Part Number Hot Search : 
AX150 ASRD808D 21012 ST02D T6250325 TD111 P6SMB8 RB557WM
Product Description
Full Text Search
 

To Download AT-32032 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  low current, high performance npn silicon bipolar transistor technical data description agilents AT-32032 is a high performance npn bipolar transistor that has been optimized for maximum f t at low voltage operation, making it ideal for use in battery powered applications in cellular/pcs and other wireless markets. the AT-32032 uses the miniature 3 lead sot-323 (sc-70) plastic package. optimized performance at 2.7 v makes this device ideal for use in 900 mhz, 1.8 ghz, and 2.4 ghz systems. typical amplifier design at 900 mhz yields 1 db noise figures with 15 db associated gain at 2.7 v and 5 ma bias condition, with noise performance being relatively insensitive to input match. high gain capability at 1 v and 1 ma makes this device a good fit for 900 mhz pager applications. moreover, voltage breakdown is high enough for use at 5 v. the AT-32032 belongs to agilents at-3xxxx series bipolar transistors. it exhibits excellent device uniformity, performance and reliability as a result of ion- implantation, self-alignment techniques, and gold metalization in the fabrication process. AT-32032 3-lead sc-70 (sot-323) surface mount plastic package pin configuration features ? high performance bipolar transistor optimized for low current, low voltage applications at 900 mhz, 1.8 ghz, and 2.4 ghz ? performance at 2.7 v, 5 ma: 900 mhz: 1 db nf, 15 db g a 1800 mhz: 1.3 db nf, 11 db g a 2400 mhz: 1.4 db nf, 7.5 db g a ? characterized for end-of- life battery use (2.7 v) ? miniature 3-lead sot-323 (sc-70) plastic package applications ? lna, oscillator, driver amplifier, buffer amplifier, and down converter for cellular and pcs handsets and cordless telephones ? lna, oscillator, mixer, and gain amplifier for pagers ? power amplifier and oscillator for rf-id tag ? lna and gain amplifier for gps ? lna for catv set-top box base emitter collector 32
2 electrical specifications, t a = 25 c symbol parameters and test conditions units min. typ. max. nf noise figure f = 0.9 ghz db 1.0 1.3 v ce = 2.7 v, i c = 5 ma f = 1.8 ghz 1.25 g a associated gain f = 0.9 ghz db 13.5 15.0 v ce = 2.7 v, i c = 5 ma f = 1.8 ghz 10.5 h fe forward current transfer ratio C 70 300 v ce = 2.7 v, i c = 5 ma i cbo collector cutoff current m a 0.2 v cb = 3 v i ebo emitter cutoff current m a 1.5 v eb = 1 v AT-32032 absolute maximum ratings absolute symbol parameter units maximum [1] v ebo emitter-base voltage v 1.5 v cbo collector-base voltage v 11 v ceo collector-emitter voltage v 5.5 i c collector current ma 40 p t power dissipation [2, 3] mw 200 t j junction temperature c 150 t stg storage temperature c -65 to 150 AT-32032 characterization information, t a = 25 c symbol parameters and test conditions units typ. p 1db power at 1 db gain compression (opt tuning) v ce = 2.7 v, i c = 20 ma f = 0.9 ghz dbm 13 g 1db gain at 1 db gain compression (opt tuning) v ce = 2.7 v, i c = 20 ma f = 0.9 ghz db 15.5 ip 3 output third order intercept point (opt tuning) v ce = 2.7 v, i c = 20 ma f = 0.9 ghz dbm 23 |s 21 | e 2 gain in 50 w system v ce = 2.7 v, i c = 2 ma f = 0.9 ghz db 11.5 thermal resistance [2] : q jc = 350 c/w notes: 1. operation of this device above any one of these parameters may cause permanent damage. 2. t mounting surface = 25 c. 3. derate at 2.86 mw/ c for t mounting surface > 80 c.
3 0 2.5 1.5 2.0 0.5 1.0 0 2.0 1.0 3.0 4.0 noise figure (db) frequency (ghz) figure 1. AT-32032 typical noise figure vs. frequency at 1 v, 1 ma. 2 ma 5 ma 10 ma 0 2.5 1.5 2.0 0.5 1.0 0 2.0 1.0 3.0 4.0 noise figure (db) frequency (ghz) figure 2. AT-32032 typical noise figure vs. frequency and current at 2.7 v. 2 ma 5 ma 10 ma 0 2.5 1.5 2.0 0.5 1.0 0 2.0 1.0 3.0 4.0 noise figure (db) frequency (ghz) figure 3. AT-32032 typical noise figure vs. frequency and current at 5v. 0 12.0 6.0 9.0 3.0 0 2.0 1.0 3.0 4.0 gain (db) frequency (ghz) figure 4. AT-32032 associated gain vs. frequency at 1 v, 1 ma. 2 ma 5 ma 10 ma 0 20.0 10.0 15.0 5.0 0 2.0 1.0 3.0 4.0 gain (db) frequency (ghz) figure 5. AT-32032 associated gain vs. frequency and current at 2.7 v. 2 ma 5 ma 10 ma 0 20.0 10.0 15.0 5.0 0 2.0 1.0 3.0 4.0 gain (db) frequency (ghz) figure 6. AT-32032 associated gain vs. frequency and current at 5 v. 1 v 2.7 v 5 v -10 20 5 10 -5 010 5152025 p o -1 db (dbm) collector current (ma) figure 7. AT-32032 p 1 db vs. collector current and voltage (valid up to 2.4 ghz). 15 0 1 v 2.7 v 5 v 0 20 8 12 4 04 26810 g 1 db (dbm) collector current (ma) figure 8a. g 1 db vs. collector current and voltage (at 900 mhz). 16 1 v 2.7 v 5 v 0 16 4 8 04 26810 g 1 db (dbm) collector current (ma) figure 8b. g 1 db vs. collector current and voltage (at 1.8 ghz). 12 AT-32032 typical performance
4 AT-32032 typical scattering parameters, common emitter, z o = 50 w , v ce = 1 v, i c = 1 ma freq. s 11 s 21 s 12 s 22 ghz mag ang db mag ang db mag ang mag ang 0.5 0.852 -51 9.61 3.024 137 -20.65 0.093 59 0.895 -21 0.75 0.760 -74 8.68 2.717 119 -18.39 0.120 48 0.821 -29 1.0 0.655 -94 7.68 2.420 104 -17.35 0.136 40 0.756 -35 1.5 0.523 -130 5.75 1.939 79 -16.68 0.147 32 0.665 -44 2.0 0.451 -161 4.11 1.606 60 -16.52 0.149 31 0.615 -52 3.0 0.403 147 1.76 1.224 30 -14.42 0.190 43 0.565 -71 4.0 0.419 104 0.20 1.023 7 -10.21 0.309 42 0.527 -96 5.0 0.459 69 -0.92 0.899 -11 -6.58 0.469 26 0.478 -127 6.0 0.497 45 -1.56 0.836 -26 -4.22 0.615 5 0.411 -168 7.0 0.529 27 -1.84 0.809 -41 -2.85 0.720 -18 0.379 141 8.0 0.561 13 -2.07 0.788 -56 -2.33 0.765 -40 0.425 96 9.0 0.590 -2 -2.34 0.764 -72 -2.28 0.769 -60 0.495 63 10.0 0.626 -17 -2.74 0.729 -87 -2.57 0.744 -79 0.555 38 AT-32032 typical noise parameters, common emitter, z o = 50 w , v ce = 1 v, i c = 1 ma freq. f min r n g assoc ghz db mag ang ohms db 0.9 1.1 0.48 63 14.5 11.5 1.8 1.3 0.51 129 6.8 8.3 2.0 1.4 0.52 143 5.2 7.4 2.5 1.6 0.54 177 2.9 6.4 3.0 1.8 0.57 -153 4.9 5.7 3.5 2.0 0.61 -125 12.7 5.0 4.0 2.2 0.65 -102 26.0 4.2 g opt gmax db(s[2,1]) k -5 20 10 15 0 5 02 13 4 56 gain (db) 0 1.25 0.75 1 0.25 0.5 k frequency (ghz) figure 9. gain vs. frequency at 1 v, 1 ma. note: db(|s 21 |) = 20 * log(|s 21 |) gmax = maximum available gain (mag) if k > 1 gmax = maximum stable gain (msg) if k < 1 k = stability factor mag = s 21 (k ? k 2 C1) s 12 msg = |s 21 |/|s 12 | k = 1 C |s 11 | 2 C |s 22 | 2 + |d| 2 ; d = s 11 s 22 C s 12 s 21 2 * |s 12 ||s 21 |
5 AT-32032 typical scattering parameters, common emitter, z o = 50 w , v ce = 2.7 v, i c = 2 ma freq. s 11 s 21 s 12 s 22 ghz mag ang db mag ang db mag ang mag ang 0.5 0.744 -57 14.37 5.232 130 -23.72 0.065 60 0.839 -22 0.75 0.609 -78 12.86 4.394 112 -21.73 0.082 52 0.755 -28 1.0 0.489 -96 11.40 3.714 98 -20.58 0.094 49 0.694 -31 1.5 0.351 -129 8.86 2.774 77 -19.05 0.112 48 0.625 -37 2.0 0.280 -158 6.93 2.221 61 -17.56 0.133 49 0.592 -43 3.0 0.236 149 4.28 1.636 34 -14.08 0.198 50 0.561 -59 4.0 0.258 105 2.58 1.346 11 -10.62 0.295 44 0.541 -78 5.0 0.317 72 1.36 1.170 -8 -7.54 0.420 30 0.510 -103 6.0 0.387 51 0.43 1.051 -26 -5.11 0.555 13 0.447 -135 7.0 0.455 34 -0.24 0.973 -42 -3.28 0.686 -8 0.373 -178 8.0 0.516 19 -0.80 0.913 -58 -2.24 0.772 -30 0.367 129 9.0 0.563 3 -1.39 0.852 -74 -1.86 0.807 -52 0.431 86 10.0 0.610 -14 -2.00 0.794 -89 -2.00 0.795 -73 0.504 55 AT-32032 typical noise parameters, common emitter, z o = 50 w , v ce = 2.7 v, i c = 2 ma freq. f min r n g assoc ghz db mag ang ohms db 0.9 0.9 0.38 57 10.6 14.0 1.8 1.2 0.41 124 6.2 10.5 2.0 1.2 0.42 136 5.3 9.4 2.5 1.4 0.44 176 3.4 8.4 3.0 1.6 0.47 -152 4.9 7.5 3.5 1.8 0.52 -123 10.5 6.9 4.0 2.1 0.57 -100 20.6 6.2 g opt gmax db(s[2,1]) k 0 20 12 16 4 8 02 13 4 56 gain (db) 0 1.25 0.75 1 0.25 0.5 k frequency (ghz) figure 10. gain vs. frequency at 2.7 v, 2 ma. note: db(|s 21 |) = 20 * log(|s 21 |) gmax = maximum available gain (mag) if k > 1 gmax = maximum stable gain (msg) if k < 1 k = stability factor mag = s 21 (k ? k 2 C1) s 12 msg = |s 21 |/|s 12 | k = 1 C |s 11 | 2 C |s 22 | 2 + |d| 2 ; d = s 11 s 22 C s 12 s 21 2 * |s 12 ||s 21 |
6 AT-32032 typical scattering parameters, common emitter, z o = 50 w , v ce = 2.7 v, i c = 5 ma freq. s 11 s 21 s 12 s 22 ghz mag ang db mag ang db mag ang mag ang 0.5 0.484 -70 18.65 8.559 113 -25.51 0.053 62 0.680 -26 0.75 0.344 -88 16.04 6.339 98 -23.25 0.069 61 0.602 -28 1.0 0.257 -103 13.98 5.000 87 -21.46 0.085 61 0.561 -29 1.5 0.165 -130 10.90 3.509 70 -18.59 0.118 60 0.522 -33 2.0 0.124 -160 8.76 2.740 57 -16.29 0.153 57 0.502 -39 3.0 0.112 143 5.93 1.979 33 -12.69 0.232 48 0.477 -55 4.0 0.144 100 4.19 1.620 13 -9.89 0.320 37 0.454 -73 5.0 0.209 72 3.01 1.414 -7 -7.55 0.419 24 0.418 -95 6.0 0.296 57 2.14 1.279 -25 -5.58 0.526 8 0.353 -124 7.0 0.394 43 1.43 1.179 -43 -3.94 0.636 -10 0.275 -166 8.0 0.489 28 0.70 1.084 -61 -2.79 0.725 -30 0.270 137 9.0 0.564 10 -0.12 0.986 -78 -2.18 0.778 -50 0.355 91 10.0 0.627 -9 -1.05 0.886 -94 -2.10 0.786 -71 0.455 58 figure 11. gain vs. frequency at 2.7 v, 5 ma. note: db(|s 21 |) = 20 * log(|s 21 |) AT-32032 typical noise parameters, common emitter, z o = 50 w , v ce = 2.7 v, i c = 5 ma freq. f min r n g assoc ghz db mag ang ohms db 0.9 0.9 0.23 71 7.5 15.6 1.8 1.2 0.295 138 5.1 11.5 2.0 1.2 0.31 152 4.6 10.4 2.5 1.3 0.35 -173 4.1 9.1 3.0 1.5 0.41 -142 5.8 8.2 3.5 1.7 0.47 -114 11.0 7.4 4.0 1.9 0.54 -93 20.0 6.7 g opt gmax db(s[2,1]) k 0 25 15 20 5 10 02 13 4 56 gain (db) 0 1.25 0.75 1 0.25 0.5 k frequency (ghz) gmax = maximum available gain (mag) if k > 1 gmax = maximum stable gain (msg) if k < 1 k = stability factor mag = s 21 (k ? k 2 C1) s 12 msg = |s 21 |/|s 12 | k = 1 C |s 11 | 2 C |s 22 | 2 + |d| 2 ; d = s 11 s 22 C s 12 s 21 2 * |s 12 ||s 21 |
7 AT-32032 typical scattering parameters, common emitter, z o = 50 w , v ce = 2. 7 v, i c = 10 ma freq. s 11 s 21 s 12 s 22 ghz mag ang db mag ang db mag ang mag ang 0.5 0.292 -76.768 20.197 10.230 102.252 -26.558 0.047 68.475 0.577 -23.850 0.75 0.194 -89.611 17.121 7.179 90.014 -23.688 0.065 68.467 0.528 -24.315 1.0 0.139 -100.612 14.850 5.527 81.084 -21.463 0.085 67.769 0.504 -25.449 1.5 0.081 -126.165 11.624 3.813 66.997 -18.160 0.124 64.256 0.481 -30.013 2.0 0.057 -160.808 9.409 2.954 54.862 -15.735 0.163 59.458 0.467 -36.600 3.0 0.064 131.034 6.523 2.119 33.080 -12.174 0.246 48.003 0.443 -52.023 4.0 0.103 91.686 4.750 1.728 13.099 -9.551 0.333 35.089 0.418 -70.196 5.0 0.169 69.993 3.580 1.510 -5.823 -7.424 0.425 21.009 0.378 -92.177 6.0 0.258 58.339 2.719 1.368 -24.160 -5.668 0.521 5.600 0.309 -119.643 7.0 0.362 46.145 2.042 1.265 -42.430 -4.173 0.619 -11.469 0.224 -160.597 8.0 0.466 31.083 1.334 1.166 -60.668 -3.083 0.701 -30.211 0.217 138.234 9.0 0.553 13.235 0.533 1.063 -78.273 -2.402 0.758 -50.020 0.307 91.480 10.0 0.628 -5.840 -0.404 0.955 -95.268 -2.236 0.773 -69.960 0.419 58.813 AT-32032 typical noise parameters, common emitter, z o = 50 w , v ce = 2.7 v, i c = 10 ma freq. f min r n g assoc ghz db mag ang ohms db 0.9 1.1 0.15 87 7.6 16.2 1.8 1.3 0.23 159 5.6 11.9 2.0 1.4 0.26 173 5.3 11.0 2.5 1.5 0.32 -156 5.7 9.5 3.0 1.7 0.38 -128 8.6 8.4 3.5 1.9 0.45 -105 14.8 7.6 4.0 2.0 0.52 -84 25.0 6.8 figure 12. gain vs. frequency at 2.7 v, 10 ma. note: db(|s 21 |) = 20 * log(|s 21 |) g opt gmax db(s[2,1]) k 0 25 15 20 5 10 02 13 4 56 gain (db) 0 1.25 0.75 1 0.25 0.5 k frequency (ghz) gmax = maximum available gain (mag) if k > 1 gmax = maximum stable gain (msg) if k < 1 k = stability factor mag = s 21 (k ? k 2 C1) s 12 msg = |s 21 |/|s 12 | k = 1 C |s 11 | 2 C |s 22 | 2 + |d| 2 ; d = s 11 s 22 C s 12 s 21 2 * |s 12 ||s 21 |
8 AT-32032 typical scattering parameters, common emitter, z o = 50 w , v ce = 5 v, i c = 2 ma freq. s 11 s 21 s 12 s 22 ghz mag ang db mag ang db mag ang mag ang 0.1 0.940 -13 17.5 7.500 167 -36.0 0.016 83 0.981 -5 0.5 0.732 -56 14.9 5.588 129 -23.8 0.064 60 0.842 -22 0.9 0.518 -87 12.4 4.165 104 -21.1 0.088 51 0.714 -29 1.0 0.484 -93 11.6 3.814 99 -20.6 0.093 50 0.699 -30 1.5 0.342 -124 9.0 2.824 78 -19.0 0.112 49 0.632 -36 1.8 0.291 -142 7.8 2.466 67 -18.1 0.125 49 0.606 -40 2.0 0.265 -153 7.1 2.267 61 -17.5 0.134 50 0.596 -43 3.0 0.212 151 4.5 1.670 34 -14.0 0.199 50 0.566 -58 4.0 0.238 103 2.7 1.367 11 -10.7 0.293 43 0.549 -77 5.0 0.306 70 1.5 1.186 -8 -7.6 0.416 30 0.515 -102 6.0 0.383 50 0.6 1.067 -26 -5.2 0.550 13 0.453 -134 7.0 0.456 34 -0.1 0.990 -43 -3.3 0.682 -8 0.375 -177 8.0 0.523 19 -0.7 0.918 -59 -2.3 0.771 -31 0.373 130 9.0 0.573 2 -1.3 0.857 -75 -1.9 0.805 -53 0.437 86 10.0 0.620 --14 -2.0 0.792 -90 -2.0 0.791 -73 0.515 54 AT-32032 typical noise parameters, common emitter, z o = 50 w , 5 v, i c = 2 ma freq. f min r n g assoc ghz db mag ang ohms db 0.9 1.0 0.48 50 14.7 14.8 1.8 1.2 0.445 118 7.4 10.1 2.0 1.3 0.44 134 5.8 9.5 2.5 1.5 0.43 172 3.7 8.5 3.0 1.7 0.47 -154 5.0 7.7 3.5 1.9 0.53 -123 11.3 7.0 4.0 2.1 0.58 -98 23.7 6.4 figure 13. gain vs. frequency at 5 v, 2 ma. note: db(|s 21 |) = 20 * log(|s 21 |) g opt gmax db(s[2,1]) k 0 25 15 20 5 10 02 13 4 56 gain (db) 0 1.25 0.75 1 0.25 0.5 k frequency (ghz) gmax = maximum available gain (mag) if k > 1 gmax = maximum stable gain (msg) if k < 1 k = stability factor mag = s 21 (k ? k 2 C1) s 12 msg = |s 21 |/|s 12 | k = 1 C |s 11 | 2 C |s 22 | 2 + |d| 2 ; d = s 11 s 22 C s 12 s 21 2 * |s 12 ||s 21 |
9 AT-32032 typical scattering parameters, common emitter, z o = 50 w , v ce = 5 v, i c = 5 ma freq. s 11 s 21 s 12 s 22 ghz mag ang db mag ang db mag ang mag ang 0.1 0.860 -19 23.8 15.523 160 -36.4 0.015 80 0.949 -9 0.5 0.496 -67 18.8 8.705 114 -25.4 0.054 63 0.690 -25 0.9 0.298 -90 14.9 5.569 92 -22.0 0.079 61 0.580 -28 1.0 0.269 -96 14.1 5.067 88 -21.4 0.085 61 0.570 -29 1.5 0.168 -119 11.0 3.558 71 -18.5 0.119 59 0.530 -33 1.8 0.133 -135 9.7 3.046 63 -17.1 0.140 58 0.514 -36 2.0 0.116 -146 8.9 2.782 58 -16.2 0.154 57 0.508 -39 3.0 0.086 150 6.1 2.011 34 -12.7 0.232 48 0.483 -54 4.0 0.121 98 4.3 1.640 13 -9.9 0.319 37 0.461 -72 5.0 0.194 70 3.1 1.434 -6 -7.6 0.417 23 0.422 -95 6.0 0.287 57 2.3 1.300 -25 -5.7 0.521 8 0.354 -124 7.0 0.390 43 1.6 1.198 -44 -4.0 0.631 -10 0.274 -166 8.0 0.491 28 0.8 1.101 -62 -2.8 0.722 -30 0.273 137 9.0 0.570 10 0 0.997 -79 -2.2 0.774 -51 0.361 91 10.0 0.640 -9 -1.0 0.891 -95 -2.1 0.781 -72 0.464 57 AT-32032 typical noise parameters, common emitter, z o = 50 w , v ce = 5 v, i c = 5 ma freq. f min r n g assoc ghz db mag ang ohms db 0.9 1.0 0.38 52 11.7 16.1 1.8 1.2 0.335 124 6.3 11.2 2.0 1.3 0.33 140 5.3 10.5 2.5 1.4 0.35 179 4.3 9.2 3.0 1.6 0.40 -146 5.9 8.2 3.5 1.8 0.47 -118 11.5 7.5 4.0 2.0 0.54 -92 22.0 6.8 figure 14. gain vs. frequency at 5 v, 5 ma. note: db(|s 21 |) = 20 * log(|s 21 |) g opt gmax db(s[2,1]) k 0 25 15 20 5 10 02 13 4 56 gain (db) 0 1.25 0.75 1 0.25 0.5 k frequency (ghz) gmax = maximum available gain (mag) if k > 1 gmax = maximum stable gain (msg) if k < 1 k = stability factor mag = s 21 (k ? k 2 C1) s 12 msg = |s 21 |/|s 12 | k = 1 C |s 11 | 2 C |s 22 | 2 + |d| 2 ; d = s 11 s 22 C s 12 s 21 2 * |s 12 ||s 21 |
10 AT-32032 typical scattering parameters, common emitter, z o = 50 w , v ce = 5 v, i c = 10 ma freq. s 11 s 21 s 12 s 22 ghz mag ang db mag ang db mag ang mag ang 0.1 0.751 -26 27.7 24.169 152 -37.1 0.014 78 0.898 -13 0.5 0.322 -70 20.3 10.383 103 -26.4 0.048 68 0.584 -24 0.9 0.181 -84 15.9 6.208 85 -22.1 0.078 68 0.514 -25 1.0 0.160 -88 15.0 5.623 82 -21.3 0.086 67 0.508 -26 1.5 0.094 -102 11.8 3.885 68 -18.1 0.125 64 0.483 -30 1.8 0.068 -114 10.4 3.304 60 -16.5 0.149 61 0.473 -34 2.0 0.055 -123 9.6 3.012 56 -15.6 0.165 59 0.468 -37 3.0 0.032 146 6.7 2.161 34 -12.1 0.248 47 0.444 -52 4.0 0.075 86 4.9 1.759 14 -9.5 0.334 34 0.419 -70 5.0 0.148 67 3.7 1.538 -5 -7.5 0.424 20 0.375 -92 6.0 0.243 58 2.9 1.397 -24 -5.7 0.517 5 0.301 -120 7.0 0.354 47 2.2 1.292 -42 -4.3 0.613 -12 0.214 -162 8.0 0.464 32 1.5 1.190 -61 -3.2 0.695 -31 0.214 136 9.0 0.555 14 0.7 1.083 -79 -2.5 0.751 -51 0.311 89 10.0 0.636 -5 -0.3 0.967 -96 -2.3 0.765 -71 0.426 57 AT-32032 typical noise parameters, common emitter, z o = 50 w , v ce = 5 v, i c = 10 ma freq. f min r n g assoc ghz db mag ang ohms db 0.9 1.1 0.29 69 10.0 17.0 1.8 1.3 0.25 143 6.1 11.8 2.0 1.4 0.26 159 5.6 11.0 2.5 1.5 0.31 -165 5.5 9.6 3.0 1.7 0.37 -133 8.1 8.5 3.5 1.9 0.45 -106 14.6 7.7 4.0 2.1 0.52 -84 25.7 6.9 figure 15. gain vs. frequency at 5 v, 10 ma. note: db(|s 21 |) = 20 * log(|s 21 |) g opt gmax db(s[2,1]) k 0 25 15 20 5 10 02 13 4 56 gain (db) 0 1.25 0.75 1 0.25 0.5 k frequency (ghz) gmax = maximum available gain (mag) if k > 1 gmax = maximum stable gain (msg) if k < 1 k = stability factor mag = s 21 (k ? k 2 C1) s 12 msg = |s 21 |/|s 12 | k = 1 C |s 11 | 2 C |s 22 | 2 + |d| 2 ; d = s 11 s 22 C s 12 s 21 2 * |s 12 ||s 21 |
11 AT-32032 application information the AT-32032 is described in a low noise amplifier for use in the 800 to 900 mhz frequency range. the amplifier is designed for use with .032 inch thickness fr-4 printed circuit board material. 900 mhz lna design the amplifier is designed for a v ce of 2.7 volts and i c of 5 ma. and a nominal power supply voltage of 3 volts. the amplifier schematic is shown in figure 16. input z o z o c1 c4 c2 l2 r1 v cc = 3 v r2 r4 c5 r5 l3 l4 c3 r6 q1 l1 r3 output figure 16. schematic diagram. c1,c3 10 pf chip capacitor c2 open circuited stub .275 inch long c4,c5 1000 pf chip capacitor l1 8 nh chip inductor (coilcraft 1008cs-080) l2 optional (see r1) l3 56 nh chip inductor (coilcraft 1008cs-560) l4 15 nh chip inductor (coilcraft 1008cs-150) q1 agilent AT-32032 silicon bipolar transistor r1 10k w chip resistor (may want to substitute a 180 nh chip inductor and 50 w resistor for lower noise figure, better low freq stability, the readjust r2) r2 26.1 k w chip resistor (adjust for rated ic) r3 3.32 k w chip resistor r4 3.32 k w chip resistor r5 51.1 w chip resistor r6 13 w chip resistor (see text) zo 50 w microstripline figure 17. component parts list. a component list is shown in figure 17. the artwork including component placement is shown in figure 18. in out vcc at-3xx32 at-4xx32 02/98 ajw .031 fr-4 figure 18. 1x artwork showing component placement. the input matching network uses a shunt c series l input imped- ance matching circuit for low noise. the shunt c is accom- plished with an open circuited stub while a chip inductor is used for the series element. the output impedance matching network consists of a series chip inductor. bias insertion is accomplished by the use of small inductors suit- ably bypassed. a resistor is placed in series with the output bias decoupling inductor to de-q the network and improve in-band and low frequency stability. surface mount coilcraft induc- tors were chosen for their small size. resistor r6 enhances broad band stability especially in the 9 to 10 ghz frequency range. biasing the bias network is designed for a nominal power supply voltage of 3 volts. resistors r1 and r2 are used to adjust collector current. resistor r4 can be attached to the junction of r5 and c5 to improve bias point stability. performance the measured gain of the com- pleted amplifier is shown in figure 19. the gain varies from 15.5 to 16.5 db over the 800 to 900 mhz frequency range. noise figure versus frequency is shown in figure 20. best perfor- mance occurs at 950 mhz provid- ing a 1.1 db noise figure. measured input and output return loss is shown in figure 21. the input return loss is 7 db at 900 mhz and can be improved to 9 db with a 0.1 db increase in noise figure by increasing the amount of capacitance at c2. additional capacitance at c2 increases the input return loss even further with increased noise figure. output return loss is a nominal 12 to 15 db. 10 17 15 16 11 12 13 14 500 700 600 800 900 1000 gain (db) frequency (mhz) figure 19. gain vs frequency. 1 1.5 1.1 1.2 1.3 1.4 500 700 600 800 900 1000 noise figure (db) frequency (mhz) figure 20. noise figure vs frequency.
12 -20 0 input output -15 -10 -5 500 700 600 800 900 1000 return loss (db) frequency (mhz) figure 21. input/output return loss. output intercept point, ip 3 , was measured at 900 mhz to be +14.3 dbm. this could be improved in two ways. the output resistors r5 and r6 could be varied in value. increasing the value of r5 and decreasing the value of r6 will improve ip3 although circuit stability may be sacrificed. the second method would be to optimize the output match for power as opposed to matching for lowest vswr. using the AT-32032 at other frequencies the demo board and design techniques presented here can be used to build low noise amplifiers for other frequencies in the vhf through 1.9 ghz frequency range.
13 ordering information part number increment comments AT-32032-blk 100 bulk AT-32032-tr1 3000 7" reel AT-32032-tr2 10000 13" reel package dimensions sot-323 plastic package 2.20 (0.087) 2.00 (0.079) 1.35 (0.053) 1.15 (0.045) 1.30 (0.051) ref. 0.650 bsc (0.025) 2.20 (0.087) 1.80 (0.071) 0.10 (0.004) 0.00 (0.00) 0.25 (0.010) 0.15 (0.006) 1.00 (0.039) 0.80 (0.031) 0.20 (0.008) 0.10 (0.004) 0.30 (0.012) 0.10 (0.004) 0.30 ref. 10 0.425 (0.017) typ.
14 tape dimensions and product orientation for outline sot-323 (sc-70 3 lead) p p 0 p 2 f w c d 1 d e a 0 8 max. t 1 (carrier tape thickness) t t (cover tape thickness) 5 max. b 0 k 0 description symbol size (mm) size (inches) length width depth pitch bottom hole diameter a 0 b 0 k 0 p d 1 2.24 0.10 2.34 0.10 1.22 0.10 4.00 0.10 1.00 + 0.25 0.088 0.004 0.092 0.004 0.048 0.004 0.157 0.004 0.039 + 0.010 cavity diameter pitch position d p 0 e 1.55 0.05 4.00 0.10 1.75 0.10 0.061 0.002 0.157 0.004 0.069 0.004 perforation width thickness w t 1 8.00 0.30 0.255 0.013 0.315 0.012 0.010 0.0005 carrier tape cavity to perforation (width direction) cavity to perforation (length direction) f p 2 3.50 0.05 2.00 0.05 0.138 0.002 0.079 0.002 distance width tape thickness c t t 5.4 0.10 0.062 0.001 0.205 0.004 0.0025 0.00004 cover tape
www.semiconductor.agilent.com data subject to change. copyright ? 1999 agilent technologies 5965-6216e (11/99)


▲Up To Search▲   

 
Price & Availability of AT-32032

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X