Part Number Hot Search : 
HZ33H 2500T SL221 P6KA36A 7805F J02RT 150CT 10N03
Product Description
Full Text Search
 

To Download 10-F006PPA010SB-M683B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10f006ppa010sbm683b 10f006ppa010sbm683by datasheet flowpim0+pfc 2nd 600 v / 10 a clip in pcb mounting trench fieldstop igbt's for low saturation losses latest generation superjunction mosfet for pfc industrial drives embedded drives 10f006ppa010sbm683b 10f006ppa010sbm683by t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 26 t c =80c 36 t h =80c 32 t c =80c 48 maximum junction temperature t jmax 150 c input rectifier diode i 2 t features flowpim0+pfc 2nd target applications schematic 200 a dc forward currentsurge forward current t j =150c t p =10ms t j =t j max 200 types i2tvalue maximum ratings i fav a 2 s i fsm condition a t j =t j max w p tot power dissipation 02 apr. 2015 / revision 2 copyright vincotech 1
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition pfc mosfet v ds 600 v t h =80c 17 t c =80c 20 i d =6,6a v dd =50v i d =6,6a v dd =50v mosfet dv/dt ruggedness d v /d t v ds =0...480v 50 v/ns t h =80c 59 t c =80c 90 gatesource peak voltage v gs 20 v d v /d t 15 v/ns t jmax 150 c pfc diode t h =80c 20 t c =80c 20 t h =80c 36 t c =80c 54 pfc shuntinverter transistor t h =80c 14 t c =80c 18 t h =80c 33 t c =80c 51 t sc t j 150c 5 s v cc v ge =15v 360 v w t j =t j max av c 175 30 v ce 400v, tj150c p tot v ge i crm t jmax t p limited by t j max a i f v rrm i frm p tot i f v ce i c a c w t c =25c t c =25c t p limited by t j max t j =t j max t j =t j max 600 a v w 5 pulsed collector current power dissipation maximum junction temperaturedc forward current power dissipation per shunt collectoremitter break down voltage dc collector current turn off safe operating area power dissipation maximum junction temperature short circuit ratings t p limited by t j max t j =t j max dc forward currentrepetitive peak forward current t jmax 600 t j =t j max drain to source breakdown voltagedc drain current a mj w avalanche energy, repetitive 6,6 tj=25c mj a e as peak repetitive reverse voltage t j =25c maximum junction temperature pulsed drain current a a avalanche energy, single pulse 112 e ar i dpulse i ar 796 tj=25c p tot power dissipation reverse diode dv/dt i d avalanche current, repetitive va t j =t j max p tot gateemitter peak voltage 3030 20 15,8 175 1,2 02 apr. 2015 / revision 2 copyright vincotech 2
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 14 t c =80c 18 t h =80c 26 t c =80c 39 dc link capacitorthermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 a v t jmax t j =t j max p tot i f w 600 a i frm t j =25c v rrm power dissipation maximum junction temperature peak repetitive reverse voltagerepetitive peak forward current 175 c t j =t j max t p limited by t j max dc forward current t c =25c max.dc voltage v max 500 v 40+(tjmax 25) c storage temperature t stg 40+125 c t op comparative tracking index insulation voltagecreepage distance operation temperature under switching condition clearance 20 02 apr. 2015 / revision 2 copyright vincotech 3
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1,20 tj=125c 1,17 tj=25c 0,92 tj=125c 0,81 tj=25c 11 tj=125c 14 tj=25c 0.05 tj=125c thermal resistance chip to heatsink r th(j-s) thermal grease thickness50um = 1 w/mk 2,20 k/w tj=25c 98 tj=125c 198 tj=25c 2,4 3,0 3,6 tj=125c tj=25c 100 tj=125c tj=25c 5000 tj=125c tj=25c 20 tj=125c 23 tj=25c 4 tj=125c 4 tj=25c 131 tj=125c 202 tj=25c 4 tj=125c 4 tj=25c 0,083 tj=125c 0,147 tj=25c 0,023 tj=125c 0,045 119 tj=25c 2,54 tj=125c 1,56 tj=25c 50 tj=125c 300 tj=25c 24 tj=125c 36 tj=25c 12 tj=125c 23 tj=25c 0,16 tj=125c 0,49 tj=25c 0,02 tj=125c 0,11 tj=25c 8698 tj=125c 6331 thermal resistance chip to heatsink r th(j-s) thermal grease thickness50um = 1 w/mk 2,66 k/w 20 30 10 3 ( d i rf /d t ) max rgon=8 400 10 e on thermal grease thickness50um = 1 w/mk f=1mhz rgon=8 q gd q ge e off 600 10 20c to 60c 0 r ds(on) 10 t f thermal resistance chip to heatsink input capacitance gate to source chargegate to drain charge r th(j-s) rthi t rr r tc l v f e rec q rr i rrm i rm temperature coeficientinductance fall timeturnoff energy loss total gate charge gate resistance turnon energy loss turn on delay time c iss c oss c rss output capacitance q gs pfc mosfet rise timeturn off delay time zero gate voltage drain current t r t d(off) t d(on) i gss i dss gate to source leakage current static drain to source on resistancegate threshold voltage value conditions 100 characteristic values forward voltagethreshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode 25 1600 vv m ma reverse current i r 10 1,6 v 0 a v gs =v ds 10 pfc diode forward voltagereverse leakage current peak rate of fall of recovery current reverse recovery charge pfc shunt peak recovery currentr1 value internal heat resistance reverse recovery timereverse recovered energy v (gs)th 0/10 rgoff=8 61 0,00121 tj=25c 154 2660 na k/w m mws nc a ns ns ppm/k c nh na v 0 rgon=8 mws k/w a/s m 1,18 14 tj=25c pf 18,1 480 10 400 20 10 600 02 apr. 2015 / revision 2 copyright vincotech 4
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value conditions characteristic values tj=25c 4,1 4,6 5,7 tj=125c tj=25c 1,57 tj=125c 1,75 tj=25c 0,057 tj=125c tj=25c 300 tj=125c tj=25c 75 tj=125c 74 tj=25c 24 tj=125c 26 tj=25c 136 tj=125c 159 tj=25c 83 tj=125c 123 tj=25c 0,28 tj=125c 0,38 tj=25c 0,33 tj=125c 0,45 thermal resistance chip to heatsink r th(j-s) thermal grease thickness50um = 1 w/mk 2,84 k/w tj=25c 1,25 1,58 1,95 tj=125c 1,52 tj=25c 5 tj=125c 7 tj=25c 194 tj=125c 270 tj=25c 0,47 tj=125c 0,90 tj=25c 21 tj=125c 65 tj=25c 0,13 tj=125c 0,26 thermal resistance chip to heatsink r th(j-s) thermal grease thickness50um = 1 w/mk 3,66 k/w ( d i rf /d t ) max vincotech ntc reference a bvalue tol. 3% t=25c bvalue b (25/50) tol. 3% k b (25/100) t=25c 4000 k 10 480 10 10 62 1515 % nf 22000 5 100 5 210 400 400 10 15 rgon=32 e rec f=1mhzrgon=32 v f v ce =v ge v ge(th) v cesat i ces e off t d(off) r gint i rrm c rss q g q rr t rr integrated gate resistor t f e on turnon energy loss t d(on) i ges t r fall time turnoff delay time c ies c oss input capacitanceoutput capacitance turnoff energy loss a/s mws a v v na 25 10 0 00 20 15 rgoff=32 reverse recovered energy peak rate of fall of recovery current 600 reverse recovered charge reverse transfer capacitancediode forward voltage gate charge inverter diode peak reverse recovery currentreverse recovery time gate emitter threshold voltagecollectoremitter saturation voltage rise time gateemitter leakage current collectoremitter cutoff current incl. diode inverter transistor turnon delay time 0,0003 mw/k power dissipation p mw 3,5 rated resistance r power dissipation constant deviation of r100 r/r r100=1486 thermistor dc link capacitor c value c 40 551 none c t=25c t=25c t=100c t=25c mws ns pf nc ns ma 17 v tj=25ctj=25c 02 apr. 2015 / revision 2 copyright vincotech 5
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f( v ce ) i c = f( v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 6 v to 16 v in steps of 1 v v ge from 6 v to 16 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fwd typical transfer characteristics typical diode forward current as i c = f( v ge ) a function of forward voltage i f = f( v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 5 10 15 20 25 30 0 1 2 3 4 5 v ce (v) i c (a) 0 10 20 30 40 0 4 8 12 16 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 0 1 2 3 4 5 v ce (v) i c (a) 02 apr. 2015 / revision 2 copyright vincotech 6
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f( i c ) e = f( r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 400 v v ce = 400 v v ge = 15 v v ge = 15 v r gon = 32 i c = 10 a r goff = 32 figure 7 output inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f( i c ) e rec = f( r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 400 v v ce = 400 v v ge = 15 v v ge = 15 v r gon = 32 i c = 10 a output inverter e on high t e off high t e on low t e off low t 0 0,2 0,4 0,6 0,8 1 0 5 10 15 20 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,2 0,4 0,6 0,8 1 0 32 64 96 128 160 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,1 0,2 0,3 0,4 0 5 10 15 20 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,1 0,2 0,3 0,4 0 32 64 96 128 160 r g ( w ) e (mws) 02 apr. 2015 / revision 2 copyright vincotech 7
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f( i c ) t = f( r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 400 v v ce = 400 v v ge = 15 v v ge = 15 v r gon = 32 i c = 10 a r goff = 32 figure 11 output inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f( i c ) t rr = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 15 v i f = 10 a r gon = 32 v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 0 2,5 5 7,5 10 12,5 15 17,5 20 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0 0,1 0,2 0,3 0,4 0,5 0 32 64 96 128 160 r gon ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 32 64 96 128 160 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0 0,1 0,2 0,3 0,4 0 5 10 15 20 i c (a) t rr ( m s) 02 apr. 2015 / revision 2 copyright vincotech 8
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f( i c ) q rr = f( r gon ) atat at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 15 v i f = 10 a r gon = 32 v ge = 15 v figure 15 output inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f( i c ) i rrm = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 15 v i f = 10 a r gon = 32 v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c 0 5 10 15 20 0 32 64 96 128 160 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 0,2 0,4 0,6 0,8 1 0 32 64 96 128 160 r gon ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 2 4 6 8 0 5 10 15 20 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 0,3 0,6 0,9 1,2 1,5 0 5 10 15 20 i c (a) q rr ( m c) 02 apr. 2015 / revision 2 copyright vincotech 9
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor d i 0 /d t ,d i rec /d t = f( i c ) d i 0 /d t ,d i rec /d t = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 15 v i f = 10 a r gon = 32 v ge = 15 v figure 19 output inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f( t p ) z thjh = f( t p ) at at d = t p / t d = t p / t r thjh = 2,84 k/w r thjh = 2,31 k/w r thjh = 3,66 k/w r thjh = 2,97 k/w igbt thermal model values fwd thermal model values r (k/w) tau (s) r (k/w) tau (s) r (k/w) tau (s) r (k/w) tau (s) 0,17 1,8e+00 0,14 1,5e+00 0,17 2,3e+00 0,13 1,9e+00 0,79 1,9e01 0,64 1,5e01 0,69 1,8e01 0,56 1,4e01 0,99 4,9e02 0,80 4,0e02 1,50 4,3e02 1,22 3,5e02 0,42 8,4e03 0,34 6,8e03 0,57 7,6e03 0,46 6,2e03 0,21 1,4e03 0,17 1,1e03 0,35 1,3e03 0,28 1,1e03 0,26 2,4e04 0,21 1,9e04 0,40 2,3e04 0,32 1,9e04 output inverter thermal grease phase change interface thermal grease phase change interface t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt high t di rec /dt 0 400 800 1200 1600 0 32 64 96 128 160 r gon ( w ww w ) di rec / dt (a/ m s) di o /dt low t di 0 /dt high t di 0 /dt di rec /dt low t di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 100 200 300 400 500 600 0 5 10 15 20 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt 02 apr. 2015 / revision 2 copyright vincotech 10
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f( t h ) i c = f( t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 output inverter fwd figure 24 output inverter fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f( t h ) i f = f( t h ) at at t j = 175 c t j = 175 c output inverter 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 t h ( o c) i f (a) 02 apr. 2015 / revision 2 copyright vincotech 11
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate voltage vs gate charge of collectoremitter voltage i c = f( v ce ) v ge = f( q ge ) at at d = single pulse i c = 10 a t h = 80 oc v ge = 15 v t j = t jmax oc figure 27 output inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gateemitter voltage gateemitter voltage t sc = f( v ge ) v ge = f( q ge ) at at v ce = 600 v v ce 600 v t j 175 oc t j = 175 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 18 0 10 20 30 40 50 60 70 80 q g (nc) v ge (v) 120v 480v 0 2 4 6 8 10 12 14 10 11 12 13 14 15 v ge (v) t sc (s) 0 25 50 75 100 125 150 175 12 13 14 15 16 17 18 19 20 v ge (v) i c (sc) 02 apr. 2015 / revision 2 copyright vincotech 12
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 29 igbt reverse bias safe operating area i c = f( v ce ) at t j = t jmax 25 oc u ccminus =u ccplus switching mode : 3phase spwm 0 5 10 15 20 25 30 35 40 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip 02 apr. 2015 / revision 2 copyright vincotech 13
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 1 pfc mosfet figure 2 pfc mosfet typical output characteristics typical output characteristics i d = f( v ds ) i d = f( v ds ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v gs from 0 v to 20 v in steps of 2 v v gs from 0 v to 20 v in steps of 2 v figure 3 pfc mosfet figure 4 pfc fwd typical transfer characteristics typical diode forward current asa function of forward voltage i d = f( v gs ) i f = f( v f ) at at t p = 250 s t p = 250 s v ds = 10 v pfc 0 5 10 15 20 25 30 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0 2 4 6 8 10 v ds (v) i d (a) 0 10 20 30 40 50 0 2 4 6 8 10 v ds (v) i d (a) 0 3 6 9 12 15 0 1 2 3 4 5 6 v gs (v) i d (a) t j = 25c t j = t jmax -25c 02 apr. 2015 / revision 2 copyright vincotech 14
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 5 pfc mosfet figure 6 pfc mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f( i d ) e = f( r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 8 i d = 10 a r goff = 8 figure 7 pfc mosfet figure 8 pfc mosfet typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector (drain) current as a function of gate resistor e rec = f( i c ) e rec = f( r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 8 i d = 10 a r goff = 8 pfc t j = t jmax -25c e rec t j = 25c e rec 0,00 0,05 0,10 0,15 0,20 0 5 10 15 20 i c (a) e (mws) t j = t jmax - 25c e rec t j = 25c e rec 0,00 0,03 0,06 0,09 0,12 0,15 0 8 16 24 32 40 r g ( w ww w ) e (mws) e off e on e on e off 0,00 0,05 0,10 0,15 0,20 0,25 0 5 10 15 20 i c (a) e (mws) t j = t jmax -25c e off e on e on t j =25c e off 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0 8 16 24 32 40 r g ( w ww w ) e (mws) 02 apr. 2015 / revision 2 copyright vincotech 15
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 9 pfc mosfet figure 10 pfc mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f( i d ) t = f( r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 8 i c = 10 a r goff = 8 figure 11 pfc fwd figure 12 pfc fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f( i c ) t rr = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 10 a r gon = 8 v gs = 10 v pfc t doff t don t r 0,00 0,01 0,10 1,00 0 5 10 15 20 i d (a) t ( m s) t doff t don t r 0,00 0,01 0,10 1,00 0 8 16 24 32 40 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,00 0,02 0,04 0,06 0,08 0,10 0 8 16 24 32 40 r gon ( w ww w ) t rr ( m s) t rr t rr 0 0,01 0,02 0,03 0,04 0 5 10 15 20 i c (a) t rr ( m s) 02 apr. 2015 / revision 2 copyright vincotech 16
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 13 pfc fwd figure 14 pfc fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f( i c ) q rr = f( r gon ) atat at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 10 a r gon = 8 v gs = 10 v figure 15 pfc fwd figure 16 pfc fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f( i c ) i rrm = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 10 a r gon = 8 v ge = 10 v pfc i rrm t j = t jmax -25c t j = 25c i rrm 0 10 20 30 40 50 60 0 8 16 24 32 40 r gon ( w ww w ) irr m (a) t j = t jmax - 25c q rr t j = 25c q rr 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0 8 16 24 32 40 r gon ( w ) q rr ( m c) t j = t jmax - 25c i rrm t j = 25c i rrm 0 10 20 30 40 50 0 5 10 15 20 i c (a) irr m (a) t j = t jmax - 25c q rr t j = 25c q rr 0 0,2 0,4 0,6 0,8 0 5 10 15 20 i c (a) q rr ( m c) 02 apr. 2015 / revision 2 copyright vincotech 17
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 17 pfc fwd figure 18 pfc fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor d i 0 /d t ,d i rec /d t = f( i c ) d i 0 /d t ,d i rec /d t = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 10 a r gon = 8,01 v gs = 10 v figure 19 pfc mosfet figure 20 pfc fwd igbt/mosfet transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f( t p ) z thjh = f( t p ) at at d = t p / t d = t p / t r thjh = 1,18 k/w r thjh = 0,96 k/w r thjh = 2,66 k/w r thjh = 2,16 k/w igbt thermal model values fwd thermal model values r (k/w) tau (s) r (k/w) tau (s) r (k/w) tau (s) r (k/w) tau (s) 0,05 3,88 0,041 3,147 0,15 1,84 0,12 1,49 0,13 0,75 0,104 0,611 0,86 0,22 0,69 0,18 0,60 0,17 0,485 0,139 0,88 0,06 0,71 0,05 0,24 0,04 0,198 0,034 0,44 0,01 0,36 0,01 0,10 0,01 0,078 0,008 0,33 0,00 0,27 0,00 0,07 0,00 0,053 0,001 0,52 0,00 0,42 0,00 0,05 0,00 0,040 0,000 0,22 0,00 0,18 0,00 thermal grease phase change interface phase change interface thermal grease pfc t j = 25c t j = t jmax - 25c 0 3000 6000 9000 12000 15000 0 8 16 24 32 40 r gon ( w ) di rec / dt (a/ m s) di 0 /dt di rec /dt t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t j = t jmax -25c t j = t jmax - 25c t j = 25c t j = 25c 0 2000 4000 6000 8000 10000 12000 0 5 10 15 20 i c (a) di rec / dt (a/ m s) di 0 /dt di rec /dt 02 apr. 2015 / revision 2 copyright vincotech 18
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 21 pfc mosfet figure 22 pfc mosfet power dissipation as a collector/drain current as a function of heatsink temperature function of heatsink temperature p tot = f( t h ) i c = f( t h ) at at t j = 150 oc t j = 150 oc v gs = 10 v figure 23 pfc fwd figure 24 pfc fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f( t h ) i f = f( t h ) at at t j = 175 oc t j = 175 oc pfc 0 20 40 60 80 100 120 140 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 t h ( o c) i f (a) 02 apr. 2015 / revision 2 copyright vincotech 19
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 25 pfc mosfet figure 26 pfc mosfet safe operating area as a function gate voltage vs gate charge of drainsource voltage i d = f( v ds ) v gs = f( q g ) at at d = single pulse i d = 10 a t h = 80 oc v gs = 10 v t j = t jmax oc figure 29 igbt reverse bias safe operating area i c = f( v ce ) at t j = t jmax 25 oc u ccminus =u ccplus switching mode : 3phase spwm pfc v ds (v) i d (a) 10 3 10 0 10 - 10 1 10 2 10 10us 100us 1ms 10ms 100ms dc 10 2 10 0 0 1 2 3 4 5 6 7 8 9 10 0 25 50 75 100 125 qg (nc) v gs (v) 120v 480v 0 5 10 15 20 25 30 35 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip 02 apr. 2015 / revision 2 copyright vincotech 20
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f( v f ) z thjh = f( t p ) at at t p = 250 s d = t p / t r thjh = 2,20 k/w figure 3 rectifier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f( t h ) i f = f( t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 20 40 60 80 0 0,5 1 1,5 2 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) 02 apr. 2015 / revision 2 copyright vincotech 21
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 1 thermistor figure 2 thermistor typical ntc characteristic typical ntc resistance values as a function of temperature r t = f( t ) thermistor ntc-typical temperature characteristic 0 4000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r (  ) [ ] w = ? ?? ? ? ?? ? ? ?? ? ? ?? ? - 25 100/25 11 25 )( tt b e r tr 02 apr. 2015 / revision 2 copyright vincotech 22
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet t j 125 c r gon 32 r goff 32 figure 1 output inverter igbt figure 2 output inverter igbt turnoff switching waveforms & definition of t doff , t eoff turnon switching waveforms & definition of t don , t eon ( t e off = integrating time for e off ) ( t e on = integrating time for e on ) v ge (0%) = 15 v v ge (0%) = 15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 10 a i c (100%) = 10 a t doff = 0,16 s t don = 0,07 s t e off = 0,50 s t e on = 0,24 s figure 3 output inverter igbt figure 4 output inverter igbt turnoff switching waveforms & definition of t f turnon switching waveforms & definition of t r v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 10 a i c (100%) = 10 a t f = 0,12 s t r = 0,03 s switching definitions output inverter general conditions == = i c 1% v ce 90% v ge 90% -25 0 25 50 75 100 125 -0,2 0 0,2 0,4 0,6 time (us) % t doff t eoff v ce i c v ge i c 10% v ge10% t don v ce 3% -50 0 50 100 150 200 2,9 3 3,1 3,2 3,3 3,4 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 100 125 -0,1 0 0,1 0,2 0,3 0,4 time (us) % v ce i c t f i c10% i c90% -50 0 50 100 150 200 3 3,05 3,1 3,15 3,2 3,25 time(us) % t r v ce i c 02 apr. 2015 / revision 2 copyright vincotech 23
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 5 output inverter igbt figure 6 output inverter igbt turnoff switching waveforms & definition of t eoff turnon switching waveforms & definition of t eon p off (100%) = 4,00 kw p on (100%) = 4,00 kw e off (100%) = 0,45 mj e on (100%) = 0,38 mj t e off = 0,50 s t e on = 0,24 s figure 7 output inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turnoff switching waveforms & definition of t rr v g e off = 15 v v d (100%) = 400 v v g e on = 15 v i d (100%) = 10 a v c (100%) = 400 v i rrm (100%) = 7 a i c (100%) = 10 a t rr = 0,27 s q g = 98,29 nc switching definitions output inverter i c 1% v ge 90% -25 0 25 50 75 100 125 -0,2 0 0,2 0,4 0,6 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 50 100 150 200 2,9 3 3,1 3,2 3,3 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -20 0 20 40 60 80 100 120 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -150 -100 -50 0 50 100 150 3 3,1 3,2 3,3 3,4 3,5 time(us) % i d v d fitted 02 apr. 2015 / revision 2 copyright vincotech 24
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 9 output inverter fwd figure 10 output inverter fwd turnon switching waveforms & definition of t qrr turnon switching waveforms & definition of t erec ( t q rr = integrating time for q rr ) ( t erec = integrating time for e rec ) i d (100%) = 10 a p rec (100%) = 4,00 kw q rr (100%) = 0,90 c e rec (100%) = 0,26 mj t q rr = 0,56 s t e rec = 0,56 s switching definitions output inverter t qrr -100 -50 0 50 100 150 2,8 3 3,2 3,4 3,6 3,8 4 % i d q rr time(us) -25 0 25 50 75 100 125 2,8 3 3,2 3,4 3,6 3,8 4 time(us) % p rec e rec t erec 02 apr. 2015 / revision 2 copyright vincotech 25
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet t j 125 c r gon 8 r goff 8 figure 1 pfc mosfet figure 2 pfc mosfet turnoff switching waveforms & definition of t doff , t eoff turnon switching waveforms & definition of t don , t eon ( t e off = integrating time for e off ) ( t e on = integrating time for e on ) v ge (0%) = 0 v v ge (0%) = 0 v v ge (100%) = 10 v v ge (100%) = 10 v v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 10 a i c (100%) = 10 a t doff = 0,20 s t don = 0,02 s t e off = 0,23 s t e on = 0,04 s figure 3 pfc mosfet figure 4 pfc mosfet turnoff switching waveforms & definition of t f turnon switching waveforms & definition of t r v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 10 a i c (100%) = 10 a t f = 0,0040 s t r = 0,0040 s == = switching definitions pfc general conditions i c10% v ge10% t don v ce3% -100 0 100 200 300 400 500 2,98 3 3,02 3,04 3,06 3,08 time(us) % i c v ce t eon v ge i c 1% v ce 90% v ge 90% -50 -25 0 25 50 75 100 125 -0,1 0 0,1 0,2 0,3 time (us) % t doff t eoff v ce i c v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 100 125 0,12 0,14 0,16 0,18 0,2 0,22 time (us) % v ce i c t f i c10% i c90% -100 0 100 200 300 400 500 3,01 3,02 3,03 3,04 3,05 3,06 time(us) % t r v ce i c 02 apr. 2015 / revision 2 copyright vincotech 26
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 5 pfc mosfet figure 6 pfc mosfet turnoff switching waveforms & definition of t eoff turnon switching waveforms & definition of t eon p off (100%) = 4,03 kw p on (100%) = 4,0252 kw e off (100%) = 0,05 mj e on (100%) = 0,15 mj t e off = 0,23 s t e on = 0,045 s figure 7 pfc mosfet figure 8 pfc fwd gate voltage vs gate charge (measured) turnoff switching waveforms & definition of t rr v g e off = 0 v v d (100%) = 400 v v g e on = 10 v i d (100%) = 10 a v c (100%) = 400 v i rrm (100%) = 36 a i c (100%) = 10 a t rr = 0,02 s q g = 99,15 nc switching definitions pfc i c 1% u ge90% -25 0 25 50 75 100 125 -0,1 0 0,1 0,2 0,3 time (us) % p off e off t eoff u ce 3% u ge10% -50 0 50 100 150 200 250 300 350 2,98 3 3,02 3,04 3,06 time(us) % p on e on t eon -2 0 2 4 6 8 10 12 -20 0 20 40 60 80 100 120 qg (nc) uge (v) i rrm10% i rrm90% i rrm100% t rr -400 -300 -200 -100 0 100 200 3 3,015 3,03 3,045 3,06 3,075 time(us) % i d u d fitted 02 apr. 2015 / revision 2 copyright vincotech 27
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet figure 9 pfc fwd figure 10 pfc fwd turnon switching waveforms & definition of t qrr turnon switching waveforms & definition of t erec ( t qrr = integrating time for q rr ) ( t erec = integrating time for e rec ) i d (100%) = 10 a p rec (100%) = 4,03 kw q rr (100%) = 0,49 c e rec (100%) = 0,11 mj t qint = 0,04 s t e rec = 0,04 s switching definitions pfc t qint -400 -300 -200 -100 0 100 200 3 3,02 3,04 3,06 3,08 time(us) % i d q rr -50 0 50 100 150 200 250 300 3 3,02 3,04 3,06 3,08 time(us) % p rec e rec t erec 02 apr. 2015 / revision 2 copyright vincotech 28
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste with solder pins 10f006ppa010sbm683b m683b m683b without thermal paste with pressfit pins 10f006ppa010sbm683by m683by m683by with thermal paste and solder pins 10f006ppa010sbm683b/3/ m683b/3/ m683b/3/ with thermal paste and pressfit pins 10f006ppa010sbm683by/3/ m683by/3/ m683by/3/ outline pinout ordering code & marking ordering code and marking outline pinout 02 apr. 2015 / revision 2 copyright vincotech 29
10f006ppa010sbm683b 10f006ppa010sbm683by datasheet disclaimerlife support policy as used herein: vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. 02 apr. 2015 / revision 2 copyright vincotech 30


▲Up To Search▲   

 
Price & Availability of 10-F006PPA010SB-M683B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X