![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
HCPL-314J 0.4 Amp Output Current IGBT Gate Drive Optocoupler Data Sheet Lead (Pb) Free RoHS 6 fully compliant RoHS 6 fully compliant options available; -xxxE denotes a lead-free product Description The HCPL-314J family of devices consists of an AlGaAsLED optically coupled to an integrated circuit with a power output stage. These optocouplers are ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides thedrivevoltagesrequiredbygatecontrolleddevices. The voltage and current supplied by this optocoupler makes it ideally suited for directly driving small or medium power IGBTs. For IGBTs with higher ratings theHCPL-3150(0.5A)orHCPL-3120(2.0A)optocouplers canbeused. Features * 0.4Aminimumpeakoutputcurrent * Highspeedresponse: 0.7smax.propagationdelayovertemp.range * UltrahighCMR:min.25kV/satVCM=1.5kV * Bootstrappablesupplycurrent:max.3mA * Wideoperatingtemp.range:-40Cto100C * WideVCCoperatingrange:10Vto30Vovertemp. range * AvailableinDIP8(single)andSO16(dual)package * Safetyapprovals:ULrecognized,3750Vrmsfor 1minute.CSAapproval.IEC/EN/DINEN60747-5-2 approvalVIORM=891Vpeak Functional Diagram N/C ANODE CATHODE 1 2 3 SHIELD 16 VCC 15 VO 14 VEE Applications * * * * * * IsolatedIGBT/powerMOSFETgatedrive ACandbrushlessdcmotordrives Invertersforappliances Industrialinverters SwitchModePowerSupplies(SMPS) UninterruptablePowerSupplies(UPS) ANODE CATHODE N/C 6 7 8 SHIELD 11 VCC 10 VO 9 VEE HCPL-314J Selection Guide Truth Table LED OFF ON VO LOW HIGH Package Type SO16 Part Number HCPL-314J Number of Channels 2 A0.1FbypasscapacitormustbeconnectedbetweenpinsVCCandVEE. CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. Ordering Information HCPL-314JisULRecognizedwith3750Vrmsfor1minuteperUL1577. Option Part number HCPL-314J RoHS Compliant -000E -500E Non RoHS Compliant No option #500 Package SO-16 Surface Mount X X X Tape & Reel IEC/EN/DIN EN 60747-5-2 Quantity X X 45 per tube 850 per reel Toorder,chooseapartnumberfromthepartnumbercolumnandcombinewiththedesiredoptionfromtheoption columntoformanorderentry. Example1: HCPL-314J-500EtoorderproductofSO-16SurfaceMountpackageinTapeandReelpackagingwithIEC/EN/DIN EN60747-5-2SafetyApprovalinRoHScompliant. Example2: HCPL-314JtoorderproductofSO-16SurfaceMountpackageintubepackagingwithIEC/EN/DINEN60747-5-2 SafetyApprovalandnonRoHScompliant. Optiondatasheetsareavailable.ContactyourAvagosalesrepresentativeorauthorizeddistributorforinformation. Remarks:Thenotation`#XXX'isusedforexistingproducts,while(new)productslaunchedsince15thJuly2001and RoHScompliantoptionwilluse`-XXXE`. Package Outline Drawing HCPL-314J SO16 Package: LAND PATTERN RECOMMENDATION TOP VIEW 16 15 14 11 10 9 GND1 VCC1 VO1 8.76 0.20 (0.345 0.008) GND2 7.49 0.10 (0.295 0.004) VCC2 VO2 HCPL-314J 11.63 (0.458) VIN1 VIN2 NC 1 2 3 6 7 NC 8 V1 V2 2.16 (0.085) 0.64 (0.025) 0.10 - 0.30 (0.004 - 0.0118) STANDOFF 8.76 0.20 (0.345 0.008) VIEW FROM PIN 16 9 0 - 8 0.64 (0.025 MIN.) 3.51 0.13 (0.138 0.005) 10.36 0.20 (0.408 0.008) 0.23 (0.0091) VIEW FROM PIN 1 1.27 0.457 (0.050) (0.018) 0.016 0.0003 (0.406 0.007) ALL LEADS TO BE COPLANAR 0.05 mm (0.002 INCHES) . DIMENSIONS IN MILLIMETERS AND (INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. 2 Solder Reflow Thermal Profile 300 PREHEATING RATE 3C + 1C/-0.5C/SEC. REFLOW HEATING RATE 2.5C 0.5C/SEC. PEAK TEMP. 245C PEAK TEMP. 240C Regulatory Information The HCPL-314J has been approved bythefollowingorganizations: IEC/EN/DIN EN 60747-5-2 Approvedunder: IEC60747-5-2:1997+A1:2002 EN60747-5-2:2001+A1:2002 DINEN60747-5-2(VDE0884 Teil2):2003-01. UL ApprovalunderUL1577,component recognition program up to VISO = 3750Vrms.FileE55361. CSA ApprovedunderCSAComponentAcceptanceNotice#5,FileCA88324. TEMPERATURE (C) 200 160C 150C 140C PEAK TEMP. 230C 2.5C 0.5C/SEC. 30 SEC. 3C + 1C/-0.5C 30 SEC. SOLDERING TIME 200C 100 PREHEATING TIME 150C, 90 + 30 SEC. 50 SEC. TIGHT TYPICAL LOOSE ROOM TEMPERATURE 0 0 50 100 150 200 250 TIME (SECONDS) Note: Non-halide flux should be used. Recommended Pb-Free IR Profile tp Tp TL TEMPERATURE TIME WITHIN 5 C of ACTUAL PEAK TEMPERATURE 20-40 SEC. 260 +0/-5 C 217 C RAMP-UP 3 C/SEC. MAX. 150 - 200 C Tsmax Tsmin RAMP-DOWN 6 C/SEC. MAX. ts PREHEAT 60 to 180 SEC. 25 tL 60 to 150 SEC. t 25 C to PEAK TIME NOTES: THE TIME FROM 25 C to PEAK TEMPERATURE = 8 MINUTES MAX. Tsmax = 200 C, Tsmin = 150 C Note: Non-halide flux should be used. 3 IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Description InstallationclassificationperDINVDE0110/1.89,Table1 forratedmainsvoltage150Vrms forratedmainsvoltage300Vrms forratedmainsvoltage600Vrms Symbol Characteristic I-IV I-IV I-III 55/100/21 2 891 1670 1336 6000 Unit ClimaticClassification PollutionDegree(DINVDE0110/1.89) MaximumWorkingInsulationVoltage InputtoOutputTestVoltage,Methodb* VIORMx1.875=VPR,100%ProductionTestwith tm=1sec,Partialdischarge<5pC InputtoOutputTestVoltage,Methoda* VIORMx1.5=VPR,TypeandSampleTest,tm=60sec, Partialdischarge<5pC HighestAllowableOvervoltage (TransientOvervoltagetini=10sec) Safety-limitingvalues-maximumvaluesallowedinthe eventofafailure. CaseTemperature InputCurrent** OutputPower** VIORM VPR VPR VIOTM Vpeak Vpeak Vpeak Vpeak PS,OUTPUT RS TS IS,INPUT 175 400 1200 >109 C mA mW InsulationResistanceatTS,VIO=500V *RefertotheoptocouplersectionoftheIsolationandControlComponentsDesigner'sCatalog,underProductSafetyRegulationssection, IEC/ EN/DINEN60747-5-2,foradetaileddescriptionofMethodaandMethodbpartialdischargetestprofiles. **RefertothefollowingfigurefordependenceofPSandISonambienttemperature. OUTPUT POWER - PS, INPUT CURRENT - IS 800 700 600 500 400 300 200 100 0 0 25 50 75 100 125 150 175 200 PS (mW) IS (mA) TS - CASE TEMPERATURE - C HCPL-J314 4 Insulation and Safety Related Specifications Parameter MinimumExternalAirGap (Clearance) MinimumExternalTracking (Creepage) MinimumInternalPlasticGap (InternalClearance) TrackingResistance (ComparativeTrackingIndex) IsolationGroup Symbol L(101) L(102) CTI IIIa HCPL-314J 8.3 8.3 0.5 >175 Units mm mm mm V Conditions Measuredfrominputterminalstooutput terminals,shortestdistancethroughair. Measuredfrominputterminalstooutput terminals,shortestdistancepathalongbody. Throughinsulationdistanceconductorto conductor,usuallythestraightlinedistance thicknessbetweentheemitteranddetector. DINIEC112/VDE0303Part1 MaterialGroup(DINVDE0110,1/89,Table1) Absolute Maximum Ratings Parameter StorageTemperature OperatingTemperature AverageInputCurrent PeakTransientInputCurrent(<1spulse width,300pps) ReverseInputVoltage "High"PeakOutputCurrent "Low"PeakOutputCurrent SupplyVoltage OutputVoltage OutputPowerDissipation InputPowerDissipation LeadSolderTemperature SolderReflowTemperatureProfile Symbol TS TA IF(AVG) IF(TRAN) VR IOH(PEAK) IOL(PEAK) VCC-VEE VO(PEAK) PO PI Min. -55 -40 -0.5 -0.5 Max. 125 100 25 1.0 5 0.6 0.6 35 VCC 260 105 Units C C mA A V A A V V mW mW Note 1 2 2 3 4 260Cfor10sec.,1.6mmbelowseatingplane SeePackage Outline Drawingssection Recommended Operating Conditions Parameter PowerSupply InputCurrent(ON) InputVoltage(OFF) OperatingTemperature Symbol VCC -VEE IF(ON) VF(OFF) TA Min. 10 8 -3.6 -40 Max. 30 12 0.8 100 Units V mA V C Note 5 Electrical Specifications (DC) Overrecommendedoperatingconditionsunlessotherwisespecified. Parameter HighLevelOutputCurrent LowLevelOutputCurrent HighLevelOutputVoltage LowLevelOutputVoltage HighLevelSupplyCurrent LowLevelSupplyCurrent ThresholdInputCurrent LowtoHigh ThresholdInputVoltage HightoLow InputForwardVoltage TemperatureCoefficientof InputForwardVoltage InputReverseBreakdown Voltage InputCapacitance Symbol IOH IOL VOH VOL ICCH ICCL IFLH VFHL VF VF/TA BVR CIN Min. 0.2 0.4 0.2 0.4 VCC-4 0.8 1.2 3 Typ. 0.5 0.4 0.5 VCC-1.8 0.4 0.7 1.2 1.5 -1.2 10 Max. 1 3 3 5 1.8 Units A A V V mA mA mA V V mV/C V pF Test Conditions Vo=VCC-4 Vo=VCC-10 Vo=VEE+2.5 Vo=VEE+10 Io=-100mA Io=100mA Io=0mA Io=0mA Io=0mA, Vo>5V Fig. 2 3 5 6 1 4 7,8 9,15 Note 5 2 5 2 6,7 15 IF=10mA 16 IR=100A f=1MHz, VF=0V Switching Specifications (AC) Overrecommendedoperatingconditionsunlessotherwisespecified. Parameter PropagationDelayTimeto HighOutputLevel PropagationDelayTimeto LowOutputLevel PropagationDelay DifferenceBetweenAny TwoPartsorChannels RiseTime FallTime OutputHighLevelCommon ModeTransientImmunity OutputLowLevelCommon ModeTransientImmunity Symbol tPLH tPHL PDD tR tF |CMH| |CML| Min. 0.1 0.1 -0.5 25 25 Typ. 0.2 0.3 35 35 Max. 0.7 0.7 0.5 Units s s s ns ns kV/s kV/s Test Conditions Rg=47, Cg=3nF, f=10kHz, DutyCycle= 50%, IF=8mA, VCC=30V TA=25C, VCM=1.5kV Fig. 10,11, 12,13, 14,17 18 18 Note 14 10 11, 12 11, 13 6 Package Characteristics Foreachchannelunlessotherwisespecified. Parameter Input-OutputMomentary WithstandVoltage Output-OutputMomentary WithstandVoltage Input-OutputResistance Input-OutputCapacitance Symbol VISO VO-O RI-O CI-O Min. 3750 1500 Typ. 1012 1.2 Max. Units Vrms Vrms pF Test Conditions TA=25C, RH<50% for1min. VI-O=500V Freq=1MHz Fig. Note 8,9 16 9 Notes: 1. Deratelinearlyabove70Cfreeairtemperatureatarateof0.3mA/C. 2. Maximumpulsewidth=10s,maximumdutycycle=0.2%.ThisvalueisintendedtoallowforcomponenttolerancesfordesignswithIO peakminimum=0.4A.SeeApplicationsectionforadditionaldetailsonlimitingIOLpeak. 3. Deratelinearlyabove85C,freeairtemperatureattherateof4.0mW/C. 4. Inputpowerdissipationdoesnotrequirederating. 5. Maximumpulsewidth=50s,maximumdutycycle=0.5%. 6. Inthistest,VOHismeasuredwithaDCloadcurrent.WhendrivingcapacitiveloadVOHwillapproachVCCasIOHapproacheszeroamps. 7. Maximumpulsewidth=1ms,maximumdutycycle=20%. 8. InaccordancewithUL1577,eachHCPL-314Joptocouplerisprooftestedbyapplyinganinsulationtestvoltage5000Vrmsfor1second (leakagedetectioncurrentlimitII-O5A).Thistestisperformedbefore100%productiontestforpartialdischarge(methodB)showninthe IEC/EN/DINEN60747-5-2InsulationCharacteristicsTable,ifapplicable. 9. Deviceconsideredatwo-terminaldevice:pinsoninputsideshortedtogetherandpinsonoutputsideshortedtogether. 10. PDDisthedifferencebetweentPHLandtPLHbetweenanytwopartsorchannelsunderthesametestconditions. 11. Pins3and4(HCPL-314J)needtobeconnectedtoLEDcommon. 12. Commonmodetransientimmunityinthehighstateisthemaximumtolerable|dVcm/dt|ofthecommonmodepulseVCMtoassurethatthe outputwillremaininthehighstate(i.e.Vo>6.0V). 13. Commonmodetransientimmunityinalowstateisthemaximumtolerable|dVCM/dt|ofthecommonmodepulse,VCM,toassurethatthe outputwillremaininalowstate(i.e.Vo<1.0V). 14. Thisloadconditionapproximatesthegateloadofa1200V/25AIGBT. 15. Foreachchannel.ThepowersupplycurrentincreaseswhenoperatingfrequencyandQgofthedrivenIGBTincreases. 16. Deviceconsideredatwoterminaldevice:Channeloneoutputsidepinsshortedtogether,andchanneltwooutputsidepinsshortedtogether. 7 (VOH-VCC) - HIGH OUTPUT VOLTAGE DROP - V 0 IOH - OUTPUT HIGH CURRENT - A 0.40 0.38 0.36 0.34 0.32 0.30 -50 (VOH-VCC) - OUTPUT HIGH VOLTAGE DROP - V 0 -1 -2 -3 -4 -5 -6 VOH -0.5 -1.0 -1.5 -2.0 -2.5 -50 -25 0 25 50 75 100 125 -25 0 25 50 75 100 125 0 0.2 0.4 0.6 TA - TEMPERATURE - C TA - TEMPERATURE - C IOH - OUTPUT HIGH CURRENT - A Figure 1. VOH vs. Temperature. HCPL-J314 fig 01 Figure 2. IOH vs. Temperature. HCPL-J314 fig 02 Figure 3. VOH vs. IOH. HCPL-J314 fig 03 0.44 VOL - OUTPUT LOW VOLTAGE - V IOL - OUTPUT LOW CURRENT - A 0.470 0.465 0.460 0.455 0.450 0.445 0.440 -50 25 VOL - OUTPUT LOW VOLTAGE - V -25 0 25 50 75 100 125 0.43 0.42 0.41 0.40 0.39 -50 20 15 10 5 0 -25 0 25 50 75 100 125 0 100 200 300 400 500 600 700 IOL - OUTPUT LOW CURRENT - mA TA - TEMPERATURE - C TA - TEMPERATURE - C Figure 4. VOL vs. Temperature. HCPL-J314 fig 04 Figure 5. IOL vs. Temperature. HCPL-J314 fig 05 Figure 6. VOL vs. IOL. HCPL-J314 fig 06 IFLH - LOW TO HIGH CURRENT THRESHOLD - mA 1.4 ICC - SUPPLY CURRENT - mA 1.2 ICC - SUPPLY CURRENT - mA 3.5 1.2 1.0 0.8 0.6 0.4 0.2 0 -50 -25 0 25 50 75 ICCL ICCH 100 125 1.0 0.8 0.6 0.4 0.2 0 10 ICCL ICCH 15 20 25 30 3.0 2.5 2.0 1.5 -50 -25 0 25 50 75 100 125 TA - TEMPERATURE - C VCC - SUPPLY VOLTAGE - V TA - TEMPERATURE - C Figure 7. ICC vs. Temperature. HCPL-J314 fig 07 Figure 8. ICC vs. VCC. HCPL-J314 fig 08 Figure 9. IFLH vs. Temperature. HCPL-J314 fig 09 8 400 TP - PROPAGATION DELAY - ns TP - PROPAGATION DELAY - ns 400 TP - PROPAGATION DELAY - ns 500 400 300 200 100 0 -50 300 300 200 200 100 TPLH TPHL 15 20 25 30 100 TPLH TPHL -25 0 25 50 75 100 125 0 10 0 6 9 12 15 18 VCC - SUPPLY VOLTAGE - V IF - FORWARD LED CURRENT - mA TA - TEMPERATURE - C Figure 10. Propagation Delay vs. VCC. HCPL-J314 fig 10 Figure 11. Propagation Delay vs. IF. HCPL-J314 fig 11 Figure 12. Propagation Delay vs. Temperature. HCPL-J314 fig 12 400 TP - PROPAGATION DELAY - ns TP - PROPAGATION DELAY - ns 400 VO - OUTPUT VOLTAGE - V 35 30 25 20 15 10 5 0 -5 0 1 2 3 4 5 6 350 300 300 TPLH TPHL 200 250 100 TPLH TPHL 0 20 40 60 80 100 200 0 50 100 150 200 0 Rg - SERIES LOAD RESISTANCE - Cg - LOAD CAPACITANCE - nF IF - FORWARD LED CURRENT - mA Figure 13. Propagation Delay vs. Rg. HCPL-J314 fig 13 Figure 14. Propagation Delay vs. Cg. HCPL-J314 fig 14 Figure 15. Transfer Characteristics. HCPL-J314 fig 15 25 IF - FORWARD CURRENT - mA 20 15 10 5 0 1.2 1.4 1.6 1.8 VF - FORWARD VOLTAGE - V Figure 16. Input Current vs. Forward Voltage. HCPL-J314 fig 16 9 1 IF = 7 to 16 mA + 10 KHz - 500 2 8 0.1 F 7 VO + - VCC = 15 to 30 V IF tr tf 90% 50% VOUT tPLH tPHL 10% 50% DUTY CYCLE 3 6 47 3 nF 4 5 Figure 17. Propagation Delay Test Circuit and Waveforms. VCM IF 1 A B 2 7 VO 3 6 + - VCC = 30 V VO SWITCH AT A: IF = 10 mA VO SWITCH AT B: IF = 0 mA + VCM = 1500 V - VOL 8 0.1 F 0V t VOH V t = VCM t 5V + - 4 5 Figure 18. CMR Test Circuit and Waveforms. 10 Applications Information Eliminating Negative IGBT Gate Drive TokeeptheIGBTfirmlyoff,theHCPL-314Jhasaverylow maximumVOLspecificationof1.0V.MinimizingRgand theleadinductancefromtheHCPL-314JtotheIGBTgate andemitter(possiblybymountingtheHCPL-314Jona smallPCboarddirectlyabovetheIGBT)caneliminatethe needfornegativeIGBTgatedriveinmanyapplications asshowninFigure19.Careshouldbetakenwithsuch aPCboarddesigntoavoidroutingtheIGBTcollectoror emittertracesclosetotheHCPL-314Jinputasthiscan resultinunwantedcouplingoftransientsignalsintothe inputofHCPL-314Janddegradeperformance.(IftheIGBT drainmustberoutedneartheHCPL-314Jinput,thenthe LED should be reverse biased when in the off state, to preventthetransientsignalscoupledfromtheIGBTdrain fromturningontheHCPL-314J.)Anexternalclampdiode maybeconnectedbetweenpins14&15andpins9&10 (asshowninFigure19)fortheprotectionofHCPL-314J inthecaseofIGBTsswitchinginductiveload. +5 V CONTROL INPUT 74XX OPEN COLLECTOR 270 1 HCPL-314J 16 0.1 F 2 15 + - FLOATING SUPPLY VCC = 18 V + HVDC Rg VOL 3 GND 1 14 3-PHASE AC 6 11 0.1 F 7 10 + - VCC = 18 V +5 V 270 CONTROL INPUT 74XX OPEN COLLECTOR Rg 8 GND 1 9 - HVDC Figure 19. Recommended LED Drive and Application Circuit for HCPL-314J. 11 Esw - ENERGY PER SWITCHING CYCLE - J Selecting the Gate Resistor (Rg) Step 1:CalculateRgminimumfromtheIOLpeakspecification.TheIGBTandRg inFigure24canbeanalyzedasasimpleRCcircuitwithavoltagesuppliedby theHCPL-314J. V - VOL Rg CC IOLPEAK 24V-5V = 0.6A =32 TheVOLvalueof5VinthepreviousequationistheVOLatthepeakcurrentof 0.6A.(SeeFigure6). Step 2:ChecktheHCPL-314JpowerdissipationandincreaseRgifnecessary. TheHCPL-314Jtotalpowerdissipation(PT )isequaltothesumoftheemitter power(PE)andtheoutputpower(PO). PT = PE + PO PE = IF * VF * Duty Cycle PO = PO(BIAS) + PO(SWITCHING) = ICC * VCC + ESW (Rg,Qg)* f =(ICCBIAS+KICC * Qg * f) * VCC+ESW(Rg,Qg) * f whereKICC * Qg * fistheincreaseinICCduetoswitchingandKICC isaconstant of0.001mA/(nC*kHz).ForthecircuitinFigure19withIF(worstcase)=10 mA,Rg=32,MaxDutyCycle=80%,Qg=100nC,f=20kHzandTAMAX= 85C: PE =10mA * 1.8V* 0.8=14mW PO=(3mA+(0.001mA/(nC * kHz))* 20kHz* 100nC)* 24V+0.4J* 20kHz =128mW <260mW (PO(MAX)@85C) Thevalueof3mAforICCinthepreviousequationisthemax.ICCoverentire operatingtemperaturerange. SincePOforthiscaseislessthanPO(MAX),Rg=32isalrightforthepower dissipation. 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 0 20 40 60 80 100 Qg = 50 nC Qg = 100 nC Qg = 200 nC Qg = 400 nC Rg - GATE RESISTANCE - Figure 20. Energy Dissipated in the HCPL-314J and for Each IGBT Switching Cycle. LED Drive Circuit Considerations for Ultra High CMR Performance Without a detector shield, the dominantcauseofoptocouplerCMR failure is capacitive coupling from the input side of the optocoupler, throughthepackage,tothedetector ICasshowninFigure21.TheHCPL314JimprovesCMRperformanceby usingadetectorICwithanoptically transparent Faraday shield, which diverts the capacitively coupled current away from the sensitive IC circuitry. However, this shield does noteliminatethecapacitivecoupling between the LED and optocoupler pins 5-8 as shown in Figure 22. This capacitive coupling causes perturbations in the LED current during common mode transients and becomes the major source of CMRfailuresforashieldedoptocoupler.Themaindesignobjectiveofa highCMRLEDdrivecircuitbecomes keepingtheLEDintheproperstate (on or off ) during common mode transients. For example, the recommended application circuit (Figure 19),canachieve10kV/sCMRwhile minimizingcomponentcomplexity. Techniques to keep the LED in the properstatearediscussedinthenext twosections. 12 1 CLEDP 8 1 CLEDO1 CLEDP 8 2 7 2 7 CLEDO2 3 CLEDN 6 3 CLEDN 6 4 5 4 SHIELD 5 Figure 21. Optocoupler Input to Output Capacitance Model for Unshielded Optocouplers. Figure 22. Optocoupler Input to Output Capacitance Model for Shielded Optocouplers. HCPL-J314 fig 23 HCPL-J314 fig 22 +5 V 1 CLEDP ILEDP 8 0.1 F 7 + - VCC = 18 V + VSAT - 2 3 CLEDN 6 Rg *** 4 SHIELD 5 *** * THE ARROWS INDICATE THE DIRECTION OF CURRENT FLOW DURING -dVCM/dt. +- VCM Figure 23. Equivalent Circuit for Figure 17 During Common Mode Transient. HCPL-J314 fig 24 1 +5 V 2 CLEDP 8 1 +5 V CLEDP 8 7 2 7 Q1 3 CLEDN ILEDN 6 3 CLEDN 6 4 SHIELD 5 4 SHIELD 5 Figure 24. Not Recommended Open Collector Drive Circuit. Figure 25. Recommended LED Drive Circuit for Ultra-High CMR IPM Dead Time and Propagation Delay Specifications. HCPL-J314 fig 25 HCPL-J314 fig 26 13 CMR with the LED On (CMRH) A high CMR LED drive circuit must keep the LED on during common mode transients. This is achieved by overdrivingtheLEDcurrentbeyondtheinputthreshold so that it is not pulled below the threshold during a transient. A minimum LED current of 8 mA provides adequate margin over the maximum IFLH of 5 mA to achieve10kV/sCMR. CMR with the LED Off (CMRL) AhighCMRLEDdrivecircuitmustkeeptheLEDoff(VF VF(OFF))duringcommonmodetransients.Forexample, during a -dVCM/dt transient in Figure 23, the current flowingthroughCLEDPalsoflowsthroughtheRSATand VSATofthelogicgate.Aslongasthelowstatevoltage developedacrossthelogicgateislessthanVF(OFF)the LED will remain off and no common mode failure will occur. Theopencollectordrivecircuit,showninFigure24,can notkeeptheLEDoffduringa+dVCM/dttransient,since allthecurrentflowingthroughCLEDNmustbesupplied bytheLED,anditisnotrecommendedforapplications requiringultrahighCMR1performance.Thealternative drive circuit which like the recommended application circuit(Figure19),doesachieveultrahighCMRperformancebyshuntingtheLEDintheoffstate. IPM Dead Time and Propagation Delay Specifications The HCPL-314J includes a Propagation Delay Difference (PDD) specification intended to help designers minimize "dead time" in their power inverter designs. Dead time is the time high and low side power transistors are off. Any overlap in Ql and Q2 conduction will result in large currents flowing through the power devices from the highvoltagetothelow-voltagemotorrails.Tominimizedead time in a given design, the turn on of LED2 should be delayed(relativetotheturnoffofLED1)sothatunder worst-caseconditions,transistorQ1hasjustturnedoff whentransistorQ2turnson,asshowninFigure26.The amount of delay necessary to achieve this condition is equaltothemaximumvalueofthepropagationdelay difference specification, PDD max, which is specified to be 500 ns over the operating temperature range of -40to100C. Delaying the LED signal by the maximum propagation delay difference ensures that the minimum dead time is zero, but it does not tell a designer what the maximum dead time will be. The maximum dead time is equivalent to the difference between the maximum and minimum propagation delay difference specification as shown in Figure 27. The maximum dead time for the HCPL-314J is 1 s (= 0.5 s - (-0.5 s)) over the operating temperature range of - 40Cto100C. NotethatthepropagationdelaysusedtocalculatePDD anddeadtimearetakenatequaltemperaturesandtest conditionssincetheoptocouplersunderconsideration are typically mounted in close proximity to each other andareswitchingidenticalIGBTs. 14 ILED1 VOUT1 Q1 ON Q1 OFF Q2 ON VOUT2 ILED2 Q2 OFF tPHL MAX tPLH MIN PDD* MAX = (tPHL- tPLH)MAX = tPHL MAX - tPLH MIN *PDD = PROPAGATION DELAY DIFFERENCE NOTE: FOR PDD CALCULATIONS THE PROPAGATION DELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS. Figure 26. Minimum LED Skew for Zero Dead Time. ILED1 VOUT1 HCPL-J314 fig 27 Q1 ON Q1 OFF Q2 ON VOUT2 ILED2 Q2 OFF tPHL MIN tPHL MAX tPLH MIN tPLH MAX (tPHL-tPLH) MAX PDD* MAX MAXIMUM DEAD TIME (DUE TO OPTOCOUPLER) = (tPHL MAX - tPHL MIN) + (tPLH MAX - tPLH MIN) = (tPHL MAX - tPLH MIN) - (tPHL MIN - tPLH MAX) = PDD* MAX - PDD* MIN *PDD = PROPAGATION DELAY DIFFERENCE NOTE: FOR DEAD TIME AND PDD CALCULATIONS ALL PROPAGATION DELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS. Figure 27. Waveforms for Dead Time. HCPL-J314 fig 28 For product information and a complete list of distributors, please go to our website: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright (c) 2005-2008 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2943EN AV02-0169EN - April 9, 2008 |
Price & Availability of HCPL-314J
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |