Part Number Hot Search : 
2SC1921 2SC1921 3V10X 02002 KA79M05 CA3094BE DJ010S T1608
Product Description
Full Text Search
 

To Download IRF6609TR1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 10/05/05 irf6609 hexfet   power mosfet notes   through  are on page 10  low conduction losses  low switching losses  ideal synchronous rectifier mosfet  low profile (<0.7 mm)  dual sided cooling compatible  compatible with existing surface mount techniques description the irf6609 combines the latest hexfet? power mosfet silicon technology with the advanced directfet tm packaging to achieve the lowest on-state resistance in a package that has the footprint of an so-8 and only 0.7 mm profile. the directfet package is co mpatible with existing layout geometries used in power applications, pcb assembly equipment and vapor phase, infra-red or convection sol dering techniques, when application note an-1035 is followed regarding the manufacturing methods and processes. the directfet package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. the irf6609 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. the reduced total losses make this product ideal for high efficiency dc-dc converters that power the latest g eneration of processors operating at higher frequencies. the irf6609 has been optimized for parameters that are critical in synchronous buck operating from 12 volt buss converters including rds(on), gate charge and cdv/dt-induced turn on immunity. the irf6609 offers p articu- larly low rds(on) and high cdv/dt immunity for synchronous fet applications . v dss r ds(on) max qg 20v 2.0m ? @v gs = 10v 46nc 2.6m ? @v gs = 4.5v directfet  isometric  sq sx st mq mx mt applicable directfet outline and substrate outline (see p.8,9 for details) absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t a = 25c continuous drain current, v gs @ 10v  a i d @ t a = 70c continuous drain current, v gs @ 10v  i dm pulsed drain current  p d @t c = 25c power dissipation p d @t a = 25c power dissipation  w p d @t a = 70c power dissipation  linear derating factor w/c t j operating junction and c t stg storage temperature range thermal resistance parameter typ. max. units r ja junction-to-ambient  ??? 45 r ja junction-to-ambient  12.5 ??? r ja junction-to-ambient  20 ??? c/w r jc junction-to-case  ??? 1.4 r j-pcb junction-to-pcb mounted 1.0 ??? -40 to + 150 89 0.022 1.8 2.8 max. 31 25 250 20 20 150 
 2 www.irf.com s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 20 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 15 ??? mv/c r ds(on) static drain-to-source on-resistance ??? 1.6 2.0 m ? ??? 2.0 2.6 v gs(th) gate threshold voltage 1.55 ??? 2.45 v ? v gs(th) / ? t j gate threshold voltage coefficient ??? -6.1 ??? mv/c i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 91 ??? ??? s q g total gate charge ??? 46 69 q gs1 pre-vth gate-to-source charge ??? 15 ??? q gs2 post-vth gate-to-source charge ??? 4.7 ??? nc q gd gate-to-drain charge ??? 15 ??? q godr gate charge overdrive ??? 11 ??? see fig. 16 q sw switch charge (q gs2 + q gd ) ??? 20 ??? q oss output charge ??? 26 ??? nc t d(on) turn-on delay time ??? 24 ??? t r rise time ??? 95 ??? t d(off) turn-off delay time ??? 26 ??? ns t f fall time ??? 9.8 ??? c iss input capacitance ??? 6290 ??? c oss output capacitance ??? 1850 ??? pf c rss reverse transfer capacitance ??? 860 ??? avalanche characteristics parameter units e as (thermally limited ) single pulse avalanche energy mj i ar avalanche current  a e ar repetitive avalanche energy  mj diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 89 (body diode) a i sm pulsed source current ??? ??? 250 (body diode)  v sd diode forward voltage ??? 0.80 1.2 v t rr reverse recovery time ??? 32 48 ns q rr reverse recovery charge ??? 26 39 nc see fig. 12, 13, 18a, 18b, ??? typ. ??? ??? 240 max. i d = 17a v gs = 0v v ds = 10v i d = 25a t j = 25c, i f = 25a di/dt = 100a/s  t j = 25c, i s = 25a, v gs = 0v  showing the integral reverse p-n junction diode. conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 31a  v gs = 4.5v, i d = 25a  v ds = v gs , i d = 250a v ds = 16v, v gs = 0v v ds = 16v, v gs = 0v, t j = 150c v gs = 20v v gs = -20v v gs = 4.5v mosfet symbol clamped inductive load v ds = 10v, i d = 25a conditions ? = 1.0mhz v ds = 10v, v gs = 0v v dd = 16v, v gs = 4.5v  v ds = 10v
 www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 2.7v vgs top 10v 7.0v 4.5v 4.0v 3.5v 3.2v 2.9v bottom 2.7v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 150c 2.7v vgs top 10v 7.0v 4.5v 4.0v 3.5v 3.2v 2.9v bottom 2.7v 2.0 3.0 4.0 5.0 v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 1000.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 10v 60s pulse width t j = 25c t j = 150c -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 31a v gs = 10v
 4 www.irf.com fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage fig 8. maximum safe operating area 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 20 40 60 80 100 120 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 20v vds= 10v i d = 17a 0.0 0.4 0.8 1.2 1.6 2.0 v sd , source-to-drain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 0 1 10 100 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec
 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-ambient fig 10. threshold voltage vs. temperature fig 9. maximum drain current vs. case temperature 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.6784 0.00086 17.299 0.57756 17.566 8.94 9.4701 106 -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 t j , junction temperature (c) 0 30 60 90 120 150 i d , d r a i n c u r r e n t ( a )
 6 www.irf.com fig 12. typical avalanche current vs.pulsewidth fig 13. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 12, 13: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 12, 13). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 tav (sec) 0.01 0.1 1 10 100 1000 10000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 starting t j , junction temperature (c) 0 50 100 150 200 250 e a r , a v a l a n c h e e n e r g y ( m j ) single pulse i d = 25a
 www.irf.com 7 fig 17a. switching time test circuit fig 17b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 18b. unclamped inductive waveforms fig 18a. unclamped inductive test circuit t p v (br)dss i as d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 16a. gate charge test circuit fig 16b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 15. maximum avalanche energy vs. drain current fig 14. on-resistance vs. gate voltage 25 50 75 100 125 150 starting t j , junction temperature (c) 0 200 400 600 800 1000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 11a 14a bottom 25a 2.0 4.0 6.0 8.0 10.0 v gs , gate-to-source voltage (v) 0 2 4 6 8 10 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) t j = 25c t j = 125c i d = 31a
 8 www.irf.com directfet  substrate and pcb layout, mt outline (medium size can, t-designation). please see directfet application note an-1035 for all details regarding the assembly of directfet. this includes all recommendations for stencil and substrate designs. fig 19. 
 



   for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     g = gate d = drain s = source g d dd d s s
 www.irf.com 9 directfet  outline dimension, mt outline (medium size can, t-designation). please see directfet application note an-1035 for all details regarding the assembly of directfet. this includes all recommendations for stencil and substrate designs. directfet  part marking max 0.250 0.199 0.156 0.018 0.032 0.036 0.072 0.040 0.026 0.039 0.104 0.028 0.003 0.007 min 6.25 4.80 3.85 0.35 0.78 0.88 1.78 0.98 0.63 0.88 2.46 0.59 0.03 0.08 max 6.35 5.05 3.95 0.45 0.82 0.92 1.82 1.02 0.67 1.01 2.63 0.70 0.08 0.17 min 0.246 0.189 0.152 0.014 0.031 0.035 0.070 0.039 0.025 0.035 0.097 0.023 0.001 0.003 code a b c d e f g h j k l m n p dimensions metric imperial
 10 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the consumer market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 10/05   repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 0.75mh, r g = 25 ? , i as = 25a.  pulse width 400s; duty cycle 2%.  surface mounted on 1 in. square cu board. 
 used double sided cooling , mounting pad.   mounted on minimum footprint full size board with metalized back and with small clip heatsink.  t c measured with thermal couple mounted to top (drain) of part.  r is measured at   
  directfet  tape & reel dimension (showing component orientation). standard option (qty 4800) min 330.0 20.2 12.8 1.5 100.0 n.c 12.4 11.9 code a b c d e f g h max n.c n.c 13.2 n.c n.c 18.4 14.4 15.4 min 12.992 0.795 0.504 0.059 3.937 n.c 0.488 0.469 max n.c n.c 0.520 n.c n.c 0.724 0.567 0.606 metric imperial tr1 option (qty 1000) imperial min 6.9 0.75 0.53 0.059 2.31 n.c 0.47 0.47 max n.c n.c 12.8 n.c n.c 13.50 12.01 12.01 min 177.77 19.06 13.5 1.5 58.72 n.c 11.9 11.9 metric max n.c n.c 0.50 n.c n.c 0.53 n.c n.c reel dimensions note: controlling dimensions in mm std reel quantity is 4800 parts. (ordered as irf6609). for 1000 parts on 7" reel, order IRF6609TR1 loaded tape feed direction min 7.90 3.90 11.90 5.45 5.10 6.50 1.50 1.50 note: controlling dimensions in mm code a b c d e f g h max 8.10 4.10 12.30 5.55 5.30 6.70 n.c 1.60 min 0.311 0.154 0.469 0.215 0.201 0.256 0.059 0.059 max 0.319 0.161 0.484 0.219 0.209 0.264 n.c 0.063 dimensions metric imperial
note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRF6609TR1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X