![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 maximum ratings / h?chstzul?ssige werte p634-a parameter condition symbol datasheet values unit max. input rectifier bridge gleichrichter repetitive peak reverse voltage v rrm 1600 v periodische rckw. spitzensperrspannung forward current per diode dc current t h =80c; i fav 30 a dauergrenzstrom tc=80c 30 surge forward current t p =10ms t j =25c i fsm 200 a sto?strom grenzwert i 2 t-value t p =10ms t j =25c i 2 t 200 a2s grenzlastintegral power dissipation per diode t j =150c t h =80c p tot 42 w verlustleistung pro diode t c =80c 64 max. chip temperature t jmax 150 c max. chiptemperatur transistor inverter transistor wechselrichter collector-emitter break down voltage v ce 600 v kollektor-emitter-sperrspannung dc collector current t j =175c t h =80c, i c 24 a kollektor-dauergleichstrom t c =80c 30 repetitive peak collector current tp limited by tj max i cpuls 60 a periodischer kollektorspitzenstrom power dissipation per igbt t j =175c t h =80c p tot 50 w verlustleistung pro igbt t c =80c 75 gate-emitter peak voltage v ge 20 v gate-emitter-spitzenspannung sc withstand time* tj150c v ge =15v t sc 6u s kurzschlu?verhalten* v cc =360v max. chip temperature t jmax 175 c max. chiptemperatur diode inverter diode wechselrichter dc forward current t j =175c t h =80c, i f 23 a dauergleichstrom t c =80c 30 repetitive peak forward current tp limited by tj max i frm 60 a periodischer spitzenstrom power dissipation per diode t j =175c t h =80c p tot 39 w verlustleistung pro diode t c =80c 60 max. chip temperature t jmax 175 c max. chiptemperatur copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1
v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 maximum ratings / h?chstzul?ssige werte p634-a parameter condition symbol datasheet values unit max. transistor brc transistor wechselrichter collector-emitter break down voltage v ce 600 v kollektor-emitter-sperrspannung dc collector current t j =150c t h =80c i c 15 a kollektor-dauergleichstrom t j =150c 15 repetitive peak collector current t p =1ms t h =80c i cpuls 45 a periodischer kollektorspitzenstrom power dissipation per igbt t j =150c t h =80c p tot 42 w verlustleistung pro igbt 64 gate-emitter peak voltage v ge 20 v gate-emitter-spitzenspannung sc withstand time tj150c vge=15v t sc 6u s kurzschlu?verhalten vce=600/1200 v max. chip temperature t jmax 175 c max. chiptemperatur diode brc diode brc dc forward current t j =150c t h =80c i f 10 a dauergleichstrom t j =150c 10 repetitive peak forward current t p =1ms t h =80c i frm 30 a periodischer spitzenstrom power dissipation per diode t j =150c t h =80c p tot 31 w verlustleistung pro diode 38 max. chip temperature t jmax 175 c max. chiptemperatur thermal properties thermische eigenschaften storage temperature t stg -40+125 c lagertemperatur operation temperature t op -40+125 c betriebstemperatur insulation properties modulisolation insulation voltage t=1min v is 4000 vdc isolationsspannung creepage distance min 12,7 mm kriechstrecke clearance min 12,7 mm luftstrecke additional notes and remarks: * allowed number of short circuits must be less than 1000 times, and time duration between short circuits should be more than 1 second! copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 characteristic values/ charateristische werte description symbol conditions datasheet values unit t(c) other conditions vge(v) vce(v) ic(a) if(a) (rgon-rgoff) vgs(v) vds(v) id(a) min typ max input rectifier bridge gleichrichter forward voltage v f tj=25c 30 1,23 1,5 v durchla?pannung tj=125c 1,22 threshold voltage (for power loss calc. only) v to tj=25c 30 0,9 v schleusenspannung tj=150c 0,79 slope resistance (for power loss calc. only) r t tj=25c 0,011 ohm ersatzwiderstand tj=150c 30 0,014 reverse current i r tj=25c 1500 0,01 ma sperrstrom tj=150c thermal resistance chip to heatsink per chip w?rmewiderstand chip-khlk?rper pro chip r thjh thermal grease thickness50um 1,67 k/w thermal resistance chip to case per chip w?rmewiderstand chip-gehause pro chip r thjc warmeleitpaste dicke50um = 0,61 w/mk 1,1022 transistor inverter transistor wechselrichter gate emitter threshold voltage v ge(th) tj=25c vce=vge 0,00029 4,5 5,8 7 gate-schwellenspannung tj=125c collector-emitter saturation voltage v ce(sat) tj=25c 15 20 1,57 2,1 v kollektor-emitter s?ttigungsspannung tj=125c 1,73 collector-emitter cut-off i ces tj=25c 0 600 0,11 ma kollektor-emitter reststrom tj=125c gate-emitter leakage current i ges tj=25c 20 0 350 na gate-emitter reststrom tj=125c integrated gate resistor r gint none ohm integrirter gate widerstand turn-on delay time t d(on) tj=25c rgoff=8 ns einschaltverz?gerungszeit tj=125c rgon=16 15 300 20 17 rise time t r tj=25c rgoff=8 ns anstiegszeit tj=125c rgon=16 15 300 20 18 turn-off delay time t d(off) tj=25c rgoff=8 ns abschaltverz?gerungszeit tj=125c rgon=16 15 300 20 182 fall time t f tj=25c rgoff=8 ns fallzeit tj=125c rgon=16 15 300 20 95 turn-on energy loss per pulse e on tj=25c rgoff=8 mws einschaltverlustenergie pro puls tj=125c rgon=16 15 300 20 0,521 turn-off energy loss per pulse e off tj=25c rgoff=8 mws abschaltverlustenergie pro puls tj=125c rgon=16 15 300 20 0,608 sc withstand time t sc us kurzschlu?verhalten input capacitance c ies tj=25c f=1mhz 0 25 1,1 nf eingangskapazit?t tj=125c output capacitance c oss tj=25c f=1mhz 0 25 0,071 nf ausgangskapazit?t tj=125c reverse transfer capacitance c rss tj=25c f=1mhz 0 25 0,032 nf rckwirkungskapazit?t tj=125c gate charge q gate tj=25c tbd nc gate ladung tj=125c thermal resistance chip to heatsink per chip w?rmewiderstand chip-khlk?rper pro chip r thjh thermal grease thickness50um 1,92 k/w thermal resistance chip to case per chip w?rmewiderstand chip-gehause pro chip r thjc warmeleitpaste dicke50um = 0,61 w/mk 1,27 k/w diode inverter diode wechselrichter diode forward voltage v f tj=25c 20 1,75 2,1 v durchla?spannung tj=125c 1,67 peak reverse recovery current i rm tj=25c a rckstromspitze tj=125c dif/dt = 507 a/us 0 300 20 15,17 reverse recovery time t rr tj=25c ns sperreverz?gerungszeit tj=125c dif/dt = 507 a/us 0 300 20 224,8 reverse recovered charge q rr tj=25c uc sperrverz?gerungsladung tj=125c dif/dt = 507 a/us 0 300 20 1,29 reverse recovered energy erec tj=25c mws sperrverz?gerungsenergie tj=125c dif/dt = 507 a/us 0 300 20 0,247 thermal resistance chip to heatsink per chip w?rmewiderstand chip-khlk?rper pro chip r thjh thermal grease thickness50um 2,41 k/w thermal resistance chip to case per chip w?rmewiderstand chip-gehause pro chip r thjc warmeleitpaste dicke50um = 0,61 w/mk 1,59 k/w copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 characteristic values/ charateristische werte description symbol conditions datasheet values unit t(c) other conditions vge(v) vce(v) ic(a) if(a) (rgon-rgoff) vgs(v) vds(v) id(a) min typ max transistor brc transistor brc gate emitter threshold voltage v ge(th) tj=25c vce=vge 0,00021 4,5 5,8 7 v gate-schwellenspannung tj=125c collector-emitter saturation voltage v ce(sat) tj=25c 15 15 1,53 2,1 v kollektor-emitter s?ttigungsspannung tj=125c 1,73 collector-emitter cut-off i ces tj=25c 0 600 0,04 ma kollektor-emitter reststrom tj=125c gate-emitter leakage current i ges tj=25c 20 0 350 na gate-emitter reststrom tj=125c integrated gate resistor r gint ohm integrirter gate widerstand turn-on delay time t d(on) tj=25c rgon=16 15 300 15 ns einschaltverz?gerungszeit tj=125c rgoff=8 15,8 rise time t r tj=25c rgon=16 15 300 15 ns anstiegszeit tj=125c rgoff=8 15,2 turn-off delay time t d(off) tj=25c rgon=16 15 300 15 ns abschaltverz?gerungszeit tj=125c rgoff=8 154,2 fall time t f tj=25c rgon=16 15 300 15 ns fallzeit tj=125c rgoff=8 94,7 turn-on energy loss per pulse e on tj=25c rgon=16 15 300 15 uws einschaltverlustenergie pro puls tj=125c rgoff=8 0,34 turn-off energy loss per pulse e off tj=25c rgon=16 15 300 15 uws abschaltverlustenergie pro puls tj=125c rgoff=8 0,39 sc withstand time t sc us kurzschlu?verhalten input capacitance c iss tj=25c f=1mhz 0 25 0,86 nf eingangskapazit?t tj=125c output capacitance c oss tj=25c f=1mhz 0 25 0,055 nf ausgangskapazit?t tj=125c reverse transfer capacitance cies tj=25c f=1mhz 0 25 0,024 nf rckwirkungskapazit?t tj=125c gate charge qgate tj=25c tbd nc gate ladung tj=125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness50um 2,24 k/w w?rmewiderstand chip-khlk?rper pro chip warmeleitpaste dicke50um = 0,61 w/mk 1,4784 diode brc diode brc diode forward voltage v f tj=25c 10 1,64 2,2 v durchla?spannung tj=125c 1,57 reverse current i r tj=25c rgon=16 15 300 10 0,06 ua sperrstrom tj=125c reverse recovery time t rr tj=25c rgon=16 15 300 10 ns sperreverz?gerungszeit tj=125c 273,7 reverse recovered charge q rr tj=25c rgon=16 15 300 10 uc sperrverz?gerungsladung tj=125c 0,98 reverse recovery energy e rec tj=25c rgon=16 15 300 10 uws sperrverz?gerungsenergie tj=125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness50um 3,05 k/w w?rmewiderstand chip-khlk?rper pro chip warmeleitpaste dicke50um = 0,61 w/mk ntc-thermistor ntc-widerstand rated resistance r 25 tj=25c tol. 5% 20,9 22 23,1 kohm nennwiderstand deviation of r100 d r/r tc=100c r100=1503 2,9 %/k abweichung von r100 power dissipation given epcos-typ p tj=25c 210 mw verlustleistung epcos-typ angeben b-value b (25/100) tj=25c tol. 3% 3980 k b-wert copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 output inverter fi gure 1 . typical output characteristic s fi gure 2 . typical output characteristic s output inverter igb t output inverter igb t ic= f(v ce ) ic= f(v ce ) parameter: tp = 250 us tj = 25 c parameter: tp = 250 us tj = 125 c v ge parameter: from: 7 v to 17 v v ge parameter: from: 7 v to 17 v in 1 v steps in 1 v steps fi gure 3 . typical transfer characteristic s fi gure 4 . typical diode forward current a s output inverter igb t a function of forward voltag e ic= f(v ge ) output inverter fre d i f =f(v f ) parameter: tp = 250 us v ce = 10 v parameter: tp = 250 us 0 10 20 30 40 50 012345 v ce (v) ic (a) 0 3 6 9 12 15 18 21 0246810 v ge (v) i c (a) 125 oc 25 oc 0 10 20 30 40 50 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) 25 oc 125 oc 0 10 20 30 40 50 012345 v ce (v) ic (a) copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 output inverter figure 5. typical switching energy losses figure 6. typical switching energy losses as a function of collector current as a function of gate resistor output inverter igbt output inverter igbt e = f (ic) e = f (r g ) inductive load, tj = 125 c inductive load, tj = 125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v rgon= 16 ic = 20 a rgoff= 8 figure 7. typical switching times as a figure 8. typical switching times as a function of collector current function of gate resistor output inverter igbt output inverter igbt t = f (ic) t = f (r g ) inductive load, tj = 125 c inductive load, tj = 125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v rgon= 16 ic = 20 a rgoff= 8 t doff t f t don t r 0,001 0,01 0,1 1 0 8 16 24 32 40 ic (a) t ( s) e off e on erec 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 0 8 16 24 32 40 i c (a) e (mws) e off e on erec 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 0 30 60 90 120 150 r g ( ) e (mws) t doff t f t don t r 0,001 0,01 0,1 1 0 30 60 90 120 150 r g ( ) t ( s) copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 output inverter figure 9. typical reverse recovery time as a figure 10. typical reverse recovery current as a function of igbt turn on gate resistor function of igbt turn on gate resistor output inverter fred diode output inverter fred diode t rr = f (rgon) i rrm = f (rgon) tj = 125 c tj = 125 c v r = 300 v v r = 300 v i f = 20 a i f = 20 a v ge = 15 v v ge = 15 v figure 11. typical reverse recovery charge as a figure 12. typical rate of fall of forward function of igbt turn on gate resistor and reverse recovery current as a output inverter fred diode function of igbt turn on gate resistor q rr = f (rgon) output inverter fred diod e di0/dt,direc/dt = f (rgon) tj = 125 c tj = 125 c v r = 300 v v r = 300 v i f = 20 a i f = 20 a v ge = 15 v v ge = 15 v 0 0,1 0,2 0,3 0,4 0,5 0 30 60 90 120 150 r gon ( ) t rr ( s) 0 5 10 15 20 0 30 60 90 120 150 r gon ( ) irr m (a) 0 0,25 0,5 0,75 1 1,25 1,5 0 30 60 90 120 150 r gon ( ) q rr ( c) di0/dt direc/dt 0 250 500 750 1000 1250 1500 0 30 60 90 120 150 r gon ( ) di rec / dt (a/ s) copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 output inverter figure 13. igbt transient thermal impedance figure 14. fred transient thermal impedance as a function of pulse width as a function of pulse width z th jh = f(tp) z th jh = f(tp) parameter: d = tp / t rthjh = 1,92 k/w parameter: d = tp / t rthjh = 2,41 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,07 4,7e+00 0,09 3,5e+00 0,18 5,9e-01 0,25 3,8e-01 0,86 1,0e-01 1,02 7,3e-02 0,44 2,4e-02 0,51 1,5e-02 0,23 4,4e-03 0,32 2,9e-03 0,14 4,2e-04 0,22 3,2e-04 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 output inverte r fi gure 15 . power dissipation as a fi gure 16 . collector current as a function of heatsink temperatur e function of heatsink temperatur e output inverter igbt output inverter igbt p tot = f (th) i c = f (th) parameter: tj= 175 o c parameter: tj= 175 o c v ge = 15 v fi gure 17 . power dissipation as a fi gure 18 . forward current as a function of heatsink temperatur e function of heatsink temperatur e output inverter fre d output inverter fre d p tot = f (th) i f = f (th) parameter: tj= 175 o c parameter: tj= 175 o c 0 20 40 60 80 100 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 30 35 0 50 100 150 200 th ( o c) i c (a) 0 20 40 60 80 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 30 35 0 50 100 150 200 th ( o c) i f (a) copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 brake fi gure 1 . typical output characteristic s fi gure 2 . typical output characteristic s brake igb t brake igb t ic= f(v ce ) ic= f(v ce ) parameter: tp = 250 us tj = 25 c parameter: tp = 250 us tj = 125 c v ge parameter: from: 7 v to 17 v v ge parameter: from: 7 v to 17 v in 1 v steps in 1 v steps figure 3. typical transfer characteristics figure 4. typical diode forward current as brake igbt a function of forward voltage ic= f(v ge ) brake fred i f =f(v f ) parameter: tp = 250 us v ce = 10 v parameter: tp = 250 us 0 5 10 15 20 25 30 35 40 012345 v ce (v) i c (a) 0 2 4 6 8 10 12 14 16 024681012 v ge (v) i c (a) 125 o c 25 o c 0 5 10 15 20 25 30 35 40 0 0,5 1 1,5 2 2,5 3 3,5 v f (v) i f (a) 125 o c 25 o c 0 5 10 15 20 25 30 35 40 012345 v ce (v) i c (a) copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 brake figure 5. typical switching energy losses figure 6. typical switching energy losses as a function of collector current as a function of gate resistor brake igbt brake igbt e = f (ic) e = f (r g ) inductive load, tj = 125 c inductive load, tj = 125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v rgon = 16 ic = 15 a rgoff = 8 figure 7. typical switching times as a figure 8. typical switching times as a function of collector current function of gate resistor brake igbt brake igbt t = f (ic) t = f (r g ) inductive load, tj = 125 c inductive load, tj = 125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v rgon = 16 ic = 15 a rgoff = 8 t doff t f t don t r 0,001 0,01 0,1 1 0 5 10 15 20 25 30 ic (a) t ( s) e off e on e rec 0 0,2 0,4 0,6 0,8 1 0 5 10 15 20 25 30 i c (a) e (mws) e off e on e rec 0 0,2 0,4 0,6 0,8 1 0 30 60 90 120 150 r g ( ) e (mws) t doff t f t don t r 0,001 0,01 0,1 1 0 30 60 90 120 150 r g ( ) t ( s) copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 brake figure9. igbt transient thermal impedance figure 10. fred transient thermal impedance as a function of pulse width as a function of pulse width z th jh = f(tp) z th jh = f(tp) parameter: d = tp / t rthjh = 2,24 k/w parameter: d = tp / t rthjh = 3,05 k/w t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 brake figure 11. power dissipation as a figure 12. collector current as a function of heatsink temperature function of heatsink temperature brake igbt brake igbt p tot = f (th) i c = f (th) parameter: tj= 175 oc parameter: tj= 175 oc v ge = 15 v figure 13. power dissipation as a figure 14. forward current as a function of heatsink temperature function of heatsink temperature brake fred brake fred p tot = f (th) i f = f (th) parameter: tj= 175 oc parameter: tj= 175 oc 0 20 40 60 80 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 0 50 100 150 200 th ( o c) i c (a) 0 10 20 30 40 50 60 0 50 100 150 200 th ( o c) p tot (w) 0 2 4 6 8 10 12 0 50 100 150 200 th ( o c) i f (a) copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 input rectifier bridge figure 1. typical diode forward current as figure 2. diode transient thermal impedance a function of forward voltage as a function of pulse width rectifier diode i f =f(v f )z th jh = f(tp) parameter: tp = 250 us parameter: d = tp / t rthjh = 1,67 k/w figure 3. power dissipation as a figure 4. forward current as a function of heatsink temperature function of heatsink temperature rectifier diode rectifier diode p tot = f (th) i f = f (th) parameter: tj= 150 oc parameter: tj= 150 oc 0 15 30 45 60 75 90 0 0,5 1 1,5 2 v f (v) i f (a) 25c 125c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 th ( o c) i f (a) copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 thermistor figure 1. typical ntc characteristic as afunction of temperature r t = f (t) ntc-typical temperature characteristic 0 5000 10000 15000 20000 25000 25 50 75 100 125 t (c) r/ copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 switching definitions general conditions: tj= 125 c rgon= 16 rgoff= 8,0 figure 1. turn-off switching waveforms & figure 2. turn-on switching waveforms & d e fi n iti on o ftd o ff , t eoff d e fi n iti on o ft don , t eon (t eoff = i n t egra ti ng ti me f or e off ) (t eon = i n t egra ti ng ti me f or e on ) output inverter igbt output inverter igbt uge(0%)= 0 v uge(0%)= 0 v uge(100%)= 15 v uge(100%)= 15 v uc(100%)= 300 v uc(100%)= 300 v ic(100%)= 20 a ic(100%)= 20 a tdoff= 0,18 us tdon= 0,02 us t eoff = 0,46 us t eon = 0,19 us figure 3. turn-off switching waveforms & figure 4. turn-on switching waveforms & d e fi n iti on o ft f d e fi n iti on o ft r output inverter igbt output inverter igbt uc(100%)= 300 v uc(100%)= 300 v ic(100%)= 20 a ic(100%)= 20 a t f = 0,095 us t r = 0,018 us ic 1% uce 90% uge 90% -40 -20 0 20 40 60 80 100 120 140 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % tdof f teoff uce ic uge fitted ic10% ic 90% ic 60% ic 40% -20 0 20 40 60 80 100 120 140 0,05 0,1 0,15 0,2 0,25 0,3 0,35 time (us) % uce ic tf ic10% uge10% tdon uce3% -40 0 40 80 120 160 200 2,7 2,75 2,8 2,85 2,9 2,95 3 3,05 3,1 time(us) % ic uce t eon uge ic10% ic90% -20 20 60 100 140 180 220 2,7 2,75 2,8 2,85 2,9 2,95 3 3,05 3,1 time(us) % tr uce ic copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 switching definitions figure 5. turn-off switching waveforms & figure 6. turn-on switching waveforms & definition of t eoff definition of t eon output inverter igbt output inverter igbt poff(100%)= 5,99 kw pon(100%)= 5,99 kw eoff(100%)= 0,61 mj eon(100%)= 0,52 mj t eoff = 0,46 us t eon = 0,19 us figure 7. gate voltage vs gate charge figure 8. turn-off switching waveforms & output inverter igbt definition of t rr output inverter fred ugeoff= 0 v ugeon= 15 v ud(100%)= 300 v uc(100%)= 300 v id(100%)= 20 a ic(100%)= 20 a i rrm (100%)= 15,2 a qg= 158,8 nc trr= 0,22 us ic 1% uge90% -20 0 20 40 60 80 100 120 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % poff eoff teoff uce3% uge10% -20 20 60 100 140 180 2,7 2,75 2,8 2,85 2,9 2,95 3 3,05 3,1 time(us) % pon eon teon i rrm 10% i rrm 90% i rrm 100% trr -120 -80 -40 0 40 80 120 2,7 2,8 2,9 3 3,1 3,2 3,3 time(us) % id ud fitted -15 -10 -5 0 5 10 15 20 -50 0 50 100 150 200 qg (nc) uge (v) copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 v23990-p634-a-pm preliminary data sheet flow 90pim 1 600v/20a v23990-p634-a-02-14 switching definitions figure 9. turn-on switching waveforms & figure 10. turn-on switching waveforms & definition of t qr r definition of t erec (tqrr= integrating time for qrr) (t erec = integrating time for e rec ) output inverter fred output inverter fred id(100%)= 20 a prec(100%)= 5,99 kw qrr(100%)= 1,29 uc erec(100%)= 0,25 mj tqint= 0,51 us terec= 0,51 us -20 20 60 100 140 2,7 2,8 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % p rec erec te rec tqint -100 -50 0 50 100 150 200 2,7 2,8 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % id q rr copyright by tyco electronics finsinger feld 1, d-85521 ottobrunn copyright by vincotech revision:1 |
Price & Availability of V23990-P634-A-P1-14
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |