Part Number Hot Search : 
TDA100 DS1243Y 04N60 TP3032 MMBZ5233 SG313 20S5K C12PH
Product Description
Full Text Search
 

To Download R1224N232E-TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  pwm/vfm step-down dc/dc converter r1224n series 2002. nov. 5 12345 12345 rev. 1.12 - 1 - outline the r1224n series are cmos-based pwm step-down dc/dc converter controllers with low supply current. each of these ics consists of an oscillator, a pwm control circuit, a reference voltage unit, an error amplifier, a phase compensation circuit, a soft-start circuit, a protection circuit, a pwm/vfm alternative circuit, a chip enable circuit, resistors for output voltage detect, and input voltage detect circuit. a low ripple, high efficiency step-down dc/dc converter can be easily composed of this ic with only several external components, or a power-transistor, an inductor, a diode and capacitors. output voltage is fixed or can be adjusted with external resistors (adjustable types are without pwm/vfm alternative circuit). with a pwm/vfm alternative circuit, when the load current is small, the operation is automatically switching into the vfm oscillator from pwm oscillator. therefore, the efficiency at small load current is improved. several types of the r1224nxxx, which are without a pwm/vfm alternative circuit, are also available. if the term of maximum duty cycle keeps on a certain time, the embedded protection circuit works. the protection circuit is reset-type protection circuit, and it works to restart the operation with soft-start and repeat this operation until maximum duty cycle condition is released. when the cause of large load current or something else is removed, the operation is automatically released and returns to normal operation. further, built-in uvlo function works when the input voltage is equal or less than uvlo threshold, it makes this ic be standby and suppresses the consumption current and avoid an unstable operation. features range of input voltage ? ? ? ? ? ? ? ? ? ? ? ? ? 2.3v 18.5v built-in soft-start function and protection function (reset type protection) three options of oscillator frequency ? ? ? ? ? ? 180khz, 300khz, 500khz high efficiency ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? typ. 90% output voltage ? ? ? ? ? ? ? ? ? ? ? ? ? stepwise setting with a step of 0.1v in the range of 1.2v to 6.0v as fixed voltage type. reference voltage of adjustable type is 1.0v standby current ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? typ. 0.0a high accuracy output voltage ? ? ? ? ? ? ? ? ? ? 2.0% low temperature-drift coefficient of output voltage ? ? ? ? ? typ. 100ppm/ c applications power source for hand-held communication equipment, cameras, video instruments such as vcrs, camcorders. power source for battery-powered equipment. power source for household electrical appliances.
12345 rev. 1.12 - 2 - block diagram *fixed output voltage type osc v in ext gnd v out vref ce chip enable soft start protection pwm/vfm control vref amp uvlo *adjustable output voltage type osc v in ext gnd v fb vref ce chip enable soft start protection pwm/vfm control vref uvlo amp
12345 rev. 1.12 - 3 - selection guide in the r1224n series, the output voltage, the oscillator frequency, the optional function, and the taping type for the ics can be selected at the user?s request. the selection can be made with designating the part number as shown below; r1224nxx2x-tr a b c code contents a setting output voltage(v out ): stepwise setting with a step of 0.1v in the range of 1.2v to 6.0v is possible. adjustable type; a=10 means reference voltage=1.0v optional function is g/h/m. b designation of oscillator frequency 2 : fixed c designation of optional function e : 300khz, with a pwm/vfm alternative circuit f : 500khz, with a pwm/vfm alternative circuit g : 300khz, without a pwm/vfm alternative circuit h : 500khz, without a pwm/vfm alternative circuit l : 180khz, with a pwm/vfm alternative circuit m : 180khz, without a pwm/vfm alternative circuit pin configuration sot-23-5 1 3 v out ce gnd (v fb ) (mark side) 54 2 v in ext pin description pin no. symbol description 1 ce chip enable pin (active with ?h?) 2 gnd ground pin 3v out /(v fb ) pin for monitoring output voltage(feedback voltage) 4 ext external transistor drive pin(cmos output) 5v in power supply pin
12345 rev. 1.12 - 4 - absolute maximum ratings (gnd=0v) symbol item rating unit v in v in supply voltage 20 v v ext ext pin output voltage -0.3 v in +0.3 v v ce ce pin input voltage -0.3 v in +0.3 v v out /(v fb ) v out /v fb pin input voltage -0.3 v in +0.3 v i ext ext pin inductor drive output current 50 ma p d power dissipation 250 mw topt operating temperature range -40 +85 c tstg storage temperature range -55 +125 c electrical characteristics r1224nxx2x (x=e/f/g/h/l/m) except r1224n102x (topt=25 c) symbol item conditions min. typ. max. unit v in operating input voltage 2.3 18.5 v v out step-down output voltage v in =v ce= v set +1.5v, i out =-100ma when v set 1.5v, v in =v ce =3.0v v set 0.98 v set v set 1.02 v ? v out / ? t step-down output voltage temperature coefficient -40 c topt 85 c 100 ppm / c fosc oscillator frequency v in =v ce =v set +1.5v, i out =-100ma when v set 1.5, v in =v ce =3.0v l/m version e/g version f/h version 144 240 400 180 300 500 216 360 600 khz ? f osc / ? t oscillator frequency temperature coefficient -40 c topt 85 c 0.2 % / c i dd1 supply current1 v in =v ce =v out =18.5v e/f/l/m version g version h version 20 30 40 50 60 80 a i stb standby current v in =18.5v, v ce =0v, v out =0v 0.0 0.5 a i exth ext "h" output current v in =8v,v ext =7.9v,v out =8v,v ce =8v -17 -10 ma i extl ext "l" output current v in =8v,v ext =0.1v,v out =0v,v ce =8v 20 30 ma i ceh ce "h" input current v in =v ce =v out =18.5v 0.0 0.5 a i cel ce "l" input current v in = v out =18.5v, v ce =0v -0.5 0.0 a v ceh ce "h" input voltage v in =8v,v out =0v 1.5 v v cel ce "l" input voltage v in =8v,v out =0v 0.3 v maxdty oscillator maximum duty cycle 100 % vfmdty vfm duty cycle e/f/l version 35 % v uvlo1 uvlo voltage v in =v ce =2.5v to 1.5v, v out =0v 1.8 2.0 2.2 v v uvlo2 uvlo release voltage v in =v ce =1.5v to 2.5v, v out =0v v uvlo 1 +0.1 2.3 v t start delay time by soft-start function v in =v set +1.5v, i out =-10ma v ce =0v->v set +1.5v 51020ms t prot delay time for protection circuit v in =v ce =v set +1.5v v out =v set +1.5v->0v 51530ms
12345 rev. 1.12 - 5 - r1224n102x (x=g/h/m) (topt=25 c) symbol item conditions min. typ. max. unit v in operating input voltage 2.3 18.5 v v fb feedback voltage v in =v ce =3.5v, i fb =-100ma 0.98 1.00 1.02 v ? v fb / ? t feedback voltage temperature coefficient -40 c topt 85 c 100 ppm / c fosc oscillator frequency v in =v ce =3.5v, i fb =-100ma m version g version h version 144 240 400 180 300 500 216 360 600 khz ? f osc / ? t oscillator frequency temperature coefficient -40 c topt 85 c 0.2 % / c i dd1 supply current1 v in =v ce =v fb =18.5v m version g version h version 20 30 40 50 60 80 a i stb standby current v in =18.5v, v ce =0v, v fb =0v 0.0 0.5 a i exth ext "h" output current v in =8v,v ext =7.9v,v fb =8v,v ce =8v -17 ma i extl ext "l" output current v in =8v,v ext =0.1v,v fb =0v,v ce =8v 30 ma i ceh ce "h" input current v in =v ce =v fb =18.5v 0.0 0.5 a i cel ce "l" input current v in = v fb =18.5v, v ce =0v -0.5 0.0 a v ceh ce "h" input voltage v in =8v,v fb =0v 1.5 v v cel ce "l" input voltage v in =8v,v fb =0v 0.3 v maxdty oscillator maximum duty cycle 100 % v uvlo1 uvlo voltage v in =v ce =2.5v to 1.5v, v fb =0v 1.8 2.0 2.2 v v uvlo2 uvlo release voltage v in =v ce =1.5v to 2.5v, v fb =0v v uvlo 1 +0.1 2.3 v t start delay time by soft-start function v in =2.5v, i fb =-10ma v ce =0v->2.5v 51020ms t prot delay time for protection circuit v in =v ce =2.5v v fb =2.5v->0v 51530ms typical application and application hints (1) fixed output voltage type (r1224nxx2e/f/g/h/l/m except xx=10) c3 c2 l c1 r1 sd v out v in ce ce control load ext gnd pmos pmos: hat1044m (hitachi) l: cr105-270mc (sumida, 27 h) sd1: rb063l-30 (rohm) c3: 47 f (tantalum type) c1: 10 f (ceramic type) c2: 0.1 f (ceramic type) r1: 10 ?
12345 rev. 1.12 - 6 - (2) adjustable output type (r1224n102g/h/m) example: output voltage=3.2v c3 c2 l c1 r1 sd v fb v in ce ce control load ext gnd c4 r2 r4 r3 pmos pmos: hat1044m (hitachi) l: cr105-270mc (sumida, 27 h) sd1: rb063l-30 (rohm) c3: 47 f (tantalum type) c1: 10 f (ceramic type) c2: 0.1 f (ceramic type) c4: 1000pf(ceramic type) r1: 10 ? , r2=22k ? , r3=2.7k ? , r4=33k ? when you use these ics, consider the following issues; as shown in the block diagram, a parasitic diode is formed in each terminal, each of these diodes is not formed for load current, therefore do not use it in such a way. when you control the ce pin by another power supply, do not make its "h" level more than the voltage level of v in pin. set external components as close as possible to the ic and minimize the connection between the components and the ic. in particular, a capacitor should be connected to v out pin with the minimum connection. make sufficient ground and reinforce supplying. a large switching current could flow through the connection of power supply, an inductor and the connection of v out. if the impedance of the connection of power supply is high, the voltage level of power supply of the ic fluctuates with the switching current. this may cause unstable operation of the ic. protection circuit may work if the maximum duty cycle continue for the time defined in the electrical characteristics. once after stopping the output voltage, output will restart with soft-start operation. if the difference between input voltage and output voltage is small, the protection circuit may work. use capacitors with a capacity of 22 f or more for v out pin, and with good high frequency characteristics such as tantalum capacitors. we recommend you to use output capacitors with an allowable voltage at least twice as much as setting output voltage. this is because there may be a case where a spike-shaped high voltage is generated by an inductor when an external transistor is on and off. choose an inductor that has sufficiently small d.c. resistance and large allowable current and is hard to reach magnetic saturation. and if the value of inductance of an inductor is extremely small, the i lx may exceed the absolute maximum rating at the maximum loading. use an inductor with appropriate inductance. use a diode of a schottky type with high switching speed, and also pay attention to its current capacity. do not use this ic under the condition with v in voltage at equal or less than minimum operating voltage. when the threshold level of an external power mosfet is rather low and the drive-ability of voltage supplier is small, if the output pin is short circuit, input voltage may be equal or less than uvlo detector threshold. in this case, the devise is reset with uvlo function that is different from the reset-protection function caused by maximum duty cycle. with the pwm/vfm alternative circuit, when the on duty cycle of switching is 35% or less, the r1225n alters from pwm mode to vfm mode (pulse skip mode). the purpose of this circuit is raising the efficiency with a light load by skipping the frequency and suppressing the consumption current. however, the ratio of output voltage against input voltage is 35% or less, (ex. vin>8.6v and vout=3.0v) even if the large current may be loaded, the ic keeps its vfm mode. as a result, frequency might be decreased, and oscillation waveform might be unstable. these phenomena
12345 rev. 1.12 - 7 - are the typical characteristics of the ic with pwm/vfm alternative circuit. ? the performance of power source circuits using these ics extremely depends upon the peripheral circuits. pay attention in the selection of the peripheral circuits. in particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, pcb patterns and the ic do not exceed their respected rated values. how to adjust output voltage and about phase compensation as for adjustable output type, feedback pin (v fb ) voltage is controlled to maintain 1.0v. output voltage, v out is as following equation: v out : r2+r4=v fb : r2 v out =v fb (r2+r4)/r2 thus, with changing the value of r2 and r4, output voltage can be set in the specified range. in the dc/dc converter, with the load current and external components such as l and c, phase might be behind 180 degree. in this case, the phase margin of the system will be less and stability will be worse. to prevent this, phase margin should be secured with proceeding the phase. a pole is formed with external components l and c3. fpole 1/2 l c3 a zero (signal back to zero) is formed with r4 and c4. ? fzero 1/(2 r4 c4) for example, if l=27 h, c3=47 f, the cut off frequency of the pole is approximately 4.5khz. to make the cut off frequency of the pole as much as 4.5khz, set r4=33k ? and c4=1000pf. if v out is set at 2.5v, r2=22k ? is appropriate. r3 prevents feedback of the noise to v fb pin, about 2.7k ? is appropriate value. c3 c2 l c1 r1 sd v fb v in ce ce control load ext gnd c4 r2 r4 r3 pmos
12345 rev. 1.12 - 8 - operation of step-down dc/dc converter and output current the step-down dc/dc converter charges energy in the inductor when lx transistor is on, and discharges the energy from the inductor when lx transistor is off and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. the operation will be explained with reference to the following diagrams: step 1: lx tr. turns on and current il (=i1) flows, and energy is charged into cl. at this moment, il increases from ilmin. (=0) to reach ilmax. in proportion to the on-time period(ton) of lx tr. step 2: when lx tr. turns off, schottky diode (sd) turns on in order that l maintains il at ilmax, and current il (=i2) flows. step 3: il decreases gradually and reaches ilmin. after a time period of topen, and sd turns off, provided that in the continuous mode, next cycle starts before il becomes to 0 because toff time is not enough. in this case, il value is from this ilmin (>0). in the case of pwm control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant. discontinuous conduction mode and continuous conduction mode the maximum value (ilmax) and the minimum value (ilmin) current which flow through the inductor is the same as those when lx tr. is on and when it is off. the difference between ilmax and ilmin, which is represented by ? i; ? i = ilmax ? ilmin = v out topen / l = (v in -v out ) ton/l ??? equation 1 wherein, t=1/fosc=ton+toff duty (%)=ton/t 100=ton fosc 100 topen toff in equation 1, v out topen/l and (v in -v out ) ton/l are respectively shown the change of the current at on, and the change of the current at off. when the output current (i out ) is relatively small, topen < toff as illustrated in the above diagram. in this case, the energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time period of toff, therefore ilmin becomes to zero (ilmin=0). when iout is gradually increased, eventually, topen becomes to toff (topen=toff), and when iout is further increased, ilmin becomes larger than zero (ilmin>0). the former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode. in the continuous mode, when equation 1 is solved for ton and assumed that the solution is tonc, tonc=t v out /v in ??? equation 2 when ton 12345 rev. 1.12 - 9 - v in =v out +(rp+r l ) i out +l i rp /ton ??? equation 3 when lx tr. is off: l i rp /toff = v f +v out +r l i out ??? equation 4 put equation 4 to equation 3 and solve for on duty, ton/(toff+ton)=d on , d on =(v out+ v f +r l i out )/(v in +v f -rp i out ) ??? equation 5 ripple current is as follows; i rp =(v in -v out -rp i out -r l i out ) d on /f/l equation 6 wherein, peak current that flows through l, lx tr., and sd is as follows; ilmax=i out +i rp /2 equation 7 consider ilmax, condition of input and output and select external components. the above explanation is directed to the calculation in an ideal case in continuous mode. external components 1. inductor select an inductor that peak current does not exceed ilmax. if larger current than allowable current flows, magnetic saturation occurs and make transform efficiency worse. when the load current is definite, the smaller value of l, the larger the ripple current. provided that the allowable current is large in that case and dc current is small, therefore, for large output current, efficiency is better than using an inductor with a large value of l and vice versa. 2. diode use a diode with low v f (schottky type is recommended.) and high switching speed. reverse voltage rating should be more than v in and current rating should be equal or more than ilmax. 3. capacitors as for c in , use a capacitor with low esr (equivalent series resistance) and a capacity of at least 10 f for stable operation. c out can reduce ripple of output voltage, therefore 47 f or more value of tantalum type capacitor is recommended. 4. lx transistor pch power mosfet is required for this ic. its breakdown voltage between gate and source should be a few v higher than input voltage. in the case of input voltage is low, to turn on mosfet completely, to use a mosfet with low threshold voltage is effective. if a large load current is necessary for your application and important, choose a mosfet with low on resistance for good efficiency. if a small load current is mainly necessary for your application, choose a mosfet with low gate capacity for good efficiency. maximum continuous drain current of mosfet should be larger than peak current, ilmax.
12345 rev. 1.12 - 10 - timing chart vin ce ext vout uvlo voltage vout set output voltage vout set output voltage vout set output voltage vout set output voltage stable operation uvlo reset input voltage rising time protection circuit delay time reset protection soft-start stable operation stable operation soft-start soft-start soft-start the timing chart shown above describes the changing process of input voltage rising, stable operating, operating with large current, stable operating, input voltage falling, input voltage recovering, and stable operating. first, until when the input voltage (v in ) reaches uvlo voltage, the circuit inside keeps the condition of pre-standby. second, after v in becomes beyond the uvlo threshold, soft-start operation starts, when the soft-start operation finishes, the operation becomes stable. if too large current flows through the circuit because of short or other reasons, ext signal ignores that during the delay time of protection circuit. (the current value depends on the circuit.) after the delay time passes, reset protection works, or ext signal will be "h", then output will turn off, then soft-start operation starts. after the soft-start operation, ext signal will be "l", but if the large current is still flowing, after the delay time of protection circuit passes, reset protection circuit will work again, the operation will be continuously repeated unless the cause of large current flowing is not removed. once the cause of the large current flowing is removed, within the delay time, the operation will be back to the stable one. if the timing for release the large current is in the protection process, the operation will be back to the normal one after the soft-start operation. if the v in becomes lower than the set v out , that situation is same as large current condition, so protection circuit may be ready to work, therefore, after the delay time of protection circuit, ext will be "h". further, if the v in is lower than uvlo voltage, the circuit inside will be stopped by uvlo function. after that, if v in rises, until when the v in reaches uvlo voltage, the circuit inside keeps the condition of spre- standby. then after v in becomes beyond the uvlo threshold, soft-start operation starts, when the soft-start operation finishes, the operation becomes stable.
12345 rev. 1.12 - 11 - test circuits a) output voltage, oscillator frequency, ce?h? input voltage, ce?l? input voltage, soft-start time ext gnd vout (vfb) vin ce pmos l1 + - c1 + - c2 d1 oscilloscope v b) supply current1 c) standby current ext gnd vout (vfb) vin ce a ext gnd vout (vfb) vin ce a d) ext ?h? output current e) ext ?l? output current ext gnd vout (vfb) vin ce a ext gnd vout (vfb) vin ce a f) ce ?h? input current, ce ?l? input current g) output delay time for protection circuit ext gnd vout (vfb) vin ce a oscilloscope ext gnd vout (vfb) vin ce + - c2 pmos: hat1044m (hitachi) l: cd104-270mc (sumida, 27 h) sd1: rb491d (rohm) c1: 47 f (tantalum type) c2: 47 f (tantalum type)
12345 rev. 1.12 - 12 - typical characteristics 1) output voltage vs. output current (*note) r1224n182e l=10uh 1.750 1.770 1.790 1.810 1.830 1.850 0.1 1 10 100 1000 10000 output current iout(ma) output voltage vout(v) vin3.3v vin5v r1224n182f l=10uh 1.750 1.770 1.790 1.810 1.830 1.850 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout(v) vin3.3v vin5v r1224n182g l=10uh 1.750 1.770 1.790 1.810 1.830 1.850 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout(v) vin3.3v vin5v vin12v r1224n182h l=10uh 1.750 1.770 1.790 1.810 1.830 1.850 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout(v) vin3.3v vin5v vin12v r1224n182l l=27uh 1.750 1.770 1.790 1.810 1.830 1.850 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v) vin3.3v vin5v r1224n182m l=27uh 1.750 1.770 1.790 1.810 1.830 1.850 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v) vin3.3v vin5v vin12v
12345 rev. 1.12 - 13 - r1224n332e l=10uh 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v) vin4.8v vin7v r1224n332f l=10uh 3.200 3.220 3.240 3.260 3.280 3.300 3.320 3.340 3.360 3.380 3.400 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v) vin4.8v vin7v r1224n332g l=10uh 3.200 3.220 3.240 3.260 3.280 3.300 3.320 3.340 3.360 3.380 3.400 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v) vin4.8v vin12v vin15v r1224n332g(v in =10v) 3.30 3.31 3.32 3.33 3.34 3.35 0.1 1 10 100 1000 10000 output current i out (ma) output voltage v out (v) r1224n332g(v in =16v) 3.30 3.31 3.32 3.33 3.34 3.35 0.1 1 10 100 1000 10000 output current i out (ma) output voltage v out (v) r1224n332h l=10uh 3.200 3.220 3.240 3.260 3.280 3.300 3.320 3.340 3.360 3.380 3.400 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v) vin4.8v vin12v vin15v
12345 rev. 1.12 - 14 - r1224n332l l=27uh 3.200 3.220 3.240 3.260 3.280 3.300 3.320 3.340 3.360 3.380 3.400 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v) vin4.8v vin7v r1224n332m l=27uh 3.200 3.220 3.240 3.260 3.280 3.300 3.320 3.340 3.360 3.380 3.400 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v) vin4.8v vin12v vin15v r1224n332m(v in =5v) 3.30 3.31 3.32 3.33 3.34 3.35 012345 output current i out (a) output voltage v out (v) r1224n332m(v in =10v) 3.30 3.31 3.32 3.33 3.34 3.35 012345 output current i out (a) output voltage v out (v) r1224n332m(v in =18v) 3.30 3.31 3.32 3.33 3.34 3.35 01234 output current i out (a) output voltage v out (v) r1224n502e l=10uh 4.900 4.920 4.940 4.960 4.980 5.000 5.020 5.040 5.060 5.080 5.100 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v) vin6.5v vin10v
12345 rev. 1.12 - 15 - r1224n502f l=10uh 4.900 4.920 4.940 4.960 4.980 5.000 5.020 5.040 5.060 5.080 5.100 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v ) vin6.5v vin10v r1224n502g l=10uh 4.900 4.920 4.940 4.960 4.980 5.000 5.020 5.040 5.060 5.080 5.100 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v) vin6.5v vin12v vin15v r1224n502g(v in =10v) 5.00 5.01 5.02 5.03 5.04 5.05 0.1 1 10 100 1000 10000 output current i out (ma) output voltage v out (v) r1224n502g(v in =16v) 5.00 5.01 5.02 5.03 5.04 5.05 0.1 1 10 100 1000 10000 output current i out (ma) output voltage v out (v) r1224n502h l=10uh 4.900 4.920 4.940 4.960 4.980 5.000 5.020 5.040 5.060 5.080 5.100 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v) vin6.5v vin12v vin15v r1224n502l l=27uh 4.900 4.920 4.940 4.960 4.980 5.000 5.020 5.040 5.060 5.080 5.100 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v) vin6.5v vin10v
12345 rev. 1.12 - 16 - r1224n502m l=27uh 4.900 4.920 4.940 4.960 4.980 5.000 5.020 5.040 5.060 5.080 5.100 0.1 1 10 100 1000 10000 output current iout (ma) output voltage vout (v) vin6.5v vin12v vin15v 2) efficiency vs. output current (*note) r1224n182f(vin=3.3v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n182f(vin=5.0v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n182g(vin=3.3v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n182g(vin=5.0v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency
12345 rev. 1.12 - 17 - r1224n182g(vin=12v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n182h(vin=3.3v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n182h(vin=5.0v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n182h(vin=12v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n182l(vin=3.3v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n182l(vin=5.0v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency
12345 rev. 1.12 - 18 - r1224n182m(vin=3.3v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n182m(vin=5.0v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n182m(vin=12v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n332e(vin=7.0v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n332e(vin=4.8v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n332f(vin=7.0v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency
12345 rev. 1.12 - 19 - r1224n332f(vin=4.8v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n332g(vin=12v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n332g(vin=4.8v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n332g(v in =10v) 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 10000 output current i out (ma) efficiency (%) r1224n332g(v in =16v) 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 10000 output current i out (ma) efficiency (%) r1224n332g(vin=15v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency
12345 rev. 1.12 - 20 - r1224n332h(vin=12v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n332h(vin=4.8v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n332h(vin=15v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n332l(vin=7.0v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n332l(vin=4.8v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n332m(vin=12v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency
12345 rev. 1.12 - 21 - r1224n332m(vin=4.8v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n332m(v in =5v) 80 82 84 86 88 90 92 94 96 98 100 012345 output current i out (a) efficiency (%) r1224n332m(v in =10v) 80 82 84 86 88 90 92 94 96 98 100 012345 output current i out (a) efficiency (%) r1224n332m(v in =18v) 80 82 84 86 88 90 92 94 96 98 100 01234 output current i out (a) efficiency (%) r1224n332m(vin=15v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n502e(vin=6.5v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency
12345 rev. 1.12 - 22 - r1224n502e(vin=10v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n502f(vin=6.5v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n502f(vin=10v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n502g(v in =10v) 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 10000 output current i out (ma) efficiency (%) r1224n502g(v in =16v) 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 10000 output current i out (ma) efficiency (%) r1224n502g(vin=6.5v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency
12345 rev. 1.12 - 23 - r1224n502g(vin=12v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n502g(vin=15v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n502h(vin=6.5v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n502h(vin=12v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n502h(vin=15v) cdrh127-10uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n502l(vin=6.5v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency
12345 rev. 1.12 - 24 - r1224n502l(vin=10v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n502m(vin=6.5v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n502m(vin=12v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency r1224n502m(vin=15v) cdrh127-27uh 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0.1 1 10 100 1000 10000 output current iout(ma) efficiency *note: typical characteristics 9), 10) are obtained with using the following components; pmos: irf7406 (ir) l: cdrh127-100mc (sumida: 10 h) c2: 0.1 f (ceramic type) sd: rb083l-20 (rohm) c3: 10sa220(sanyo/os-con: 220 f/10v) c1: 25sc47(sanyo/os-con: 47 f/25v) 2 r1: 10 ? ? ? ? 3) ripple voltage vs. output current r1224n182e l=10uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin3.3v vin5v r1224n182f l=10uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin3.3v vin5v
12345 rev. 1.12 - 25 - r1224n182g l=10uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin3.3v vin5v vin12v r1224n182h l=10uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin3.3v vin5v vin12v r1224n182l l=27uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin3.3v vin5v r1224n182m l=27uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin3.3v vin5v vin12v r1224n332e l=10uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin4.8v vin7v r1224n332f l=10uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin4.8v vin7v
12345 rev. 1.12 - 26 - r1224n332g l=10uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin4.8v vin12v vin15v r1224n332h l=10uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin4.8v vin12v vin15v r1224n332l l=27uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin4.8v vin7v r1224n332m l=27uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin4.8v vin12v vin15v r1224n502e l=10uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin6.5v vin10v r1224n502f l=10uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin6.5v vin10v
12345 rev. 1.12 - 27 - r1224n502g l=10uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin6.5v vin12v vin15v r1224n502h l=10uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin6.5v vin12v vin15v r1224n502l l=27uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin6.5v vin10v r1224n502m l=27uh 0 10 20 30 40 50 60 70 0.1 1 10 100 1000 10000 output current iout(ma) ripple voltage vrpp(mv) vin6.5v vin12v vin15v 4) output voltage vs. input voltage r1224n182e l=10uh 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 0 5 10 15 20 input voltage vin(v) output voltage vout(v) 1ma 500ma r1224n182f l=10uh 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 0 5 10 15 20 input voltage vin(v) output voltage vout(v) 1ma 500ma
12345 rev. 1.12 - 28 - r1224n182g l=10uh 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 0 5 10 15 20 input voltage vin(v) output voltage vout(v) -1ma -500ma r1224n182h l=10uh 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 0 5 10 15 20 input voltage vin(v) output voltage vout(v) -1ma -500ma r1224n182l l=27uh 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 0 5 10 15 20 input voltage vin(v) output voltage vout(v) 1ma 500ma r1224n182m l=27uh 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 0 5 10 15 20 input voltage vin(v) output voltage vout(v) 1ma 500ma r1224n332e l=10uh 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 0 5 10 15 20 input voltage vin(v) output voltage vout(v) 1ma 500ma r1224n332f l=10uh 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 0 5 10 15 20 input voltage vin(v) output voltage vout(v) 1ma 500ma
12345 rev. 1.12 - 29 - r1224n332g l=10uh 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 0 5 10 15 20 input voltage vin(v) output voltage vout(v) -1ma -500ma r1224n332h l=10uh 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 0 5 10 15 20 input voltage vin(v) output voltage vout(v) -1ma -500ma r1224n332l l=27uh 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 0 5 10 15 20 input voltage vin(v) output voltage vout(v) 1ma 500ma r1224n332m l=27uh 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 0 5 10 15 20 input voltage vin(v) output voltage vout(v) 1ma 500ma r1224n502e l=10uh 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 0 5 10 15 20 input voltage vin(v) output voltage vout(v) 1ma 500ma r1224n502f l=10uh 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 0 5 10 15 20 input voltage vin(v) output voltage vout(v) 1ma 500ma
12345 rev. 1.12 - 30 - r1224n502g l=10uh 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 0 5 10 15 20 input voltage vin(v) output voltage vout(v) -1ma -500ma r1224n502h l=10uh 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 0 5 10 15 20 input voltage vin(v) output voltage vout(v) -1ma -500ma r1224n502l l=27uh 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 0 5 10 15 20 input voltage vin(v) output voltage vout(v) 1ma 500ma r1224n502m l=27uh 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 0 5 10 15 20 input voltage vin(v) output voltage vout(v) 1ma 500ma 5) output voltage vs. temperature r1224n332e 3.27 3.28 3.29 3.30 3.31 3.32 3.33 -40 10 60 temperature topt output voltage v out (v) r1224n122f 1.190 1.195 1.200 1.205 1.210 -40 10 60 temperature topt output voltage v out (v) ( c) ( c)
12345 rev. 1.12 - 31 - r1224n602l 5.90 5.95 6.00 6.05 6.10 -40 10 60 temperature topt output voltage v out (v) r1224n102g 0.990 0.995 1.000 1.005 1.010 -40 10 60 temperature topt output voltage v out (v) 6) oscillator frequency vs. temperature r1224n102g 240 270 300 330 360 -40 10 60 temperature topt oscillator frequency fosc (khz) r1224n102h 400 450 500 550 600 -40 10 60 temperature topt oscillator frequency fosc(khz) r1224n102m 144 162 180 198 216 -40 -20 0 20 40 60 80 temperature topt oscillator frequency fosc(khz) ( c) ( c) ( c) ( c) ( c)
12345 rev. 1.12 - 32 - 7) supply current vs. temperature r1224n332e 0 5 10 15 20 25 -40 10 60 temperature topt supply current1 iss1(ua) r1224n602l 0 5 10 15 20 25 -40 10 60 temperature topt supply current1 iss1(ua) r1224n602f 0 5 10 15 20 25 -40 10 60 temperature topt supply current1 iss1(ua) r1224n102g 0 10 20 30 40 -40 10 60 temperature topt supply current1 iss1(ua) r1224n102h 0 10 20 30 40 50 60 -40 10 60 temperature topt supply current1 iss1(ua) r1224n102m 0 10 20 30 40 -40 10 60 temperature topt supply current1 iss1(ua) ( c) ( c) ( c) ( c) ( c) ( c)
12345 rev. 1.12 - 33 - 8) soft-start time vs. temperature r1224n102g 5 10 15 -40-200 20406080 temperature topt soft-start time tsoft(ms) 9) delay time for protection vs. temperature r1224n332e 10 15 20 25 30 -40-200 20406080 temperature topt delay time for protection tprot(ms) 10) ext "h" output current vs. temperature r1224n332e -25 -20 -15 -10 -40-20 0 20406080 temper atur e topt ext "h" output current i exth (ma) ( c) ( c) ( c)
12345 rev. 1.12 - 34 - 11) ext"l" output current vs. temperature r1224n332e 20 30 40 50 -40 -20 0 20 40 60 80 temperature topt ext ?l? output current i extl (ma) 12) load transient response r1224n332g l=10uh vin=4.8v 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 -0 -0 0 1e- 04 2e- 04 3e- 04 4e- 04 time(s ec ) output voltage vout(v) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 output current iout(ma) r1224n332g l=10uh vin=4.8v 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 -0.04 -0.02 0 0.02 0.04 0.06 0.08 time(sec) output voltage vout(v) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 output current iout(ma) r1224n332g l=10uh vin=10v 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 -0.00 02 -0.00 01 0.000 0 0.000 1 0.000 2 0.000 3 0.000 4 time(sec) output voltage vout(v) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 output current iout(ma) r1224n332g l=10uh vin=10v 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 -0.04 -0.02 0 0.02 0.04 0.06 0.08 time(sec) output voltage vout(v) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 output current iout(ma) ( c)
12345 rev. 1.12 - 35 - r1224n332h l=10uh vin=4.8v 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 -2e-04 -1e-04 0 1e-04 2e-04 3e-04 4e-04 time(sec) output voltage vout(v) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 output current iout (ma) r1224n332h l=10uh vin=4.8v 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 -0.04 -0.02 0 0.02 0.04 0.06 0.08 time(sec) output voltage vout(v) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 output current iout(ma) r1224n332h l=10uh vin=10v 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 -2e- 04 -1e- 04 0 1e-04 2e-04 3e-04 4e-04 time(sec) output voltage vout(v) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 output current iout(ma) r1224n332h l=10uh vin=10v 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 -2e-04 -1e-04 0 0.000 1 0.000 2 0.000 3 0.000 4 time(sec) output voltage vout(v) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 output current iout(ma) r1224n332m l=27uh vin=4.8v 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 -2e-04 -1e-04 0 0.000 1 0.000 2 0.000 3 0.000 4 time(sec) output voltage vout(v) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 output current iout(ma) r1224n332m l=27uh vin=4.8v 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 -0.04 -0.02 0 0.02 0.04 0.06 0.08 time(sec) output voltage vout(v) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 output current iout(ma)
12345 rev. 1.12 - 36 - r1224n332m l=27uh vin=10v 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 -2e- 04 -1e- 04 0 1e-04 2e-04 3e-04 4e-04 time(s ec ) output voltage vout(v) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 output current iout(ma) r1224n332m l=27uh vin=10v 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 -0.04 -0.02 0 0.02 0.04 0.06 0.08 time(sec) output voltage vout(v) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 output current iout(ma) 13) uvlo voltage vs. temperature r1224n332e 1.90 1.95 2.00 2.05 2.10 2.15 2.20 -40-200 20406080 temperature topt uvlo voltage v uvlo (v) ( c)


▲Up To Search▲   

 
Price & Availability of R1224N232E-TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X