz electrical characteris tics docid027219 rev 5 7 / 26 3 electrical characteristics t j = 25 c unless otherwise specified. 3.1 inverter part table 7: static symbol parameter test conditions min. typ. max. unit i ces collector cut - off current (v i n (1) = 0 logic state) v ce = 550 v, v cc = v boot = 15 v - 250 a v ce(sat) collector - emitter saturation voltage v cc = v boot = 15 v, v in (1) = 0 - 5 v, i c = 1 a - 2.15 2.6 v v cc = v boot = 15 v, v in (1) = 0 to 5 v, i c = 1 a, t j = 125 c - 1.65 v v f diode forward voltage v in (1) = 0 logic state, i c = 1 a - 1.8 v notes: (1) applied among hin x , lin x and g nd for x = u, v, w. table 8: inductive load switching time and energy symbol parameter test conditions min. typ. max. unit t on (1) turn - on time v dd = 300 v, v cc = v boot = 15 v, v in (2) = 0 - 5 v, i c = 1 a (see figure 3: "switching time definition" ) - 275 - ns t c(on) (1) crossover time (on) - 90 - t off (1) turn - off time - 890 - t c(off) (1) crossover time (off) - 125 - t rr reverse recovery time - 50 - e on turn - on switching energy - 18 - j e off turn - off switching energy - 13 - notes: (1) t on and t off include the propagation delay time of the internal drive. t c(on) and t c(off) are the switching time of igbt itself under the internally given gate driving conditions. (2) applied among hin x , lin x and g nd for x = u, v, w.
electrical characteristics stgipq3h60t - hl, stgipq3h60t - hz 8 / 26 docid027219 rev 5 figure 2 : switching time test circuit figure 3 : switching time definition figure 3: "switching time definition" refers to hin, lin inputs (active high).
stgipq3h60t - hl, stgipq3h60t - hz electrical characteristics docid027219 rev 5 9 / 26 3.2 control part table 9: low voltage power supply symbol parameter test conditions min. typ. max. unit v cc_hys v cc uv hysteresis 1.2 1.5 1.8 v v cch_th(on) v cch uv turn - on threshold 11.5 12 12.5 v v cch_th(off) v cch uv turn - off threshold 10 10.5 11 v i qccu undervoltage quiescent supply current v cc = 10 v, t/ sd /od = 5 v; lin =hin =c in = 0 v 150 a i qcc quiescent current v cc = 10 v, t/ sd /od = 5 v; lin = hin =c in = 0 v 1 ma v ref internal comparator (cin) reference voltage 0.51 0.54 0.56 v table 10: bootstrapped voltage symbol parameter test conditions min. typ. max. unit v bs_hys v bs uv hysteresis 1.2 1.5 1.8 v v bs_th(on) v bs uv turn - on threshold 11.1 11.5 12.1 v v bs_th(off) v bs uv turn - off threshold 9.8 10 10.6 v i qbsu undervoltage v bs quiescent current v bs < 9 v, t/ sd /od = 5 v; l in = 0 v and h in = 5 v; c in = 0 v 70 110 a i qbs v bs quiescent current v bs = 15 v, t/ sd /od = 5 v; l in = 0 v and h in = 5 v; c in = 0 v 150 210 a r ds(on) bootstrap driver on - resistance lvg on 120
electrical characteristics stgipq3h60t - hl, stgipq3h60t - hz 10 / 26 docid027219 rev 5 table 11: logic inputs symbol parameter test conditions min. typ. max. unit v il low logic level voltage 0.8 v v ih high logic level voltage 2.25 v i hinh hin logic 1 input bias current hin = 15 v 20 40 100 a i hinl hin logic 0 input bias current hin = 0 v 1 a i linl lin logic 0 input bias current lin = 0 v 1 a i linh lin logic 1 input bias current lin = 15 v 20 40 100 a i sdh sd logic 0 input bias current sd = 15 v 220 295 370 a i sdl sd logic 1 input bias current sd = 0 v 3 a dt dead time see figure 8: "dead time and interlocking waveform definitions" 180 ns table 12: op - amp characteristics symbol parameter test conditions min. typ. max. unit v io input offset voltage v ic = 0 v, v o = 7.5 v 6 mv i io input offset current v ic = 0 v, v o = 7.5 v 4 40 na i ib input bias current (1) 100 200 na v ol low level output voltage r l = 10 k? to v cc 75 150 mv v oh high level output voltage r l = 10 k? to gnd 14 14.7 v i o output short - circuit current source, v id = + 1 v; v o = 0 v 16 30 ma sink, v id = - 1 v; v o = v cc 50 80 ma sr slew rate v i = 1 - 4 v; c l = 100 pf; unity gain 2.5 3.8 v/s gbwp gain bandwidth product v o = 7.5 v 8 12 mhz a vd large signal voltage gain r l = 2 k? 70 85 db svr supply voltage rejection ratio vs v cc 60 75 db cmrr common mode rejection ratio 55 70 db notes: (1) the direction of input current is out of the ic.
stgipq3h60t - hl, stgipq3h60t - hz electrical chara cteristics docid027219 rev 5 11 / 26 table 13: sense comparator characteristics symbol parameter test conditions min. typ. max. unit i ib input bias current v cin = 1 v - 3.1 a v od open - drain low level output voltage i od = 3 ma - 0.5 v r on_od open - drain low level output i od = 3 ma - 166 ? r pd_sd sd pull - down resistor (1) - 125 k? t d_comp comparator delay t/ sd /od pulled to 5 v through 100 k? resistor - 90 130 ns sr slew rate c l = 180 pf; r pu = 5 k? - 60 v/s t sd shutdown to high / low - side driver propagation delay v out = 0, v boot = v cc , v in = 0 to 3.3 v - 125 ns t isd comparator triggering to high / low - side driver turn - off propagation delay measured applying a voltage step from 0 v to 3.3 v to pin cin - 200 notes: (1) equivalent values as a result of the resistances of three drivers in parallel. table 14: truth table conditions logic input (v i ) output t/ sd /od lin hin lvg hvg shutdown enable half - bridge tri - state l x (1) x (1) l l interlocking half - bridge tri - state h h h l l 0 logic state half - bridge tri - state h l l l l 1 logic state low - side direct driving h h l h l 1 logic state high - side direct driving h l h l h notes: (1) x: dont care.
electrical characteristics stgipq3h60t - hl, stgipq3h60t - hz 12 / 26 docid027219 rev 5 3.2.1 ntc thermistor figure 4 : internal structure of sd and ntc rpd_sd: equivalent value as result of resistances of three drivers in parallel. figure 5 : equivalent resistance (ntc//rpd_sd) t/sd/o d v vbias rpd_sd ntc lin hin vcc gnd cin lvg out hvg vboot sd/od r sd c sd
stgipq3h60t - hl, stgipq3h60t - hz electrical characteristics docid027219 rev 5 13 / 26 figure 6 : equivalent resistance (ntc//rpd_sd) zoom figure 7 : voltage of t/ ?? ? ? ? ? /od pin according to ntc temperature
electrical characteristics stgipq3h60t - hl, stgipq3h60t - hz 14 / 26 docid027219 rev 5 3.3 waveform definitions figure 8 : dead time and interlocking waveform definitions
stgipq3h60t - hl, stgipq3h60t - hz sma rt shutdown function docid027219 rev 5 15 / 26 4 smart shutdown function the device integrates a comparator for fault sensing purposes. the comparator has an internal voltage reference v ref connected to the inverting input, while th e non - inverting input on pin (cin) can be connected to an external shunt resistor for overcurrent protection. when the comparator triggers, the device is set to the shutdown state and both of its outputs are set to the low level, causing the half - bridge to enter a tri - state. in common overcurrent protection architectures, the comparator output is usually connected to the shutdown input through an rc network so to provide a monostable circuit, which implements a protection time following to a fault condition. our smart shutdown architecture immediately turns off the output gate driver in case of overcurrent through a preferential path for the fault signal, which directly switches off the outputs. the time delay between the fault and output shutdown n o longer depends on the rc values of the external network connected to the shutdown pin. at the same time, the dmos connected to the open - drain output (pin t/ sd /od) is turned on by the internal logic, which holds it on until the shutdown vol tage is well below the minimum value of logic input threshold (vil). besides, the smart shutdown function allows the real disable time to be increased while the constant time of the external rc network remains as it is. an ntc thermistor for temperature mo nitoring is internally connected in parallel to the sd pin. to avoid undesired shutdown, keep the voltage ? ? / ?? ? ? ? ? / ?? higher than the high level logic threshold by setting the pull - up resistor ? ?? ? ? ? ? to 1 k or 2.2 k for 3.3 v or 5 v mcu power supplies, respectively.
smart shutdown function stgipq3h60t - hl, stgipq3h60t - hz 16 / 26 docid027219 rev 5 figure 9 : smart shutdown timing waveforms in case of overcurrent event shutdow n circuit an approximation of the disable time is given by: h in /lin h vg/ l vg open-drain gate (internal) com p vref c p+ protection fast shutdown : the driver outputs are set to the sd state as soon as the com parator triggers even if the sd signal hasnt reached the low est input threshold disable tim e sd /od gipg080920140931fsr t/ s d / o d v sm a r t sd l o g i c t/sd/ o d r p d_ s d c s d r sd v bias ntc ron_od
stgipq3h60t - hl, stgipq3h60t - hz application circuit example docid027219 rev 5 17 / 26 5 application circuit example figure 10 : application circuit example application designers are free to use a different scheme according to the specifications of the device. op- (8) vcc w (3) hin w (4) t / sd / od (15) hin v (10) vcc v (9) hin u (14) vcc u (13) linw (5) lin u (16) v, out v (22) w, out w (25) u, out u (19) p (18) n w (26) opout (7) t / sd / od (2) gnd (1) cin (12) op+ (6) lin v (11) n v (23) n u (20) vboot u (17) vboot v (21) vboot w (24) rs rs adc rs m pw r _gn d sgn _gn d vc c c vc c c 2 dz2 dz2 c3 r3 r sd c1 t e m p . monitoring hin u lin u lin v hin v lin w hin w sd adc gnd lin vcc lvg sd/od out hvg vboot hin c1 c1 cboot u rshunt r1 + - r1 c sd r1 5v / 3.3v c3 r4 r1 c1 cvdc gnd lin vcc lvg cin sd/od out hvg vboot hin + - vdc r sf 5v / 3.3v c op r2 r1 gnd opout lin vcc lvg op+ op- sd/od out hvg vboot hin r5 cboot v ntc r1 c1 c sf cboot w c1 c4 c3 dz1 r1 dz2 m icrocontroller gad25072016 1 156fsr
application circuit example stgipq3h60t - hl, stgipq3h60t - hz 18 / 26 docid027219 rev 5 5.1 guidelines ? input signals hin, lin are active high logic. a 375 k (typ.) pull - down resistor is built - in for each input. to avoid input signal oscillations, the wiring of each input should be as short as possible and the use of rc filters (r 1 , c 1 ) on each input signal is suggested. the filters should be with a time constant of about 100 ns and placed as close as possible to the ipm input pins. ? the use of a bypass capacitor c vcc (aluminum or tantalum) can reduce the transient circuit demand on the power su pply. also, to reduce high frequency switching noise distributed on the power lines, a decoupling capacitor c 2 (100 to 220 nf, with low esr and low esl) should be placed as close as possible to vcc pin and in parallel whit the bypass capacitor. ? the use of rc filter (r sf , c sf ) is recommended to avoid protection circuit malfunction . the time constant (r sf x c sf ) should be set to 1 s and the filter must be placed as close as possible to the c in pin. ? the sd is an input/output pin (open - drain ty pe if it is used as output). a built - in thermistor ntc is internally connected between the sd pin and gnd. the voltage v sd - gnd decreases as the temperature increases, due to the pull - up resistor r sd . in order to keep the voltage always highe r than the high level logic threshold, the pull - up resistor is suggested to be set to 1 k or 2.2 k for 3.3 v or 5 v mcu power supply, respectively. the c sd capacitor of the filter on sd should be fixed no higher than 3.3 nf in order to ass ure the sd activation time 1 500 ns. moreover, the filter should be placed as close as possible to the sd pin. ? the decoupling capacitor c 3 (from 100 to 220 nf, ceramic with low esr and low esl), in parallel with each c boot , filters high frequency disturbance. both c boot and c 3 (if present) should be placed as close as possible to the u, v, w and v boot pins. bootstrap negative electrodes should be connected to u, v, w terminals directly and separated from the main output wire s. ? to avoid the overvoltage on vcc pin, a zener diode (d z1 ) can be used. similarly on the v boot pin, a zener diode (d z2 ) can be placed in parallel with each c boot . ? the use of the decoupling capacitor c 4 (100 to 220 nf, with low esr and low esl) in parallel with the electrolytic capacitor c vdc avoids surge destruction. both capacitors c 4 and c vdc should be placed as close as possible to the ipm (c 4 has priority over c vdc ). ? by integrating an application - specific type hvic inside the module, direct coupling to the mcu terminals without an optocoupler is possible. ? low inductance shunt resistors have to be used for phase leg current sensing. ? in order to avoid malfunctions, the wiring on n pins, the shunt resistor and p wr_gnd should be as short as possible. ? the connection of sgn_gnd to pwr_gnd on one point only (close to the shunt resistor terminal) can reduce the impact of power ground fluctuation. these guidelines ensure the specifications of the device for application designs. for further details, please refe r to the relevant application note.
stgipq3h60t - hl, stgipq3h60t - hz application circuit example docid027219 rev 5 19 / 26 table 15: recommended operating conditions symbol parameter test conditions min. typ. max. unit v pn supply voltage applied among p - nu, nv, nw 300 500 v v cc control supply voltage applied to v cc - gnd 13.5 15 18 v v bs high - side bias voltage applied to v bootx - out for x = u, v, w 13 18 v t dead blanking time to prevent arm - short for each input signal 1.5 s f pwm pwm input signal - 40 c < t c < 100 c - 40 c < t j < 125 c 25 khz t c case operation temperature 100 c
package information stgipq3h60t - hl, stgipq3h60t - hz 20 / 26 docid027219 rev 5 6 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental c ompliance. ecopack ? specifications, grade definitions and product status are available at: www.st.com . ecopack ? is an st trademark. 6.1 n2dip - 26l type l package information figure 11 : n2dip - 26l type l package outline
stgipq3h60t - hl, stgipq3h60t - hz package information docid027219 rev 5 21 / 26 table 16: n2dip - 26l type l mechanical data dim. mm min. typ. max. a 4.80 5.10 5.40 a1 0.80 1.00 1.20 a2 4.00 4.10 4.20 a3 1.70 1.80 1.90 a4 1.70 1.80 1.90 a5 8.10 8.40 8.70 a6 1.75 b 0.53 0.72 b2 0.83 1.02 c 0.46 0.59 d 32.05 32.15 32.25 d1 2.10 d2 1.85 d3 30.65 30.75 30.85 e 12.35 12.45 12.55 e 1.70 1.80 1.90 e1 2.40 2.50 2.60 eb1 14.25 14.55 14.85 l 0.85 1.05 1.25 dia 3.10 3.20 3.30
package information stgipq3h60t - hl, stgipq3h60t - hz 22 / 26 docid027219 rev 5 6.2 n2dip - 26l type z package information figure 12 : n2dip - 26l type z package outline
stgipq3h60t - hl, stgipq3h60t - hz package information docid027219 rev 5 23 / 26 table 17: n2dip - 26l type z mechanical data dim. mm min. typ. max. a 4.80 5.10 5.40 a1 0.80 1.00 1.20 a2 4.00 4.10 4.20 a3 1.70 1.80 1.90 a4 1.70 1.80 1.90 a5 8.10 8.40 8.70 a6 1.75 b 0.53 0.72 b2 0.83 1.02 c 0.46 0.59 d 32.05 32.15 32.25 d1 2.10 d2 1.85 d3 30.65 30.75 30.85 e 12.35 12.45 12.55 e 1.70 1.80 1.90 e1 2.40 2.50 2.60 eb1 16.10 16.40 16.70 eb2 21.18 21.48 21.78 l 0.85 1.05 1.25 dia 3.10 3.20 3.30
package information stgipq3h60t - hl, stgipq3h60t - hz 24 / 26 docid027219 rev 5 6.3 n2dip - 26l packing information figure 13 : n2dip - 26l tube (dimensions are in mm)
stgipq3h60t - hl, stgipq3h60t - hz revision history docid027219 rev 5 25 / 26 7 revision history table 18: document revision history date revision changes 25 - nov - 2014 1 initial release. 27 - may - 2015 2 text and formatting changes throughout document on cover page: - updated features - added n2dip - 26l type z silhouette - renamed n2dip - 26l type l silhouette and package name (was n2dip - 26l) - renamed n2dip - 26l type z package name (was n2dip - 26l) in section 2: absolute maximum ratings: - updated table 3: inverter parts in section 2.1: thermal data: - updated table 6: thermal data in section 3: electrical characteristics: - updated table 7: inverter parts 06 - jul - 2015 3 updated table 8: low voltage power supply, table 9: bootstrapped voltage, table 10: logic inputs and table 12: sense comparator characteristics. minor text changes. 31 - jul - 2015 4 document status promoted from preliminary to production data. 21 - mar - 2017 5 modified figure 2: "switching time test circuit" a nd f igure 4: "internal structure o f sd and ntc" . minor text changes.
stgipq3h60t - hl, stgipq3h60t - hz 26 / 26 docid027219 rev 5 important notice C please read carefully stmicroelectronics nv and its subsidiaries (st) reserve the right to make changes, corrections, enhancements, modifications , and improvements to st products and/or to this document at any time without notice. purchasers should obtain the latest relevant information on st products before placing orders. st products are sold pursuant to sts terms and conditions of sale in place at the time of or der acknowledgement. purchasers are solely responsible for the choice, selection, and use of st products and s t assumes no liability for application assistance or the design of purchasers products. no license, express or implied, to any intellectual property right is granted by st herein. resale of st products with provisions different from the information se t forth herein shall void any warranty granted by st for such product. st and the st logo are trademarks of st. all other product or service names are the property of their respective owners. information in this document supersedes and replaces information previously supplied in any prior versions of this document. ? 2017 stmicroelectronics C all rights reserved


▲Up To Search▲   

 
Price & Availability of STGIPQ3H60T-HL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X