![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
www.irf.com 1 05/19/09 irlr7833pbfirlu7833pbf hexfet power mosfet notes through are on page 11 applications benefits very low rds(on) at 4.5v v gs ultra-low gate impedance fully characterized avalanche voltage and current high frequency synchronous buck converters for computer processor power high frequency isolated dc-dc converters with synchronous rectification for telecom and industrial use lead-free d-pak irlr7833pbf i-pak irlu7833pbf v dss r ds(on) max qg 30v 4.5m 33nc absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t c = 25c maximum power dissipation w p d @t c = 100c maximum power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case CCC 1.05 r ja junction-to-ambient (pcb mount) CCC 50 c/w r ja junction-to-ambient CCC 110 300 (1.6mm from case) 10 lbf in (1.1n m) max. 140 99 560 20 30 -55 to + 175 140 0.95 71 downloaded from: http:///
2 www.irf.com s d g static @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units bv dss drain-to-source breakdown voltage 30 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient CCC 19 CCC mv/c r ds(on) static drain-to-source on-resistance CCC 3.6 4.5 CCC 4.4 5.5 v gs(th) gate threshold voltage 1.4 CCC 2.3 v ? v gs(th) / ? t j gate threshold voltage coefficient CCC -6.0 CCC mv/c i dss drain-to-source leakage current CCC CCC 1.0 CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 gate-to-source reverse leakage CCC CCC -100 gfs forward transconductance 66 CCC CCC s q g total gate charge CCC 33 50 q gs1 pre-vth gate-to-source charge CCC 8.7 CCC q gs2 post-vth gate-to-source charge CCC 2.1 CCC q gd gate-to-drain charge CCC 13 CCC q godr gate charge overdrive CCC 9.9 CCC see fig. 16 q sw switch char g e (q gs2 + q gd ) CCC 15 CCC q oss output charge CCC 22 CCC nc t d(on) turn-on delay time CCC 14 CCC t r rise time CCC 6.9 CCC t d(off) turn-off delay time CCC 23 CCC t f fall time CCC 15 CCC c iss input capacitance CCC 4010 CCC c oss output capacitance CCC 950 CCC c rss reverse transfer capacitance CCC 470 CCC avalanche characteristics parameter units e as si n gl e p u l se a va l anc h e e ner gy mj i ar a va l anc h e c urrent a e ar r epet i t i ve a va l anc h e e ner gy mj diode characteristics parameter min. t y p. max. units i s continuous source current CCC CCC 140 (body diode) a i sm pulsed source current CCC CCC 560 ( bod y diode ) v sd diode forward voltage CCC CCC 1.0 v t rr reverse recovery time CCC 39 58 ns q rr reverse recovery charge CCC 37 55 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) ns pf m ? ana nc mosfet symbol CCC v gs = 4.5v typ. CCC CCC i d = 12a v gs = 0v v ds = 15v clamped inductive load t j = 25c, i f = 12a, v dd = 15v di/dt = 100a/ s t j = 25c, i s = 12a, v gs = 0v showing the integral reverse p-n junction diode. v ds = 15v, i d = 12a v ds = 16v, v gs = 0v v dd = 15v, v gs = 4.5v i d = 12a v ds = 16v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 15a v gs = 4.5v, i d = 12a v gs = 20v v gs = -20v v ds = v gs , i d = 250a v ds = 24v, v gs = 0v v ds = 24v, v gs = 0v, t j = 125c conditions 14 max. 530 20 ? = 1.0mhz downloaded from: http:/// www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 30a v gs = 10v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 5.0v 4.5v 4.0v 3.5v 3.0v 2.8v bottom 2.7v 60s pulse width tj = 25c 2.7v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.7v 60s pulse width tj = 175c vgs top 10v 5.0v 4.5v 4.0v 3.5v 3.0v 2.8v bottom 2.7v 1 2 3 4 5 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v 60s pulse width downloaded from: http:/// 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 1 02 03 04 05 0 q g total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 15v i d = 12a 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0.10 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 175c single pulse downloaded from: http:/// www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 0.0 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 175 0 25 50 75 100 125 150 i , drain current (a) d limited by package 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) downloaded from: http:/// 6 www.irf.com d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 13. gate charge test circuit fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 12c. maximum avalanche energy vs. drain current r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 14a. switching time test circuit v ds 90%10% v gs t d(on) t r t d(off) t f fig 14b. switching time waveforms 1 0.1 % + - 25 50 75 100 125 150 starting t j , junction temperature (c) 0 2500 5000 7500 10000 12500 15000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 8.2a 14a bottom 20a downloaded from: http:/// www.irf.com 7 fig 15. for n-channel hexfet power mosfets ? ? ? p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - ? ! " # ? $ %&%% ? " '' ? %&%% ( & fig 16. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr downloaded from: http:/// 8 www.irf.com control fet !" # $ %& !" # #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? " ( %& !" %& !" " ) # * %+ %& !" # # , # - . / # # synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be-tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca-pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic downloaded from: http:/// www.irf.com 9 0 - . |