Part Number Hot Search : 
P1A22LC CPH6312 LM293 AD7233BN SC2331 31ACD MPC755CD MPSA43
Product Description
Full Text Search
 

To Download HCPL-3100-500 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  agilent hcpl-3100/hcpl-3101 power mosfet/igbt gate drive optocouplers data sheet description the hcpl-3100/3101 consists of an led* optically coupled to an integrated circuit with a power output stage. these optocouplers are suited for driving power mosfets and igbts used in motor control inverter applications. the high operating voltage range of the output stage provides the voltage drives required by gate controlled devices. the voltage and current supplied by these optocouplers allow for direct interfacing to the power device without the need for an intermediate amplifier stage. the hcpl-3100 switches a 3000 pf load in 2 s and the hcpl-3101, using a higher speed led, switches a 3000 pf load in 0.5 s. with a cmr rating of 15 kv/ s typical these opto- couplers readily reject transients found in inverter applications. the led controls the state of the output stage. transistor q2 in the output stage is on with the led off, allowing the gate of the power device to be held low. turning on the led turns off transistor q2 and switches on transistor q1 in the output stage which provides current and voltage to drive the gate of the power device. features high output current i o1 and i o2 (0.6 a peak , 0.1 a continuous) 15 kv/ s minimum common mode rejection (cmr) at v cm = 1500 v wide operating v cc range (15 to 30 volts) high speed 1 s typical propagation delay (hcpl-3100) 0.3 s typical propagation delay (hcpl-3101) recognized under ul 1577 for dielectric withstand proof test voltages of 5000 vac, 1 minute applications isolated mosfet/igbt gate drive ac and dc motor drives general purpose industrial inverters uninterruptable power supply caution: it is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by esd. functional diagram q2 q1 8 7 6 5 v gnd v v 1 2 3 4 anode cathode hcpl-3100 o2 o1 cc q2 q1 8 7 6 5 v gnd v v 1 2 3 4 anode cathode hcpl-3101 o2 o1 cc truth table led on off output high level low level q1 on off q2 off on the use of a 0.1 f bypass capacitor connected between pins 8 and 7 is recommended. also current limiting resistor is recommended (see figure 1, and note 2 and note 7). *hcpl-3100 led contains silicon-doped gaas and hcpl-3101 led contains algaas.
2 schematic outline drawing anode cathode 1 2 + i f i cc 8 7 6 5 gnd v cc v o2 v o1 i o2 q2 q1 hcpl-3100 the use of a 0.1 f bypass capacitor connected between pins 8 and 7 is recommended. also current limiting resistor is recommended (see figure 1, and note 2 and note 7). i o1 anode cathode 2 + i f i cc 8 7 6 5 gnd v cc v o2 v o1 q2 q1 hcpl-3101 i o2 i o1 3 0.16 (0.006) 0.36 (0.014) 0 13 7.32 (0.288) 7.92 (0.312) 0 13 9.16 (0.361) 10.16 (0.400) 3.00 (0.118) 4.00 (0.157) 2.90 (0.114) 3.90 (0.154) 0.40 (0.016) 0.60 (0.024) 2.29 (0.090) 2.79 (0.110) 2.55 (0.100) 3.55 (0.140) 0.50 (0.020) typ. 0.65 (0.026) 1.05 (0.040) 0.90 (0.035) 1.50 (0.059) 6.00 (0.236) 7.00 (0.276) a xxxx yyww date code type number 87 65 12 34 q2 q1 8 7 6 5 v gnd v v 1 2 3 4 anode cathode hcpl-3100 o2 o1 cc q2 q1 8 7 6 5 v gnd v v 1 2 3 4 anode cathode hcpl-3101 o2 o1 cc ordering information specify part number followed by option number (if desired). example: hcpl-310x-xxx e lead-free. 000 = standard dip package, 50 per tube. 300 = gull wing surface mount option, 50 per tube. 500 = tape and reel packaging option, 1000 per reel.
3 absolute maximum ratings parameter symbol device min. max. unit conditions fig. note storage temperature t s -55 125 c operating temperature t a hcpl-3100 -40 100 c hcpl-3101 -40 85 input continuous i f hcpl-3100 25 ma 11 1 hcpl-3101 20 ma 11 1 reverse v r hcpl-3100 6 v t a = 25 c voltage hcpl-3101 5 supply voltage v cc 35 v output 1 continuous i o1 0.1 a 1 current peak current 0.6 a pulse width < 0.15 s, 1 duty cycle = 1% voltage v o1 35 v output 2 continuous i o2 0.1 a 1 current peak current 0.6 a pulse width < 0.15 s, 1 duty cycle = 1% output power dissipation p o 500 mw 12 1 total power dissipation p t 550 mw 12 1 lead solder temperature 270 c for 10 s, 1.0 mm below seating plane current insulation and safety related specifications parameter symbol value units conditions min. external air gap l(io1) 6.0 mm shortest distance measured through air, between two (external clearance) conductive leads, input to output min. external tracking l(io2) 6.0 mm shortest distance path measured along outside surface path (external of optocoupler body between input and output leads creepage) min. internal plastic 0.15 mm through insulation distance conductor to conductor gap (internal inside the optocoupler cavity clearance) demonstrated esd performance human body model: mil-std- 883 method 3015.7: class 2 machine model: eiaj ic-121- 1988 (1988.3.28 version 2), test method 20, condition c: 1200 v regulatory information the hcpl-3100/3101 has been approved by the following organization: ul recognized under ul 1577, component recognition program, file e55361.
4 recommended operating conditions parameter symbol device min. max. units power supply voltage v cc 15 30 v input current (on) i f hcpl-3100 14 20 ma hcpl-3101 15 20 ma operating temperature t a -40 70 c showing a current limiting resistor r 2 which is necessary in order to prevent damage to the output transistors q1 and q2. (see note 7.) a bypass capacitor c 1 is also recommended to reduce power supply noise. recommended protection for output transistors during switching transitions, the output transistors q1 and q2 of the hcpl-3100/3101 can conduct large amounts of current. figure 1 describes a recommended circuit design figure 1. recommended output transistor protection and typical application circuit. 8 7 6 5 q2 q1 +5 v r ttl or lsttl anode cathode 3 r 2 12 v c 1 12 v + hvdc 3-phase ac - hvdc igbt (or )t (mosfet) hcpl-3100/1 totem pole output gate control input r = 25 - 100 ? r = 180 ? (hcpl-3100) 240 ? (hcpl-3101) bypass capacitor c = 0.1 f 2 3 1
5 electrical specifications over recommended temperature (t a = -40 c to +100 c, hcpl-3100; t a = -40 c to +85 c, hcpl-3101) unless otherwise specified. parameter sym. device min. typ. max. units test conditions fig. note input forward v f hcpl-3100 - 1.2 1.4 v i f = 20 ma t a = 25 c13 voltage 0.6 0.9 - v i f = 0.2 ma hcpl-3101 - 1.6 1.75 v i f = 10 ma 14 1.2 1.5 - v i f = 0.2 ma input reverse i r hcpl-3100 - - 10 av r = 4 v t a = 25 c current hcpl-3101 v f = 5 v input capacitance c in hcpl-3100 - 30 250 pf v f = 0 v , f = 1 khz, t a = 25 c hcpl-3101 - 60 150 pf v f = 0 v , f = 1 mhz, t a = 25 c output 1 low v o1l hcpl-3100 - 0.2 0.4 v i f = 10 ma v cc1 = 12 v, 2, 17, 2 level i o1 = 0.1 a, 18 voltage hcpl-3101 i f = 5 ma v cc2 = -12 v leakage i o1l - - 500 av cc = v o1 = 35 v, v o2 = 0 v 5 current i f = 0 ma, t a = 25 c output 2 high v o2h hcpl-3100 20 22 - v i f = 10 ma v cc = 24 v, 3, 19, 2 level v o1 = 24 v, 20 voltage hcpl-3101 i f = 5 ma i o2 = -0.1 a low v o2l - 0.5 0.8 v v cc = v o1 = 24 v, i o2 = 0.1 a, 4, 21, level i f = 0 ma 22 voltage leakage i o2l hcpl-3100 - - 500 ai f = 10 ma v cc = 35 v, 6 current v o2 = 35 v, hcpl-3101 i f = 5 ma t a = 25 c supply high i cch hcpl-3100 - 1.3 3.0 ma v o1 = 24 v 7, 23 2 current level v cc = 24 v, i f = 10 ma hcpl-3101 - 1.3 3.0 ma v o1 = 24 v v cc = 24 v, i f = 5 ma low i ccl - 1.3 3.0 ma v o1 = 24 v 7, 24 level v cc = 24 v, i f = 0 ma low to high i flh hcpl-3100 1.0 4.0 7.0 ma t a = 25 c 8, 15, 2, 3 threshold input 16 0.6 - 10.0 ma v cc = v o1 = 24 v hcpl-3101 0.3 1.5 3.0 ma t a = 25 c 0.2 - 5.0 ma v cc = v o1 = 24 v
6 switching specifications (t a = 25 c) parameter sym. device min. typ. max. units test conditions fig. note propagation t plh hcpl-3100 - 1 2 si f = 10 ma v cc = 24 v, 9, 2, 6 delay time to v o1 = 24 v, 25, high output hcpl-3101 - 0.3 0.5 si f = 5 ma r g = 47 ? , 26, level c g = 3000 pf 27 propagation t phl hcpl-3100 - 1 2 si f = 10 ma delay time to low output hcpl-3101 - 0.3 0.5 si f = 5 ma level rise time t r hcpl-3100 - 0.2 0.5 si f = 10 ma hcpl-3101 i f = 5 ma fall time t f hcpl-3100 - 0.2 0.5 si f = 10 ma hcpl-3101 i f = 5 ma output high |cm h | hcpl-3100 15 - kv/ si f = 10 ma v cm = 1500 v 10 2 level common (peak), mode transient hcpl-3101 i f = 5ma v cc = 24 v immunity v o1 = 24 v ? v 02h = ? v 02l output low |cm l | 15 - kv/ si f = 0 ma = 2.0 v level common mode transient immunity notes: 1. derate absolute maximum ratings with ambient temperatures as shown in figures 11 and 12. 2. a bypass capacitor of 0.01 f or more is needed near the device between v cc and gnd when measuring output and transfer characteristics. 3. i flh represents the forward current when the output goes from low to high. 4. device considered a two terminal device; pins 1-4 are shorted together and pins 5-8 are shorted together. 5. for devices with minimum v iso specified at 5000 v rms, in accordance with ul 1577, each optocoupler is proof-tested by applying an insulation test voltage 6000 v rms for one second (leakage current detection limit, i i-o 200 a). 6. the t plh and t phl propagation delays are measured from the 50% level of the input pulse to the 50% level of the output pulse. 7. r 2 limits the q1 and q2 peak currents. for more applications and circuit design information see application note power transistor gate/base drive optocouplers. packaging characteristics parameter sym. min. typ. max. units test conditions fig. note input-output momentary v iso 5000 v rms rh = 40% to 60% 4, 5 withstand voltage* t = 1 min, t a = 25 c resistance (input-output) r i-o 5x10 10 10 11 ? v i-o = 500 v, t a = 25 c4 rh = 40% to 60% capacitance (input-output) c i-o 1.2 pf f = 1 mhz 4 *the input-output momentary withstand voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. for the continuous voltage rating refer to the iec/en/din en 60747-5-2 insulation characteristics table (if applicable) , your equipment level safety specification, or agilent application note 1074, ?ptocoupler input-output endurance voltage.
7 figure 2. test circuit for low level output voltage v o1l . figure 3. test circuit for high level output voltage v o2h . figure 5. test circuit for leakage current i o1l . figure 4. test circuit for low level output voltage v o2l . figure 6. test circuit for leakage current i o2l . figure 7. test circuit for i cch and i ccl . figure 8. test circuit for threshold input current i flh . i f v cc1 v cc2 i o1 v o1l - + - + + q2 q1 8 7 6 5 gnd 1 2 3 4 hcpl-3100 v o2 v o1 v cc i f v o2h v cc i o2 + - + q2 q1 8 7 6 5 gnd 1 2 3 4 hcpl-3100 v o2 v o1 v cc i f v o2l v cc i o2 - + + q2 q1 8 7 6 5 gnd 1 2 3 4 hcpl-3100 v o2 v o1 v cc i f v cc i o1l - + q2 q1 8 7 6 5 gnd 1 2 3 4 hcpl-3100 v o2 v o1 v cc i f v cc i o2l - + q2 q1 8 7 6 5 gnd 1 2 3 4 hcpl-3100 v o2 v o1 v cc i f v cc i cc - + q2 q1 8 7 6 5 gnd 1 2 3 4 hcpl-3100 v o2 v o1 v cc i f v o2 v cc - + + sweep q2 q1 8 7 6 5 gnd 1 2 3 4 hcpl-3100 v o2 v o1 v cc
8 figure 11. led forward current vs. ambient temperature, hcpl-3100. figure 13. maximum power dissipation vs. ambient temperature, hcpl-3100. figure 9. test circuit for t plh , t phl , t r , and t f . figure 10. test circuit for cm h and cm l . figure 12. led forward current vs. ambient temperature, hcpl-3101. i f v o2 v cc - + + c g r g v in t = t = 0.01 s pulse width 5 s duty ratio 50% t f t r t plh t plh 50% 90% 50% 10% v wave form v wave form in out rf q2 q1 8 7 6 5 gnd 1 2 3 4 hcpl-3100 v o2 v o1 v cc i f v o2 v cc - + + ab sw v cm + gnd v cm v o2h v o2l gnd ? v o2h v cm sw at a, i = 10 ma, hcpl-3100 f cm , v l sw at b, i = 0 ma f o2 cm , v ho2 sw at a, i = 5 ma, hcpl-3101 f q2 q1 8 7 6 5 gnd 1 2 3 4 hcpl-3100 v o2 v o1 v cc ? v o2l 60 50 40 30 20 10 0 -40 -25 0 25 50 ambient temperature t a ( c) forward current i f (ma) 75 100 125 60 50 40 30 20 10 0 -40 -25 0 25 50 ambient temperature t a ( c) forward current i f (ma) 75 85 100 125 600 500 400 300 200 100 0 -40 -25 0 25 50 ambient temperature t a ( c) power dissipation p o , p tot (mw) 75 100 125 p o p tot
9 figure 21. typical low level output 1 voltage vs. output 1 current, hcpl-3100. figure 17. normalized low to high threshold input current vs. supply voltage, hcpl-3100. figure 19. normalized low to high threshold input current vs. ambient temperature, hcpl-3100. figure 15. typical forward current vs. forward voltage, hcpl-3100. figure 14. maximum power dissipation vs. ambient temperature, hcpl-3101. figure 16. typical forward current vs. forward voltage, hcpl-3101. figure 18. normalized low to high threshold input current vs. supply voltage, hcpl-3101. figure 20. normalized low to high threshold input current vs. ambient temperature, hcpl-3101. figure 22. typical low level output 1 voltage vs. output 1 current, hcpl-3101. 600 500 400 300 p o p tot 200 100 0 -40 -25 0 25 50 ambient temperature t a ( c) power dissipation p o , p tot (mw) 75 85 100 125 100 10 1 0.1 0.50 0.75 1.00 1.25 forward voltage v f (v) forward current i f (ma) 1.50 1.75 2.00 25 c t a = 100 c 85 c 0 c -40 c 50 c 100 10 1 0.1 1.0 1.2 1.4 1.6 forward voltage v f (v) forward current i f (ma) 1.8 2.0 2.2 0 c t a = 85 c 50 c -40 c -20 c 25 c 120 100 110 90 70 80 15 18 21 supply voltage v cc (v) relative input threshold current (%) 24 27 30 t a = 25 c value of v cc = 24 v assume 100 120 100 110 90 70 80 15 18 21 supply voltage v cc (v) relative input threshold current (%) 24 27 30 t a = 25 c i flh = 100% at v cc = 24 v 160 120 140 100 60 80 -40 -20 0 20 ambient temperature t a ( c) relative input threshold current (%) 40 60 80 100 v cc = 24 v i flh = 100% at t a = 25 c 120 100 110 90 60 80 70 -40 -20 0 20 ambient temperature t a ( c) relative input threshold current (%) 40 60 80 100 v cc = 24 v i flh = 100% at t a = 25 c 3 2 0 1 0 0.1 0.2 o 1 output current i o1 (a) o 1 low level output voltage v o1l (v) 0.3 0.4 0.5 0.6 t a = 25 c v cc1 = 12 v v cc2 = -12 v i f = 10 ma 3 2 0 1 0 0.1 0.2 o 1 output current i o1 (a) o 1 low level output voltage v o1l (v) 0.3 0.4 0.5 0.6 t a = 25 c v cc1 = 12 v v cc2 = -12 v i f = 5 ma
10 figure 23. typical low level output 1 voltage vs. ambient temperature, hcpl-3100. figure 25. typical high level output 2 voltage vs. supply voltage, hcpl-3100. figure 27. typical high level output 2 voltage vs. ambient temperature, hcpl-3100. figure 31. typical low level output 2 voltage vs. ambient temperature, hcpl-3100. figure 29. typical low level output 2 voltage vs. output 2 current, hcpl-3100. figure 24. typical low level output 1 voltage vs. ambient temperature, hcpl-3101. figure 26. typical high level output 2 voltage vs. supply voltage, hcpl-3101. figure 28. typical high level output 2 voltage vs. ambient temperature, hcpl-3101. figure 30. typical low level output 2 voltage vs. output 2 current, hcpl-3101. 0.30 0.20 0.15 0.25 0 0.10 0.05 -40 -20 0 ambient temperature t a ( c) o 1 low level output voltage v o1l (v) 40 60 80 100 20 v cc1 = 12 v v cc2 = -12 v i f = 10 ma i o2 = 0.1 a 0.30 0.20 0.15 0.25 0 0.10 0.05 -40 -20 0 ambient temperature t a ( c) o 1 low level output voltage v o1l (v) 40 60 80 100 20 v cc1 = 12 v v cc2 = -12 v i f = 5 ma i o2 = 0.1 a 30 24 21 27 12 18 15 15 18 supply voltage v cc (v) o 2 high level output voltage v o2h (v) 24 27 30 21 t a = 25 c i f = 10 ma 30 24 21 27 12 18 15 15 18 supply voltage v cc (v) o 2 high level output voltage v o2h (v) 24 27 30 21 t a = 25 c i f = 5 ma 24 23 22 20 21 -40 -20 0 ambient temperature t a ( c) o 2 high level output voltage v o2h (v) 40 60 80 100 20 v cc = 24 v i f = 10 ma i o2 nearly = 0 a i o2 = -0.1 a 24 23 22 20 21 -40 -20 0 ambient temperature t a ( c) o 2 high level output voltage v o2h (v) 40 60 80 100 20 v cc = 24 v i f = 5 ma i o2 = nearly 0 a i o2 = -0.1 a 3 2 0 1 0 0.1 0.2 o 2 output current i o2 (a) o 2 low level output voltage v o2l (v) 0.3 0.4 0.5 0.6 t a = 25 c v cc = v o1 = 24 v i f = 0 ma 3 2 0 1 0 0.1 0.2 o 2 output current i o2 (a) o 2 low level output voltage v o2l (v) 0.3 0.4 0.5 0.6 t a = 25 c v cc = v o1 = 24 v i f = 0 ma 0.8 0.6 0.5 0.7 0.2 0.4 0.3 -40 -20 0 ambient temperature t a ( c) o 2 low level output voltage v o2l (v) 40 60 80 100 20 v cc = 24 v i f = 0 ma i o2 = 0.1 a
11 figure 33. typical high level supply current vs. supply voltage, hcpl-3100. figure 35. typical low level supply current vs. supply voltage, hcpl-3100. figure 32. typical low level output 2 voltage vs. ambient temperature, hcpl-3101. figure 34. typical high level supply current vs. supply voltage, hcpl-3101. figure 36. typical low level supply current vs. supply voltage, hcpl-3101. figure 37. typical high level supply current vs. ambient temperature, hcpl-3100. figure 38. typical high level supply current vs. ambient temperature, hcpl-3101. figure 39. typical low level supply current vs. ambient temperature, hcpl-3100. figure 40. typical low level supply current vs. ambient temperature, hcpl-3101. 0.8 0.6 0.5 0.7 0.2 0.4 0.3 -40 -20 0 ambient temperature t a ( c) o 2 low level output voltage v o2l (v) 40 60 80 100 20 v cc = 24 v i f = 0 ma i o2 = 0.1 a 3.0 2.0 1.5 2.5 0 1.0 0.5 15 18 supply voltage v cc (v) high level supply current i cch (ma) 24 27 30 21 t a = 25 c i f = 10 ma 3.0 2.0 1.5 2.5 0 1.0 0.5 15 18 supply voltage v cc (v) high level supply current i cch (ma) 24 27 30 21 t a = 25 c i f = 5 ma 3.0 2.0 1.5 2.5 0 1.0 0.5 15 18 supply voltage v cc (v) low level supply current i ccl (ma) 24 27 30 21 t a = 25 c i f = 0 ma 3.0 2.0 1.5 2.5 0 1.0 0.5 15 18 supply voltage v cc (v) low level supply current i ccl (ma) 24 27 30 21 t a = 25 c i f = 0 ma 3.0 2.0 1.5 2.5 0 1.0 0.5 -40 -20 0 ambient temperature t a ( c) 40 60 80 100 20 high level supply current i cch (ma) v cc = 24 v i f = 10 ma 3.0 2.0 1.5 2.5 0 1.0 0.5 -40 -20 0 ambient temperature t a ( c) 40 60 80 100 20 high level supply current i cch (ma) v cc = 24 v i f = 5 ma 3.0 2.0 1.5 2.5 0 1.0 0.5 -40 -20 0 ambient temperature t a ( c) 40 60 80 100 20 low level supply current i ccl (ma) v cc = 24 v i f = 0 ma 3.0 2.0 1.5 2.5 0 1.0 0.5 -40 -20 0 ambient temperature t a ( c) 40 60 80 100 20 low level supply current i ccl (ma) v cc = 24 v i f = 0 ma
figure 43. typical propagation delay time vs. ambient temperature, hcpl-3100. figure 41. typical propagation delay time vs. forward current, hcpl-3100. figure 42. typical propagation delay time vs. forward current, hcpl-3101. figure 44. typical propagation delay time vs. ambient temperature, hcpl-3101. 2.5 2.0 1.5 0 1.0 0.5 05 forward current i f (ma) propagation delay time t phl , t plh ( s) 15 20 25 10 t phl t plh v cc = v o1 = 24 v r g = 47 w c g = 3000 pf t a = 85 c 25 c -40 c -40 c 85 c 25 c 1.0 0.8 0.6 0 0.4 0.2 05 forward current i f (ma) propagation delay time t phl , t plh ( s) 15 20 25 10 t phl t plh v cc = v o1 = 24 v r g = 47 w c g = 3000 pf t a = 85 c 25 c -40 c -40 c 85 c 25 c -40 -20 0 ambient temperature t a ( c) 40 60 80 100 20 2.5 2.0 1.5 0 1.0 0.5 propagation delay time t phl , t plh ( s) t plh t phl v cc = v o1 = 24 v r g = 47 w c g = 3000 pf i f = 10 ma -40 -20 0 ambient temperature t a ( c) 40 60 80 100 20 1.0 0.8 0.6 0 0.4 0.2 propagation delay time t phl , t plh ( s) t plh t phl v cc = v o1 = 24 v r g = 47 w c g = 3000 pf i f = 5 ma 12
www.agilent.com/semiconductors for product information and a complete list of distributors, please go to our web site. for technical assistance call: americas/canada: +1 (800) 235-0312 or (916) 788-6763 europe: +49 (0) 6441 92460 china: 10800 650 0017 hong kong: (+65) 6756 2394 india, australia, new zealand: (+65) 6755 1939 japan: (+81 3) 3335-8152 (domestic/interna- tional), or 0120-61-1280 (domestic only) korea: (+65) 6755 1989 singapore, malaysia, vietnam, thailand, philippines, indonesia: (+65) 6755 2044 taiwan: (+65) 6755 1843 data subject to change. copyright ?2005 agilent technologies, inc. obsoletes 5989-1031en april 26, 2005 5989-2939en


▲Up To Search▲   

 
Price & Availability of HCPL-3100-500

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X