![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
www.irf.com 1 4/5/04 irLR7821 irlu7821 hexfet power mosfet notes through are on page 11 applications benefits very low rds(on) at 4.5v v gs ultra-low gate impedance fully characterized avalanche voltage and current high frequency synchronous buck converters for computer processor power high frequency isolated dc-dc converters with synchronous rectification for telecom and industrial use d-pak irLR7821 i-pak irlu7821 v dss r ds(on) max qg 30v 10m 10nc absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t c = 25c maximum power dissipation w p d @t c = 100c maximum power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range thermal resistance parameter typ. max. units r jc junction-to-case ??? 2.0 r ja junction-to-ambient (pcb mount) ??? 50 c/w r ja junction-to-ambient ??? 110 -55 to + 175 75 0.50 37.5 max. 65 47 260 20 30 2 www.irf.com s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 30 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 23 ??? mv/c r ds(on) static drain-to-source on-resistance ??? 7.5 10 m ? ??? 9.5 12.5 v gs(th) gate threshold voltage 1.0 ??? ??? v ? v gs(th) gate threshold voltage coefficient ??? -5.3 ??? mv/c i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 46 ??? ??? s q g total gate charge ??? 10 14 q gs1 pre-vth gate-to-source charge ??? 2.0 ??? q gs2 post-vth gate-to-source charge ??? 1.2 ??? nc q gd gate-to-drain charge ??? 2.5 ??? q godr gate charge overdrive ??? 4.3 ??? see fig. 16 q sw switch charge (q gs2 + q gd ) ??? 3.7 ??? q oss output charge ??? 8.5 ??? nc t d(on) turn-on delay time ??? 11 ??? t r rise time ??? 4.2 ??? t d(off) turn-off delay time ??? 10 ??? ns t f fall time ??? 3.2 ??? c iss input capacitance ??? 1030 ??? c oss output capacitance ??? 360 ??? pf c rss reverse transfer capacitance ??? 120 ??? avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current a e ar repetitive avalanche energy mj diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 65 (body diode) a i sm pulsed source current ??? ??? 260 (body diode) v sd diode forward voltage ??? ??? 1.0 v t rr reverse recovery time ??? 26 38 ns q rr reverse recovery charge ??? 15 23 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) mosfet symbol v gs = 4.5v, i d = 12a ??? v gs = 4.5v typ. ??? ??? i d = 12a v gs = 0v v ds = 15v t j = 25c, i f = 12a, v dd = 15v di/dt = 100a/s t j = 25c, i s = 12a, v gs = 0v showing the integral reverse p-n junction diode. v ds = v gs , i d = 250a v ds = 24v, v gs = 0v v ds = 24v, v gs = 0v, t j = 125c clamped inductive load v ds = 15v, i d = 12a conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 15a conditions 7.5 max. 230 12 ? = 1.0mhz v ds = 16v, v gs = 0v v dd = 15v, v gs = 4.5v i d = 12a v ds = 16v v gs = 20v v gs = -20v www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 1000 2.0 4.0 6.0 8.0 10.0 v = 15v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 175 c j t = 25 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 r , drain-to-source on resistance (normalized) ds(on) v = i = gs d 10v 65a 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 25c vgs top 10v 4.5v 3.7v 3.5v 3.3v 3.0v 2.7v bottom 2.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20s pulse width tj = 175c vgs top 10v 4.5v 3.7v 3.5v 3.3v 3.0v 2.7v bottom 2.5v t j , junction temperature (c) 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0.1 1 10 100 1000 0.0 0.5 1.0 1.5 2.0 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 175 c j t = 25 c j 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 024681012 q g total gate charge (nc) 0 1 2 3 4 5 6 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 16v i d = 12a www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 175 0 10 20 30 40 50 60 70 t , case temperature ( c) i , drain current (a) c d limited by package 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a fig 10. threshold voltage vs. temperature 6 www.irf.com 25 50 75 100 125 150 175 0 200 400 600 800 1000 starting tj, junction temperature ( c) e , single pulse avalanche energy (mj) as i d top bottom 4.9a 8.5a 12a fig 13. maximum avalanche energy vs. drain current d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 15. gate charge test circuit fig 14. unclamped inductive test circuit and waveform t p v (br)dss i as fig 16. switching time test circuit fig 17. switching time waveforms r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v vgs v gs v ds 9 0% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - 2 3 4 5 6 7 8 9 10 v gs , gate -to -source voltage (v) 0 5 10 15 20 25 30 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 15a t j = 125c t j = 25c fig 12. on-resistance vs. gate voltage www.irf.com 7 fig 18. for n-channel hexfet power mosfets ? ? ? + - + + + - - - ? ? !"!! ? # $$ ? !"!!%" fig 19. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period 8 www.irf.com control fet !" # $ %& !" # #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? 1 ? + q g v g f () + q oss 2 v in f ? ? ? ? " ( %& !" %& !" " ) # * %+ %& !" # # , # - . / # # synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets? susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be- tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca- pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic www.irf.com 9 0 - . 6.73 (.265) 6.35 (.250) - a - 4 1 2 3 6.22 (.245) 5.97 (.235) - b - 3x 0.89 (.035) 0.64 (.025) 0.25 (.010) m a m b 4.57 (.180) 2.28 (.090) 2x 1.14 (.045) 0.76 (.030) 1.52 (.060) 1.15 (.045) 1 .02 (.040) 1 .64 (.025) 5.46 (.215) 5.21 (.205) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) 6.45 (.245) 5.68 (.224) 0.51 (.020) min. 0.58 (.023) 0.46 (.018) lead assignments 1 - gate 2 - drain 3 - source 4 - drain 10.42 (.410) 9.40 (.370) notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982 . 2 controlling dimension : inch. 3 conforms to jedec outline to-252aa. 4 dimensions shown are before solder dip, solder dip max. +0.16 (.006). ! |