![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
v23990-k229-a40-pm miniskiip? 2 pim 1200v / 25a solderless interconnection trench fieldstop igbt4 technology industrial motor drives v23990-k229-a40-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 40 t c=80c 40 t h =80c 56 t c=80c 85 maximum junction temperature t j max 1 5 0 c t1,t2,t3,t4,t5,t6,t7 t h =80c 33 t c=80c 40 t h =80c 89 t c=80c 135 t sc t j 1 50c 1 0 s v cc v ge =15v 80 0 v t j =t j max t j =t j max t p limited by t j max 2 0 175 a 75 1200 collector-emitter break down voltage repetitive peak collector current dc collector current v ce i cpulse i c features miniskiip? 2 housing target applications schematic 270 d8,d9,d10,d11,d12,d13 p tot a w dc forward current surge forward current power dissipation per diode i 2 t 36 0 t j =150c t j =t j max t p =10ms a types i 2 t-value maximum ratings i fav a 2 s i fsm condition t j =t j max v c v w a m aximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings g a te-emitter peak voltage copyright vincotech 1 revision: 4.1
v23990-k229-a40-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition d1,d2,d3,d4,d5,d6,d7 t h =80c 25 t c=80c 32 t h =80c 62 t c=80c 95 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12.7 mm min 12.7 mm 175 maximum junction temperature c p tot i frm t j max 1 2 00 v w i f peak repetitive reverse voltage v rrm dc forward current a t j =t j max t p =10ms half sine a 16 0 t j =t j max re petitive peak forward current power dissipation per diode -40+(tjmax - 25) c storage temperature t stg -40+125 c c learance insulation voltage creepage distance t op operation temperature under switching condition copyright vincotech 2 revision: 4.1 v23990-k229-a40-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,08 1,35 tj=125c 1,03 tj=25c 0,9 tj=125c 0,78 tj=25c 18 tj=125c 21 tj=25c 0,01 tj=125c 1,1 thermal resistance chip to heatsink per chip r thjh 1,25 tj=25c 5 5,8 6,5 tj=150c tj=25c 1,35 1,88 2,15 tj=150c 2,2 tj=25c 0,05 tj=150c tj=25c 300 tj=150c tj=25c 112 tj=150c 113 tj=25c 29,3 tj=150c 34,7 tj=25c 231 tj=150c 303 tj=25c 91 tj=150c 137 tj=25c 1,87 tj=150c 2,77 tj=25c 1,49 tj=150c 2,43 thermal resistance chip to heatsink per chip r thjh 1,2 tj=25c 1,5 2,47 2,75 tj=150c 2,49 tj=25c 13,5 tj=150c 18,3 tj=25c 319 tj=150c 544 tj=25c 1,48 tj=150c 3,69 di(rec)max tj=25c 174 /dt tj=150c 64 tj=25c 0,52 tj=150c 1,44 thermal resistance chip to heatsink per chip r thjh 1,52 e vincotech ntc reference 1,731*10-5 1/k2 7,635*10-3 1/k b-value b(25/100) tol. % t=25c t=25c a-value b(25/50) tol. % thermal grease thickness 50 m =1w/mk k/ w t hermal grease thickness 50 m =1w/mk k/ w a 15 v 25 - v v nc 1000 % -3 1 6 70,313 3 v ce =v ge f=1mhz rgoff=32 15 0 0 15 v cc=960v t r t d(off) q gate q rr t rr erec reverse transfer capacitance i ges v ge(th) v ce(sat) i ces c oss r gint t f e on c ies e off i rrm t d(on) c rss v f input capacitance output capacitance turn-off energy loss per pulse collector-emitter saturation voltage turn-on energy loss per pulse collector-emitter cut-off current incl. diode value co n ditions characteristic values forward voltage t h reshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t d8,d9,d10,d11,d12,d13 25 k/ w v v m m a rev erse current i r 85 c mws a/s rgon=32 20 15 2 5 2 5 600 diode forward voltage gate charge reverse recovery time reverse recovered energy peak rate of fall of recovery current reverse recovered charge d1,d2,d3,d4,d5,d6,d7 peak reverse recovery current fa l l time turn-off delay time turn-on delay time rise time gate-emitter leakage current integrated gate resistor t1,t2,t3,t4,t5,t6,t7 gate emitter threshold voltage 25 0 , 00085 40 600 25 0 1200 mw/k t=25c t=100c t=25c r100 p t=100c ra t ed resistance r power dissipation constant deviation of r100 ? r/r r100=1670 1500 th e rmal grease thickness 50 m =1w/mk thermistor rgon=32 tj=25c tj = 25c ns ma ns na 1430 115 120 pf mws copyright vincotech 3 revision: 4.1 v23990-k229-a40-pm figure 1 t1,t2,t3,t4,t5,t6,t7 igbt figure 2 t1,t2,t3,t4,t5,t6,t7 igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 15 0 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 t1 , t2,t3,t4,t5,t6,t7 igbt figure 4 d1,d2,d3,d4,d5,d6,d7 fwd typical transfer characteristics typi cal diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ce = 1 0 v t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 typical output characteristics 0 15 30 45 60 75 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 4 revision: 4.1 v23990-k229-a40-pm figure 5 t1,t2,t3,t4,t5,t6,t7 igbt figure 6 t1,t2,t3,t4,t5,t6,t7 igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v ce = 60 0 v v ge = 1 5 v v ge = 1 5 v r gon = 32 i c = 25 a r goff = 32 fi gure 7 t1 , t2,t3,t4,t5,t6,t7 igbt figure 8 t1,t2,t3,t4,t5,t6,t7 igbt typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v ce = 60 0 v v ge = 1 5 v v ge = 1 5 v r gon = 32 i c = 25 a t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 e on high t e off high t e on low t e off low t 0 2 4 6 8 0 1 0 20 30 40 50 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 0 30 60 90 120 150 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0 , 4 0,8 1,2 1,6 2 0 10 20 30 40 50 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,4 0,8 1,2 1,6 2 0 30 60 90 120 150 r g ( w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 5 r e v ision: 4.1 v23990-k229-a40-pm figure 9 t1,t2,t3,t4,t5,t6,t7 igbt figure 10 t1,t2,t3,t4,t5,t6,t7 igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 1 5 0 c t j = 15 0 c v ce = 60 0 v v ce = 60 0 v v ge = 1 5 v v ge = 1 5 v r gon = 32 i c = 25 a r goff = 32 fi gure 11 d1 , d2,d3,d4,d5,d6,d7 fwd figure 12 d1,d2,d3,d4,d5,d6,d7 fwd typical reverse recovery time as a typi cal reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at a t t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 25 a r gon = 32 v g e = 1 5 v t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 t doff t f t don t r 0,001 0 , 01 0,1 1 0 5 10 15 20 25 30 35 40 45 50 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0 0 , 2 0,4 0,6 0,8 1 0 30 60 90 120 150 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,001 0 , 01 0,1 1 0 30 60 90 120 150 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0 0 , 2 0,4 0,6 0,8 1 0 10 20 30 40 50 i c (a) t rr ( m s) 25 / 150 25 / 150 copyright vincotech 6 r e v ision: 4.1 v23990-k229-a40-pm figure 13 d1,d2,d3,d4,d5,d6,d7 fwd figure 14 d1,d2,d3,d4,d5,d6,d7 fwd typical reverse recovery charge as a typi cal reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at a t at t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 25 a r gon = 32 v g e = 1 5 v figure 15 d1 , d2,d3,d4,d5,d6,d7 fwd figure 16 d1,d2,d3,d4,d5,d6,d7 fwd typical reverse recovery current as a typi cal reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at a t t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 25 a r gon = 32 v g e = 1 5 v t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 t j = t jmax - 25c t j = 25c i rrm 0 10 2 0 30 40 50 0 30 60 90 120 150 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 0 3 0 60 90 120 150 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 5 1 0 1 5 20 25 0 10 20 30 40 50 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 0 1 0 20 30 40 50 i c (a) q rr ( m c) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 7 r e v ision: 4.1 v23990-k229-a40-pm figure 17 d1,d2,d3,d4,d5,d6,d7 fwd figure 18 d1,d2,d3,d4,d5,d6,d7 fwd typical rate of fall of forward typi cal rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) d i 0 / dt,di rec /dt = f(r gon ) at a t t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 25 a r gon = 32 v g e = 1 5 v figure 19 t1 , t2,t3,t4,t5,t6,t7 igbt figure 20 d1,d2,d3,d4,d5,d6,d7 fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at a t d = t p / t d = t p / t r thjh = 1, 20 k/w r thjh = 1, 52 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,03 5,7e+00 0,03 9,3e+00 0,14 8,1e-01 0,22 7,6e-01 0,51 1,6e-01 0,63 1,5e-01 0,27 4,9e-02 0,37 3,0e-02 0,17 1,0e-02 0,17 4,4e-03 0,07 9,8e-04 0,10 6,5e-04 t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt di rec /dt 0 3 0 0 600 900 1200 1500 1800 0 30 60 90 120 150 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 2 0 0 400 600 800 1000 0 10 20 30 40 50 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 / dt 25 / 150 25 / 150 copyright vincotech 8 r e v ision: 4.1 v23990-k229-a40-pm figure 21 t1,t2,t3,t4,t5,t6,t7 igbt figure 22 t1,t2,t3,t4,t5,t6,t7 igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c v ge = 15 v figure 23 d1, d2,d3,d4,d5,d6,d7 fwd figure 24 d1,d2,d3,d4,d5,d6,d7 fwd power dissipation as a for w ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 0 40 80 120 160 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i c (a) 0 30 60 90 120 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 9 revision: 4.1 v23990-k229-a40-pm figure 25 t1,t2,t3,t4,t5,t6,t7 igbt figure 26 t1,t2,t3,t4,t5,t6,t7 igbt safe operating area as a function gat e voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at a t d = single pulse i c = 2 5 a t h = 80 oc v ge = 1 5 v t j = t jmax oc t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 120 q g (nc) v ge (v) 240v 960v copyright vincotech 10 revision: 4.1 v23990-k229-a40-pm figure 1 d8,d9,d10,d11,d12,d13 diode figure 2 d8,d9,d10,d11,d12,d13 diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at a t t p = 2 5 0 s d = t p / t r thjh = 1, 250 k/w figure 3 d8 , d9,d10,d11,d12,d13 diode figure 4 d8,d9,d10,d11,d12,d13 diode power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc d8,d9,d10,d11,d12,d13 0 15 30 45 60 75 0 0,5 1 1,5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 120 0 30 60 90 120 150 t h ( o c) p tot (w) 0 10 20 30 40 0 30 60 90 120 150 t h ( o c) i f (a) copyright vincotech 11 revision: 4.1 v23990-k229-a40-pm figure 1 thermistor typical ptc characteristic as a function of temperature r t = f(t) thermistor ptc-typical temperature characteristic 1000 1 2 00 1400 1600 1800 2000 25 50 75 100 125 t (c) r/ copyright vincotech 12 revision: 4.1 v23990-k229-a40-pm t j 150 c r gon 32 r goff 32 figur e 1 ou t put inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = - 1 5 v v ge (0%) = -1 5 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 60 0 v v c (100%) = 60 0 v i c (100%) = 25 a i c (100%) = 25 a t doff = 0 , 30 s t don = 0, 11 s t eoff = 0, 68 s t eon = 0, 42 s figure 3 out put inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 60 0 v v c (100%) = 60 0 v i c (100%) = 25 a i c (100%) = 25 a t f = 0 , 14 s t r = 0, 03 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -30 - 1 0 10 30 50 70 90 110 130 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 0,85 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -30 0 30 6 0 90 120 150 180 5,9 6 6,1 6,2 6,3 6,4 6,5 6,6 6,7 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 4 0 60 80 100 120 140 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 time (us) % v ce i c t f i c10% i c 90% -3 0 0 30 60 90 120 150 180 6,1 6,2 6,3 6,4 6,5 6,6 time(us) % tr v ce ic copyright vincotech 1 3 r evision: 4.1 v23990-k229-a40-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 14 ,95 kw p on (100%) = 14 ,95 kw e off (100%) = 2, 43 mj e on (100%) = 2, 77 mj t eoff = 0, 68 s t eon = 0, 42 s figure 7 ou t put inverter fwd turn-off switching waveforms & definition of t rr v d (100%) = 60 0 v i d (100%) = 25 a i rrm (100%) = 18 a t rr = 0, 54 s switching definitions output inverter i c 1% v ge 90% -20 0 20 4 0 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 1 time (us) % p off e off t eoff v ce 3% v ge 10% -20 2 0 6 0 100 140 180 5,85 6 6,15 6,3 6,45 6,6 6,75 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% trr -120 -80 -40 0 40 80 120 6 6,2 6,4 6,6 6,8 7 time(us) % i d v d fitted copyright vincotech 1 4 r evision: 4.1 v23990-k229-a40-pm figure 8 output inverter fwd figure 9 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 2 5 a p rec (100%) = 14 ,95 kw q rr (100%) = 3, 69 c e rec (100%) = 1, 44 mj t qrr = 0, 90 s t erec = 0, 90 s switching definitions output inverter t qrr -100 - 5 0 0 50 100 150 6 6,2 6,4 6,6 6,8 7 7,2 % i d q rr time(us) -20 0 20 40 60 80 100 120 6 6,2 6,4 6,6 6,8 7 7,2 time(us) % p rec e rec te rec copyright vincotech 1 5 r evision: 4.1 v23990-k229-a40-pm version ordering code in datamatrix as in packaging barcode as with std lid (black v23990-k12-t-pm) v23990-k229-a40-/0a/-pm k229a40 k229a40-/0a/ with std lid (black v23990-k12-t-pm) and p12 v23990-k229-a40-/1a/-pm k229a40 k229a40-/1a/ with thin lid (white v23990-k13-t-pm) v23990-k229-a40-/0b/-pm k229a40 k229a40-/0b/ with thin lid (white v23990-k13-t-pm) and p12 v23990-k229-a40-/1b/-pm k229a40 k229a40-/1b/ outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 16 revision: 4.1 |
Price & Availability of V23990-K229-A40-1A-PM
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |