Part Number Hot Search : 
AHA3520 LC898 1117C PE6824 93C56 KM113J E000486 G3U7818
Product Description
Full Text Search
 

To Download IRF7739L2PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  directfet   power mosfet   

       applicable directfet outline and substrate outline   rohs compliant, halogen free   lead-free (qualified up to 260c reflow)  ideal for high performance isolated converter primary switch socket  optimized for synchronous rectification  low conduction losses  high cdv/dt immunity  low profile (<0.7mm)  dual sided cooling compatible   compatible with existing surface mount techniques   industrial qualified fig 1. typical on-resistance vs. gate voltage  click on this section to link to the appropriate technical paper.  click on this section to link to the directfet website.   surface mounted on 1 in. square cu board, steady state.   t c measured with thermocouple mounted to top (drain) of part.   repetitive rating; pulse width limited by max. junction temperature.  starting t j = 25c, l = 0.021mh, r g = 25 ? , i as = 160a.  fig 2. typical on-resistance vs. drain current sb sc m2 m4 l4 l6 l8 directfet  isometric  the irf7739l2trpbf combines the latest hexfet? power mosfet silicon technology with the advanced directfet tm packaging to achieve the lowest on-state resistance in a package that has a footprint smaller than a d 2 pak and only 0.7 mm profile. the directfet package is compatible with existing layout geometries used in power applications, pcb assembly equipment and vapor phase, infra-red or con vection soldering techniques, when application note an-1035 is followed regarding the manufacturing methods and processes. the directfe t package allows dual sided cooling to maximize thermal transfer in power systems. the irf7739l2trpbf is optimized for high frequency switching and synchronous rectification applications. the reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for s ystem reliability improvements, and makes this device ideal for high performance power converters. v dss v gs r ds(on) 40v min 20v max 0.70m ? @ 10v q g tot q gd v gs(th) 220nc 81nc 2.8v absolute maximum ratin g s parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) a i d @ t a = 25c continuous drain current, v gs @ 10v (silicon limited)  i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current e as single pulse avalanche energy  mj i ar avalanche current  a 160 375 270 max. 190 46 1070 20 40 270 5.0 5.5 6.0 6.5 7.0 7.5 8.0 v gs, gate -to -source voltage (v) 0 2 4 6 8 10 t y p i c a l r d s ( o n ) ( m ? ) i d = 160a t j = 125c t j = 25c 0 40 80 120 160 200 i d , drain current (a) 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 t y p i c a l r d s ( o n ) ( m ? ) v gs = 10v  





 




 !
 
 note form quantity irf7739l2trpbf directfet2 large can tape and reel 4000 "tr" suffix irf7739l2tr1pbf directfet2 large can tape and reel 1000 "tr1" suffix eol notice #264 part number package type standard pack

 





 




 !
    repetitive rating; pulse width limited by max. junction temperature.   pulse width 400s; duty cycle 2%. static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 40 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 0.008 ??? v/c r ds(on) static drain-to-source on-resistance ??? 0.70 1.0 m ? v gs(th) gate threshold voltage 2.0 2.8 4.0 v ? v gs(th) / ? t j gate threshold voltage coefficient ??? -6.7 ??? mv/c i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 280 ??? ??? s q g total gate charge ??? 220 330 q gs1 pre-vth gate-to-source charge ??? 46 ??? q gs2 post-vth gate-to-source charge ??? 19 ??? nc q gd gate-to-drain charge ??? 81 120 q godr gate charge overdrive ??? 74 ??? see fig. 9 q sw switch charge (q gs2 + q gd ) ??? 100 ??? q oss output charge ??? 83 ??? nc r g gate resistance ??? 1.5 ??? ? t d(on) turn-on delay time ??? 21 ??? t r rise time ??? 71 ??? t d(off) turn-off delay time ??? 56 ??? ns t f fall time ??? 42 ??? c iss input capacitance ??? 11880 ??? c oss output capacitance ??? 2510 ??? pf c rss reverse transfer capacitance ??? 1240 ??? c oss output capacitance ??? 8610 ??? c oss output capacitance ??? 2230 ??? diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 110 (body diode) a i sm pulsed source current ??? ??? 1070 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 87 130 ns q rr reverse recovery charge ??? 250 380 nc mosfet symbol r g =1.8 ? v ds = 25v conditions v gs = 0v, v ds = 32v, f=1.0mhz v gs = 0v, v ds = 1.0v, f=1.0mhz v ds = 16v, v gs = 0v v dd = 20v, v gs = 10v  v gs = 0v ? = 1.0mhz i d = 160a v ds = v gs , i d = 250a v ds = 40v, v gs = 0v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1.0ma v gs = 10v, i d = 160a  t j = 25c, i f = 160a, v dd = 20v di/dt = 100a/s  t j = 25c, i s = 160a, v gs = 0v  showing the integral reverse p-n junction diode. i d = 160a v ds = 32v, v gs = 0v, t j = 125c v gs = 20v v gs = -20v v gs = 10v v ds = 10v, i d = 160a v ds = 20v

 





 



 
 !
 fig 3. maximum effective transient thermal impedance, junction-to-case    surface mounted on 1 in. square cu board, steady state.  t c measured with thermocouple incontact with top (drain) of part.   used double sided cooling, mounting pad with large heatsink.   mounted on minimum footprint full size board with metalized back and with small clip heatsink.
r is measured at t j of approximately 90c.  surface mounted on 1 in. square cu board (still air). 
mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.1080 0.000171 0.6140 0.053914 0.4520 0.006099 1.47e-05 0.036168 absolute maximum ratin g s parameter units p d @t c = 25c power dissipation w p d @t c = 100c power dissipation p d @t a = 25c power dissipation  t p peak soldering temperature c t j operating junction and t stg storage temperature range thermal resistance parameter typ. max. units r ja junction-to-ambient  ??? 40 r ja junction-to-ambient  12.5 ??? r ja junction-to-ambient  20 ??? c/w r j-can junction-to-can  ??? 1.2 r j-pcb junction-to-pcb mounted ??? 0.50 270 -55 to + 175 max. 3.8 125 63

 





 




 !
  fig 5. typical output characteristics fig 4. typical output characteristics fig 6. typical transfer characteristics fig 7. normalized on-resistance vs. temperature fig 8. typical capacitance vs. drain-to-source voltage fig 9. typical total gate charge vs. gate-to-source voltage 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60s pulse width tj = 25c 4.5v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 2 3 4 5 6 7 8 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 160a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 50 100 150 200 250 300 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 160a

 





 



 
 !
 " fig 13. typical threshold voltage vs. junction temperature fig 12. maximum drain current vs. case temperature fig 10. typical source-drain diode forward voltage fig11. maximum safe operating area fig 14. maximum avalanche energy vs. drain current 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v sd , source-to-drain voltage (v) 1.0 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100sec 1msec 10msec dc 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 250 300 i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a i d = 1.0ma i d = 1.0a 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 800 900 1000 1100 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 29a 46a bottom 160a

 





 




 !
 # fig 17. 
$
$
%
&
for n-channel hexfet 
power mosfets fig 15. typical avalanche current vs. pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 13, 14: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =  t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t a p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period '    
     ' 

 
   
  ?   
  ? 
  ?      
 


?   
     ? 

   !"!! ?    
    #
$$ ? !"!! %   "
  + - + + + - - -       
 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cy cle i d = 160a

 





 



 
 !
 ( fig 18a. gate charge test circuit fig 18b. gate charge waveform fig 19b. unclamped inductive waveforms t p v (br)dss i as fig 19a. unclamped inductive test circuit fig 20b. switching time waveforms fig 20a. switching time test circuit r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v &  vds vgs id vgs(th) qgs1 qgs2 qgd qgodr 1k vcc dut 0 l s 20k v ds 90% 10% v gs t d(on) t r t d(off) t f    '( 1 )  #
0.1 %         + -    

 





 




 !
 )   

 

 

  please see an-1035 for directfet assembly details and stencil and substrate design recommendations g = gate d = drain s = source d d d d d d ss s s g ss ss

 





 



 
 !
 * directfet  part marking   

 


 
  please see an-1035 for directfet assembly details and stencil and substrate design recommendations max 0.360 0.280 0.236 0.026 0.024 0.048 0.017 0.030 0.017 0.058 0.106 0.0274 0.0031 0.007 imperial metric dimensions min 0.356 0.270 0.232 0.022 0.023 0.046 0.015 0.029 0.015 0.053 0.099 0.0235 0.0008 0.003 code a b c d e f g h j k l m n p min 9.05 6.85 5.90 0.55 0.58 1.18 0.98 0.73 0.38 1.34 2.52 0.616 0.020 0.09 max 9.15 7.10 6.00 0.65 0.62 1.22 1.02 0.77 0.42 1.47 2.69 0.676 0.080 0.18 +,




-
.





.,//  /. -/ logo gate marking batch number part number date code line above the last character of the date code indicates "lead-free"

 





 




 !
  directfet  tape & reel dimension (showing component orientation). loaded tape feed direction min 11.90 3.90 15.90 7.40 7.20 9.90 1.50 1.50 note: controlling dimensions in mm code a b c d e f g h max 12.10 4.10 16.30 7.60 7.40 10.10 nc 1.60 min 0.469 0.154 0.626 0.291 0.284 0.390 0.059 0.059 max 0.476 0.161 0.642 0.299 0.291 0.398 nc 0.063 dimensions metric imperial reel dimensions note: controlling dimensions in mm std reel quantity is 4000 parts. (ordered as IRF7739L2PBF). standard option (qty 4000) min 330.0 20.2 12.8 1.5 100.0 n.c 16.4 15.9 code a b c d e f g h max n.c n.c 13.2 n.c n.c 22.4 18.4 18.4 min 12.992 0.795 0.504 0.059 3.937 n.c 0.646 0.626 max n.c n.c 0.520 n.c n.c 0.889 0.724 0.724 metric imperial note: for the most current drawing please refer to ir website at http://www.irf.com/package/

 





 



 
 !
   qualification standards can be found at international rectifier?s web site http://www .irf.com/product-info/reliability  higher qualification ratings may be available should the user have such requirements. please contact your international rectifier sales representative for further information: http://www .irf.com/whoto-call/salesrep/  applicable version of jedec standard at the time of product release. msl1 (per jedec j-std-020d ??? ) rohs compliant comments: this family of products has passed jedec?s industrial qualification. ir?s consumer qualification level is granted by extension of the higher industrial level. qualification information ? qualification level industrial ?? (per jedec jesd47f ??? guidelines) yes moisture sensitivity level dfet2  !"# 
 

  
    !  
" 
 # #  $ %&&'''(&'$ )
& date comments 2/12/2014 ? updated ordering information to reflect the end-of-life (eol) of the mini-reel option (eol notice #264). ? updated data sheet with new ir corporate template. revision history


▲Up To Search▲   

 
Price & Availability of IRF7739L2PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X