![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
agilent HPMX-7102 dual-band, tri-mode downconverter data sheet general description the HPMX-7102 downconverter offers a highly integrated solution for the cdma dual-band, tri- mode (dbtm) handsets. this integrated solution leads to improvement in cost and reliability. the HPMX-7102 is part of the agilent technologies complete cdmadvantage rf chipset. the downconverter has a high input ip3 which is highly desirable for cdma receiver dynamic range, noise, and spurious suppression. the chip is comprised of three amplifier and mixer combinations. individual mixers can be selected through band and mode control input. the mixer outputs are differential providing common mode rejection. the outputs are high impedance open collectors. the HPMX-7102 features a current control of all three mixers through a dc voltage input vcs. by setting the current varying linearity requirements can be accommodated. if used, dynamic current control reduces overall current consumption maximizing battery life. features ? wide band operation rf inputs: cellular amps/cdma: 869 - 894 mhz pcs cdma: 1930 - 1990 mhz if outputs: cellular amps: 85.38 mhz cellular cdma: 85.38 mhz pcs cdma: 210.38 mhz ? 2.7 - 3.6 v operation ? differential if outputs ? high input ip3 and conversion gain ? adjustable current cellular amps: 4 - 11 ma cellular cdma: 7 - 18 ma pcs cdma: 6 - 17 ma ? jedec standard bcc-24 surface mount package applications ? cellular handsets ? wireless data terminals plastic bcc-24 the ic is housed in miniature bcc-24 package and manufac- tured on a high frequency, low noise si-bipolar process (25 ghz f t ). the entire ic can be put into a standby mode reducing current consumption to under 150 m a. HPMX-7102 functional block diagram rfin amps vcs ifout amps ifout amps rfin cdma lo cel lo cel lo pcs lo pcs ifout cdma ifout cdma rfin pcs ifout pcs ifout pcs mode select current & bias control band select
2 HPMX-7102 absolute maximum ratings [1] parameter units min. max. vcc supply voltage v 5 vcs control voltage v vcc + 0.5 v mode , v band v vcc mixer input, rf power dbm 5 mixer input, lo power dbm 7 case temperature c 125 storage temperature c -55 125 note: 1. operation of this device in excess of any of these limits may cause permanent damage. HPMX-7102 standard test conditions unless otherwise stated, all test data was taken on packaged parts under the following conditions: vcc = +3.0vdc, t ambient = 25 c, icc at vcs = 3v for cdma 1900 and amps and vcs = 2.5v for cdma 800 z rf & lo source = 50 w , z if load = 500 w . see figure 46 for reference. pcs cdma: lo input: 1749.62 mhz, -3 dbm, single-ended rf input: 1960 mhz, -33 dbm, single-ended if output: 210.38 mhz cellular cdma: lo input: 966.88 mhz, -6 dbm, single-ended rf input: 881 mhz, -33 dbm, single-ended if output: 85.38 mhz cellular amps: lo input: 966.88 mhz, -6 dbm, single-ended rf input: 881 mhz, -33 dbm, single-ended if output: 85.38 mhz recommended operating range of vcc = 2.7 to 3.6v, t a = -40 to +85 c. 3 HPMX-7102 summary characterization information standard test conditions apply unless otherwise noted. symbol parameters and test conditions min. typ. max. units pcs cdma gc conversion gain vcs = 3 v 11 12 db vcs = 1.5 v 11 nf noise figure vcs = 3 v 10 11.5 db vcs = 1.5 v 8 iip3 input third order intercept vcs = 3 v 2 5 dbm vcs = 1.5 v 0 oip3 output third order intercept vcs = 3 v 17 dbm vcs = 1.5 v 11 rl rf port return loss* -13 db rl if port return loss* -15 db rl lo port return loss* -11 db icc current vcs = 3v 18 22 ma vcs = 1.5v 9 ma cellular cdma gc conversion gain vcs = 2.5 v 16 17 db vcs = 1.5 v 16 db nf noise figure vcs = 2.5 v 9 10 db vcs = 1.5 v 6 db iip3 input third order intercept vcs = 2.5 v 2 6 dbm vcs = 1.5 v 1 dbm oip3 output third order intercept vcs = 2.5 v 23 dbm vcs = 1.5 v 18 dbm rl rf port return loss* -14 db rl if port return loss* -10 db rl lo port return loss* -11 db icc current vcs = 3v 16 20 ma vcs = 1.5v 10 ma cellular amps gc conversion gain vcs = 3 v 15 16 db vcs = 1.5 v 15 db nf noise figure vcs = 3 v 7 8.5 db vcs = 1.5 v 6 db iip3 input third order intercept vcs = 3 v 0 2 dbm vcs = 1.5 v -4 dbm oip3 output third order intercept vcs = 3 v 18 dbm vcs = 1.5 v 11 dbm rl rf port return loss* -11 db rl if port return loss* -11 db rl lo port return loss* -11 db icc current vcs = 3v 10 13 ma vcs = 1.5v 6 ma * externally matched * for both lo and rf port return loss measurements, calibration removes all filters and attenuator pads shown in figure 46. * for if port return loss measurements, the transformer is included in reported performance. 4 HPMX-7102 pin description table no. mnemonic description typical signal notes 1 pcsifoutp pcs differential if output if 2 pcsifoutm pcs differential if output if 3 cellifoutp cdma differential if output if 4 cellifoutm cdma differential if output if 5 fmifoutp amps differential if output if 6 fmifoutm amps differential if output if 7 gnd ground 8 band band selection signal (pcs or cellular band) dc 9 mode mode selection signal (cdma or amps mode) dc 10 gnd ground 11 gnd ground 12 gnd ground 13 vcs current bias control signal dc 14 fmrfin rf amps input rf 15 cellrfin rf cdma input rf 16 lgnd_cel inductive degeneration/ground for cellular mixers 17 lgnd_pcs inductive degeneration/ground for pcs mixer 18 lgnd_pcs inductive degeneration/ground for pcs mixer 19 pcsrfin rf pcs input rf 20 vcc device vcc input dc 21 pcslom pcs lo differential input rf 22 pcslop pcs lo differential input rf 23 celllop cellular lo differential input rf 24 celllom cellular lo differential input rf HPMX-7102 mode control mode mode band power down 0 0* cellular amps 0 1* pcs cdma 1 0 cellular cdma 1 1 * 1 = high, 0 = low HPMX-7102 dc logic parameter min max units input logic, low voltage 0.5 v input logic, high voltage 2.5 v 5 HPMX-7102 characterization graphs for pcs cdma -40 c +25 c +85 c lo power (dbm) figure 1. gain vs. lo power. gain (db) 15 14 13 12 11 10 9 8 -9 6 -3 -6 3 0 -40 c +25 c +85 c lo power (dbm) figure 2. iip3 vs. lo power. iip3 (dbm) 8 6 4 2 0 -2 -9 6 -3 -6 3 0 -40 c +25 c +85 c lo power (dbm) figure 3. nf vs. lo power. nf (db) 15 13 11 9 7 5 -9 6 -3 -6 3 0 -40 c +25 c +85 c lo frequency (mhz) figure 4. gain vs. lo frequency. gain (db) 18 16 14 12 10 8 1720 1780 1750 -40 c +25 c +85 c lo frequency (mhz) figure 5. iip3 vs. lo frequency. iip3 (dbm) 10 8 6 4 2 0 1720 1780 1750 -40 c +25 c +85 c lo frequency (mhz) figure 6. nf vs. lo frequency. nf (db) 15 13 11 9 7 5 1720 1780 1750 table 1. pcs cdma, gain vs. lo power and vcs. vcs (v) lo power (dbm) 1.4 1.8 2.2 2.6 3.0 -9 10.9 11.4 11.7 11.7 11.6 -6 11.0 11.5 11.9 12.2 12.4 -3 10.9 11.4 11.9 12.1 12.4 0 10.7 11.3 11.7 12.0 12.3 3 10.7 11.7 11.7 12.0 12.2 6 10.7 11.3 11.7 12.0 12.2 table 2. pcs cdma, iip3 vs. lo power and vcs. vcs (v) lo power (dbm) 1.4 1.8 2.2 2.6 3.0 -9 -1.9 -0.8 0 0.4 1.0 -6 -1.4 0.3 1.5 2.4 3.1 -3 -1.5 0.7 2.3 3.6 4.7 0 -2.5 0.3 2.7 4.1 5.4 3 -3.0 0.3 2.6 4.3 5.7 6 -2.9 0.2 2.6 4.4 5.7 6 HPMX-7102 characterization graphs for pcs cdma , continued table 3. pcs cdma, nf vs. lo power and vcs. vcs (v) lo power (dbm) 1.4 1.8 2.2 2.6 3.0 -9 8.8 9.4 10.1 10.7 11.4 -6 8.4 8.9 9.4 9.9 10.4 -3 8.1 8.5 9.1 9.4 9.8 0 7.9 8.3 8.7 9.1 9.5 3 7.9 8.3 8.6 9.0 9.4 6 7.9 8.3 8.6 9.0 9.4 vcc (v) figure 8. iip3 vs. vcc. iip3 (dbm) 6 4 2 0 2.7 3.3 3 3.6 -40 c +25 c +85 c -40 c +25 c +85 c 2.7 3.3 3 vcc (v) figure 9. gain vs. vcc. 3.6 15 13 11 9 7 5 gain (db) +85 c +25 c -40 c 2.7 3.3 3 figure 10. nf vs. vcc. vcc (v) 3.6 15 13 11 9 7 5 nf (db) 209 1750 1960 2830 3499 3709 5250 if lo rf 2 * lo lo+rf 3 * lo frequency (mhz) figure 11. differential spur level at if pins. [1] differential level (db) 20 10 0 -10 -20 -30 -40 -50 vcc = 3.6v vcc = 3.3v vcc = 3v vcc = 2.7v vcs (v) figure 7a. icc vs. vcs. icc (ma) 18 16 14 12 10 8 6 13 2 vcc=2.7v, t=25 c vcc=2.7v, t=85 c vcc=2.7v, t=-40 c vcc=3.6v, t=25 c vcc=3.6v, t=85 c vcc=3.6v, t=-40 c vcs (v) figure 7b. icc vs. vcs. icc (ma) 13 2 18 16 14 12 10 8 6 note: 1. measurement performed at if pins (matching circuit and balun removed). 7 HPMX-7102 characterization graphs for pcs cdma , continued rf frequency (mhz) figure 15a. pcs-cdma rf impedance (real). [1] ohms vcs=1.5v vcs=2.0v vcs=2.5v vcs=3.0v 50 55 40 35 30 1930 1990 1950 1940 1970 1980 1960 rf frequency (mhz) figure 15b. pcs-cdma rf impedance (reactive). [1] ohms vcs=1.5v vcs=2.0v vcs=2.5v vcs=3.0v 1930 1990 1950 1940 1970 1980 1960 -20 -22 -24 -26 -28 -30 frequency (mhz) figure 12. rf input impedance vs. frequency. [1] real impedance (ohms) imaginary impedance (ohms) 1920 2000 1940 1980 1960 50 48 46 44 42 40 -20 -22 -24 -26 -28 -30 rf input impedance (real) rf input impedance (imaginary) frequency (mhz) figure 13. if input impedance (differential) vs. frequency. [1] real impedance (ohms) imaginary impedance (ohms) 20 18 16 14 12 10 -170 -172 -174 -176 -178 -180 rf input impedance (real) rf input impedance (imaginary) 204 216 208 206 212 214 210 frequency (mhz) figure 14. lo input impedance (differential) vs. frequency. [1] real impedance (ohms) imaginary impedance (ohms) rf input impedance (real) rf input impedance (imaginary) 80 75 70 65 60 -120 -125 -130 -135 -140 -145 -150 1720 1780 1740 1730 1760 1770 1750 note: 1. impedance data measured with all other ports matched as shown in figure 46. 8 HPMX-7102 characterization graphs for 800 mhz cdma table 4. cell cdma, gain vs. lo power and vcs. vcs (v) lo power (dbm) 1.4 1.8 2.2 2.5 2.6 3.0 -12 14.9 14.9 14.7 14.5 14.4 13.9 -9 15.5 15.7 15.8 15.8 15.8 15.8 -6 15.8 16.0 16.2 16.3 16.3 16.3 -3 15.8 16.1 16.3 16.4 16.4 16.5 0 15.9 16.1 16.3 16.4 16.5 16.6 3 15.9 16.1 16.3 16.4 16.5 16.5 table 5. cell cdma, iip3 vs. lo power and vcs. vcs (v) lo power (dbm) 1.4 1.8 2.2 2.5 2.6 3.0 -12 -0.6 1.5 2.5 2.9 3.0 3.2 -9 0 2.8 4.6 5.6 6.1 7.5 -6 0.1 3.5 5.9 7.6 8.5 9.6 -3 0.1 3.8 6.7 8.7 9.6 9.2 0 0.1 3.9 7.1 9.1 9.9 9.2 3 0.1 3.9 7.1 9.2 10.1 8.8 -40 c +25 c +85 c lo power (dbm) figure 16. gain vs. lo power. gain (db) 20 18 16 14 12 10 -12 3 -6 -9 0 -3 -40 c +25 c +85 c lo power (dbm) figure 17. iip3 vs. lo power. iip3 (dbm) 10 8 6 4 2 0 -12 3 -6 -9 0 -3 -40 c +25 c +85 c lo power (dbm) figure 18. nf vs. lo power. nf (db) 15 13 11 9 7 5 -12 3 -6 -9 0 -3 -40 c +25 c +85 c lo frequency (mhz) figure 19. gain vs. lo frequency. gain (db) 20 18 16 14 12 10 954 978 966 +85 c +25 c -40 c lo frequency (mhz) figure 20. iip3 vs. lo frequency. iip3 (dbm) 12 10 8 6 4 2 954 978 966 +85 c +25 c -40 c lo frequency (mhz) figure 21. nf vs. lo frequency. nf (db) 15 13 11 9 7 5 954 978 966 9 HPMX-7102 characterization graphs for 800 mhz cdma , continued vcc (v) figure 23. iip3 vs. vcc. iip3 (dbm) 10 8 6 4 2.7 3.3 3 3.6 -40 c +25 c +85 c -40 c +25 c +85 c 2.7 3.3 3 vcc (v) figure 24. gain vs. vcc. 3.6 20 18 16 14 12 10 gain (db) +85 c +25 c -40 c 2.7 3.3 3 vcc (v) figure 25. noise figure vs. vcc. 3.6 10 9 8 7 6 5 nf (db) 84.5 880.5 965.5 1050.5 1847.5 1932.5 2897.5 2017.5 if rf lo lo+if rf+lo 2 * lo 3 * lo frequency (mhz) figure 26. differential spur level at if pins. [1] differential level (db) 20 10 0 -10 -20 -30 -40 -50 -60 3 * lo-rf vcc = 3.6v vcc = 3.3v vcc = 3v vcc = 2.7v vcs (v) figure 22a. icc vs. vcs. icc (ma) 20 18 16 14 12 10 8 13 2 vcc=2.7v, t=25 c vcc=2.7v, t=85 c vcc=2.7v, t=-40 c vcc=3.6v, t=25 c vcc=3.6v, t=85 c vcc=3.6v, t=-40 c vcs (v) figure 22b. icc vs. vcs. icc (ma) 13 2 18 16 14 12 10 8 6 table 6. cell cdma, nf vs. lo power and vcs. vcs (v) lo power (dbm) 1.4 1.8 2.2 2.5 2.6 3.0 -12 9.2 10.4 11.7 12.7 13.0 14.3 -9 7.9 8.9 9.7 10.3 10.6 11.4 -6 7.1 7.8 8.5 9.0 9.3 9.8 -3 6.6 7.2 7.8 8.2 8.3 8.8 0 6.2 6.8 7.2 7.6 7.7 8.2 3 6.2 6.8 7.3 7.6 7.7 8.2 note: 1. measurement performed at if pins (matching circuit and balun removed). 10 HPMX-7102 characterization graphs for 800 mhz cdma , continued note: 1. impedance data measured with all other ports matched as shown in figure 46. frequency (mhz) figure 27. rf input impedance vs. frequency. [1] real impedance (ohms) imaginary impedance (ohms) 860 900 895 875 870 865 890 885 880 145 143 141 139 137 135 0 -2 -4 -6 -8 -10 rf input impedance (real) rf input impedance (imaginary) 78 92 82 80 86 88 90 84 frequency (mhz) figure 28. if input impedance (differential) vs. frequency. [1] real impedance (ohms) imaginary impedance (ohms) if input impedance (real) if input impedance (imaginary) 15 10 5 0 -5 -400 -420 -440 -460 -480 996 936 966 frequency (mhz) figure 29. lo input impedance (differential) vs. frequency. [1] real impedance (ohms) imaginary impedance (ohms) lo input impedance (real) lo input impedance (imaginary) 350 300 250 200 150 -190 -210 -230 -250 rf frequency (mhz) figure 30a. cellular cdma rf impedance (real). [1] ohms vcs=1.5v vcs=2.0v vcs=2.5v vcs=3.0v 865 895 875 870 885 890 880 150 140 130 120 110 100 rf frequency (mhz) figure 30b. cellular cdma rf impedance (reactive). [1] ohms 865 895 875 870 885 890 880 10 0 -10 -20 -30 -40 -50 vcs=1.5v vcs=2.0v vcs=2.5v vcs=3.0v 11 HPMX-7102 characterization graphs for amps table 7. cell amps, gain vs. lo power and vcs. vcs (v) lo power (dbm) 1.4 1.8 2.2 2.5 2.6 3.0 -12 14.1 14.5 14.8 14.8 14.9 14.9 -9 14.5 15.0 15.3 15.4 15.4 15.5 -6 14.7 15.2 15.5 15.6 15.6 15.8 -3 14.8 15.2 15.5 15.7 15.7 15.9 0 14.8 15.3 15.6 15.7 15.8 15.9 3 14.8 15.3 15.6 15.7 15.8 16.0 table 8. cell amps, iip3 vs. lo power and vcs. vcs (v) lo power (dbm) 1.4 1.8 2.2 2.5 2.6 3.0 -12 -6.7 -4.4 -2.6 -1.4 -1.0 0 -9 -6.4 -4.0 -2.0 -0.6 -0.1 1.3 -6 -6.1 -3.7 -1.7 -0.3 0.2 1.7 -3 -6.1 -3.6 -1.4 0 0.5 2.1 0 -6.6 -3.6 -1.3 0.2 0.7 2.2 3 -6.6 -3.6 -1.4 0.2 0.6 2.3 -40 c +25 c +85 c lo frequency (mhz) figure 35. iip3 vs. lo frequency. iip3 (dbm) 8 6 4 2 0 -2 954 978 966 +85 c +25 c -40 c lo frequency (mhz) figure 36. nf vs. lo frequency. nf (dbm) 12 10 8 6 4 2 954 978 966 -40 c +25 c +85 c lo power (dbm) figure 31. gain vs. lo power. gain (db) 20 18 16 14 12 10 -12 3 -6 -9 0 -3 -40 c +25 c +85 c lo power (dbm) figure 32. iip3 vs. lo power. iip3 (dbm) 6 4 2 0 -2 -4 -12 3 -6 -9 0 -3 -40 c +25 c +85 c lo power (dbm) figure 33. nf vs. lo power. nf (dbm) 12 10 8 6 4 2 -12 3 -6 -9 0 -3 -40 c +25 c +85 c lo frequency (mhz) figure 34. gain vs. lo frequency. gain (db) 20 18 16 14 12 10 954 978 966 12 HPMX-7102 characterization graphs for amps , continued table 9. cell amps, nf vs. lo power vs. vcs. vcs (v) lo power (dbm) 1.4 1.8 2.2 2.5 2.6 3.0 -12 7.1 7.7 8.3 8.8 9.0 9.6 -9 6.4 6.9 7.3 7.7 7.9 8.3 -6 6.0 6.3 6.7 7.0 7.1 7.5 -3 5.8 6.1 6.3 6.6 6.7 7.0 0 5.6 5.9 6.1 6.3 6.3 6.6 3 5.5 5.7 6.0 6.3 6.3 6.6 -40 c +25 c +85 c 2.7 3.3 3 3.6 8 6 4 2 0 -2 figure 38. iip3 vs. vcc. vcc (v) iip3 (dbm) -40 c +25 c +85 c 2.7 3.3 3 3.6 20 18 16 14 12 10 vcc (v) figure 39. gain vs. vcc. iip3 (dbm) -40 c +25 c +85 c 2.7 3.3 3 3.6 8 7 6 5 4 3 figure 40. noise figure vs. vcc. vcc (v) nf (db) 84.5 880.5 965.5 1847.5 1932.5 2897.5 3778.5 3863.5 2017.5 if rf lo rf 2 * lo 3if 3 * lo 4 * lo frequency (mhz) figure 41. differential spur level at if pins [1] . differential level (db) 20 10 0 -10 -20 -30 -40 -50 -60 2 * rf+ vcc = 3.6v vcc = 3.3v vcc = 3v vcc = 2.7v vcs (v) figure 37a. icc vs. vcs. icc (ma) 13 2 12 10 8 6 4 2 vcc=2.7v, t=25 c vcc=2.7v, t=85 c vcc=2.7v, t=-40 c vcc=3.6v, t=25 c vcc=3.6v, t=85 c vcc=3.6v, t=-40 c vcs (v) figure 37b. icc vs. vcs. icc (ma) 13 2 12 10 8 6 4 2 note: 1. measurement performed at if pins (matching circuit and balun removed). 13 HPMX-7102 characterization graphs for amps , continued frequency (mhz) figure 42. rf input impedance vs. frequency. real impedance (ohms) imaginary impedance (ohms) rf input impedance (real) rf input impedance (imaginary) 200 195 190 185 180 20 18 16 14 12 10 865 885 875 895 frequency (mhz) figure 43. if input impedance vs. frequency. real impedance (ohms) imaginary impedance (ohms) rf input impedance (real) rf input impedance (imaginary) 10 5 0 -5 -10 -360 -375 -390 -405 -420 -435 -450 80 90 84 82 88 86 981 951 966 frequency (mhz) figure 44. lo input impedance vs. frequency. real impedance (ohms) imaginary impedance (ohms) lo input impedance (real) lo input impedance (imaginary) 340 300 260 220 180 140 -160 -170 -180 -190 -200 -210 -220 -230 -240 rf frequency (mhz) figure 45a. cell-amps rf impedance (real). ohms vcs=1.5v vcs=2.0v vcs=2.5v vcs=3.0v 220 200 180 160 140 866 896 881 rf frequency (mhz) figure 45b. cell-amps rf impedance (reactive). ohms vcs=1.5v vcs=2.0v vcs=2.5v vcs=3.0v 866 896 881 30 10 -10 -30 -50 -70 14 figure 46. HPMX-7102 test diagram. note: this test diagram represents the testing configuration used to measure the data in the datasheet, and is not the demoboar d diagram. 100 pf 1000 pf 1000 pf 1000 pf 4.7 pf 180 nh 1000 pf 100 pf 6.8 nh 50 7 13 1 19 50 100 pf 100 pf 100 pf 1000 pf 2.7 nh 1.8 nh 2.7 nh 100 100 50 50 band 50 load 4.7 pf 6.8 pf 6.8 pf 180 nh 50 vcs mode 50 control circuit 10 db 6 db tp 104 rf (amps & cdma) 2.7 nh 10 db rf (pcs) lo pcs 4.7 pf 180 nh 1000 pf 50 load 4.7 pf 6.8 pf 6.8 pf 180 nh 6 db tp 104 1.0 pf 30 nh 1000 pf 50 load 1.0 pf 100 pf 100 pf 4.7 pf 4.7 pf 30 nh 1.8 nh 6 db tp 104 1000 pf 2.7 vcc 2.7 6 db 6 db 180 0 6 db 6 db 180 0 1000 pf 100 100 lo cellular 100 pf 15 package dimensions jedec standard bcc-24 package part number ordering information part number no. of devices container HPMX-7102-blk 10 bulk HPMX-7102-tr1 1000 7 tape and reel 0.30 0.10 0.50 0.10 0.40 0.10 1pin00.2 pin 1 0.45 0.10 3.6 typ 3.6 typ 19 13 1 7 0.8 max 0.075 0.04 4.00 0.10 4.00 0.10 www.semiconductor.agilent.com data subject to change. copyright ? 2000 agilent technologies, inc. 5980-2432e (11/00) |
Price & Availability of HPMX-7102
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |