![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
nanoNET TRX Transceiver (NA1TR8) Datasheet Version 2.09 NA-03-0111-0239-2.09 Document Information nanoNET TRX Transceiver (NA1TR8) Datasheet Document Information Document Title: Document Version: Published (yyyy-mm-dd): Current Printing: Document ID: Document Status: Disclaimer Nanotron Technologies GmbH believes the information contained herein is correct and accurate at the time of release. Nanotron Technologies GmbH reserves the right to make changes without further notice to the product to improve reliability, function or design. Nanotron Technologies GmbH does not assume any liability or responsibility arising out of this product, as well as any application or circuits described herein, neither does it convey any license under its patent rights. As far as possible, significant changes to product specifications and functionality will be provided in product specific Errata sheets, or in new versions of this document. Customers are encouraged to check the Nanotron website for the most recent updates on products. Trademarks nanoNET(c) is a registered trademark of Nanotron Technologies GmbH. All other trademarks, registered trademarks, and product names are the sole property of their respective owners. This document and the information contained herein is the subject of copyright and intellectual property rights under international convention. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical or optical, in whole or in part, without the prior written permission of Nanotron Technologies GmbH. Copyright (c) 2007 Nanotron Technologies GmbH. nanoNET TRX Transceiver (NA1TR8) Datasheet 2.09 2007-12-20 2007-12-20, 4:22 pm NA-03-0111-0239-2.09 Released Life Support Policy These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Nanotron Technologies GmbH customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nanotron Technologies GmbH for any damages resulting from such improper use or sale. Electromagnetic Interference / Compatibility Nearly every electronic device is susceptible to electromagnetic interference (EMI) if inadequately shielded, designed, or otherwise configured for electromagnetic compatibility. To avoid electromagnetic interference and/or compatibility conflicts, do not use this device in any facility where posted notices instruct you to do so. In aircraft, use of any radio frequency devices must be in accordance with applicable regulations. Hospitals or health care facilities may be using equipment that is sensitive to external RF energy. With medical devices, maintain a minimum separation of 15 cm (6 inches) between pacemakers and wireless devices and some wireless radios may interfere with some hearing aids. If other personal medical devices are being used in the vicinity of wireless devices, ensure that the device has been adequately shielded from RF energy. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures. CAUTION! Electrostatic Sensitive Device. Precaution should be used when handling the device in order to prevent permanent damage. Page ii NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Table of Contents nanoNET TRX Transceiver (NA1TR8) Datasheet Table of Contents List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1 Chip Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 1.2 1.3 Quick Reference Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Block Diagram - Simplified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 Nominal Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 Pin Connections (MLF44 7X7 mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 7 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 8.1 8.2 8.3 8.4 8.5 8.6 General DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmitter (TX) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receiver (RX) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Interface Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Management and Sleep/Wake-Up Circuitry Parameters . . . . . . . . . . . . . . . . . Interface to Digital Controller Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 12 13 14 14 15 9 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Switch Time from TX to RX (from Ack to Data mode). . . . . . . . . . . . . . . . . . . . . . . . . Switch Time from TX to RX (from Data to Ack mode). . . . . . . . . . . . . . . . . . . . . . . . . Switch Time from RX to TX (from Ack to Data mode). . . . . . . . . . . . . . . . . . . . . . . . . Switch Time from RX to TX (from Data to Ack mode). . . . . . . . . . . . . . . . . . . . . . . . . Turn-On Time TX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Turn-On Time RX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 MHz Crystal Start-Up Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LO Frequency Calibration Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Bus Read and Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 17 17 18 18 19 19 19 19 10 Output Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 11 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 12 Tape and Reel Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 12.1 12.2 Reel Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Tape Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 13 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 A1 Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 A1.1 A1.2 Recommended Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Recommended PCB Layout for RF Part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page iii Table of Contents nanoNET TRX Transceiver (NA1TR8) Datasheet A1.3 Recommended PCB Layout for IF Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 A2 Reference Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 A2.1 Reference Design Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 A3 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 About Nanotron Technologies GmbH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Page iv NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. List of Tables nanoNET TRX Transceiver (NA1TR8) Datasheet List of Tables Table 1: Quick reference data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table 2: Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 3: nanoNET TRX Transceiver (NA1TR8) pin description. . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 4: General DC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 5: Transmitter (TX) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 6: Receiver (RX) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 7: Digital sensor/actuator interface parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 8: Power management and sleep/wake-up circuitry parameters . . . . . . . . . . . . . . . . . . . 14 Table 9: Interface to digital controller parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 6: SPI timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 10: Package dimensions labels (unless specified, dimensions are in millimeters) . . . . . 23 Table 11: Reference design bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 List of Figures Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: Figure 14: Figure 15: Figure 16: Figure 17: Figure 18: Figure 19: Figure 20: Figure 21: Figure 22: Figure 23: Figure 24: Figure 25: nanoNET TRX (NA1TR8) block diagram - simplified . . . . . . . . . . . . . . . . . . . . . . . . . 3 Example application showing recommended circuitry . . . . . . . . . . . . . . . . . . . . . . . . 4 nanoNET TRX Transceiver block diagram (simplified) . . . . . . . . . . . . . . . . . . . . . . . 6 nanoNET TRX (MLF44) pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Switch time from TX to RX (from Ack to Data mode) . . . . . . . . . . . . . . . . . . . . . . . . 17 Switch time from TX to RX (from Data to Ack mode) . . . . . . . . . . . . . . . . . . . . . . . . 17 Switch time from RX to TX (from Ack to Data mode) . . . . . . . . . . . . . . . . . . . . . . . . 17 Switch time from RX to TX (from Data to Ack mode) . . . . . . . . . . . . . . . . . . . . . . . . 18 Turn-on time TX: time = tTxTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Turn-on time RX: time = tRxTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SPI bus write timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SPI bus read timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 nanoNET TRX output power (pout[dBm] by register value) . . . . . . . . . . . . . . . . . . 21 Total current consumption (IDDA[mA] by register value) . . . . . . . . . . . . . . . . . . . . 21 Total current consumption (IDDA[mA] by output power [dBm]) . . . . . . . . . . . . . . . 22 MLF44 7x7 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Tape dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Example application showing recommended circuitry . . . . . . . . . . . . . . . . . . . . . . 27 Recommended PCB layout for RF part: schematic 1 of 1 . . . . . . . . . . . . . . . . . . . 28 RF part: PCB board overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 RF part: names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 RF part: top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 RF part: layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 RF part: layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page v List of Tables nanoNET TRX Transceiver (NA1TR8) Datasheet Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 31: Figure 32: Figure 33: Figure 34: Figure 35: Figure 36: Figure 37: Figure 38: Figure 39: Figure 40: Figure 41: Figure 42: Figure 43: RF part: bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Recommended PCB layout for IF part: schematic 1 of 1 . . . . . . . . . . . . . . . . . . . . 31 IF part: PCB board overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 IF part: names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 IF part: top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 IF part: layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 IF part: layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 IF part: bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Reference design: schematic 1 of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Reference design: schematic 2 of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Reference design: schematic 3 of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Reference design: top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Reference design: layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Reference design: layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Reference design: bottom layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Reference design: top layer names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Reference design: bottom layer names (Inverted) . . . . . . . . . . . . . . . . . . . . . . . . . 37 Reference design: layers, standard structure (example) . . . . . . . . . . . . . . . . . . . . 38 Page vi NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Chip Summary nanoNET TRX Transceiver (NA1TR8) Datasheet 1 1 Chip Summary The nanoNET chip is a low-power, highly integrated mixed signal chip utilizing Nanotron's unique wireless Chirp Spread Spectrum (CSS) communication technology. This innovative modulation technique permits the development of chips that have extremely low power consumption, operate over a wide range of temperatures, and perform effortlessly in robust wireless networks operating in the 2.45 GHz ISM band. This chip offers an ideal solution for battery powered applications that require a reliable and extremely long operating lifetime, such as several years. For communication over the air, CSS uses Upchirps and Downchirps with a symbol duration of Tsymbol = 1 s and an effective bandwidth of Bchirp = 64 MHz. A wide variety of systems and applications can be developed with this novel technology, with the additional advantage of being able to select from data rates of either 500 kbps, 1 Mbps, or 2 Mbps. Conveniently, only a minimal number of external components are required to build a fully operational bi-directional communication node. Target Applications Industries that can benefit from nanoNET's robust, reliable communication include, but are not limited to: + + Active RFID Industrial Control and Monitoring + + Home Automation Meter and Sensor Reading Key Features1 + Provides a single chip solution for a 2.45 GHz ISM band RF transceiver Allows unregulated 2.4 V ... 3.6 V supply voltage Includes an integrated SPI (slave mode only) Includes an integrated microcontroller management function Provides a maximum data rate of 2 Mbps Provides a maximum range for LOS (without interferers) at 900 m outdoors and 60 m indoors (with optimal conditions) Uses an effective chirp bandwidth of 64 MHz Receiver sensitivity is -92 dBm @ 1 Mbps + + + + + + + + + Carrier to Interference is C/I = -3...0 dB @ C = -82 dBm Processing gain is 17 dB Current consumption is 35 mA (RX), 78 mA (TX) @ 8 dBm Standby current with active RTC is 1.5 A Allows an operating temperature range of between -40 C to +85 C Includes an integrated 4 channel digital I/O Includes an integrated MAC controller Provides a 32.768 kHz clock for microcontrollers Includes a programmable clock output at digital output + + + + + + + 1. At nominal conditions, except otherwise specified. (See Nominal Conditions on page 7.) (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 1 1 Chip Summary nanoNET TRX Transceiver (NA1TR8) Datasheet 1.1 Quick Reference Data Table 1: Quick reference data Parameter Maximum supply voltage Minimum supply voltage Maximum output power Maximum data rate Typical receiver sensitivity at nominal conditionsa Typical receiver sensitivity @ 2 Mbps Typical supply current In transmit mode @ -15 dBm output power & nominal conditionsa In transmit mode @ -5 dBm output power & nominal conditionsa In receive mode & nominal conditionsa In standby mode with active RTCb Operating temperature range Typical Operating Voltages Typical power supply voltage VDDA (analog block) Typical power supply voltage VDDD (digital block) Modulation method Operating frequency range Minimum Typical Maximum a. See Nominal Conditions on page 7. b. Under nominal conditions. See Nominal Conditions on page 7. 2400 2441.750 2483.5 MHz MHz MHz 3 3 Chirp V V - 58 64 35 1.5 -40 to +85 mA mA mA A oC Value 3.6 2.4 8 2 -92 -86 Unit V V dBm Mbps dBm dBm Page 2 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Chip Summary nanoNET TRX Transceiver (NA1TR8) Datasheet 1 1.2 Block Diagram - Simplified PowerUp Reset VDDCap CVccExt CReset CIrq SpiClk SpiSsn SpiRxD SpiTxD Xtal1B Xtal1A Xtal2B Xtal2A DilO4 DilO3 DilO2 DilO1 (c) 2007 Nanotron Technologies GmbH. VDDD VDDA Digital Analog Figure 1: nanoNET TRX (NA1TR8) block diagram - simplified VSSD TxA TxB TX RX TxRx RxA RxB VSSA VSSD AGCCap IfOutN IfOutP IfInN1 IfInN2 IfInP2 IfInP1 Complementary Dispersive Delay Line DS1804C (CDDL) NA-03-0111-0239-2.09 Page 3 1 Chip Summary nanoNET TRX Transceiver (NA1TR8) Datasheet 1.3 Sample Application The following application is an example of the nanoNET TRX Transceiver used with a temperature measurement and control device. Shaded area is recommended circuitry Bandpass Filter Balun VDDA VCC IfOutN RxA RxB IfOutP VDDA VSSA VSSA VSSA VSSA VDDA TxA 41 44 VDDA Xtal2B Xtal2A Xtal1A Xtal1B TxRx VSSD CIrq CReset SpiSsn VDDDCap 1 2 3 4 5 6 7 8 9 10 11 12 VDDD 43 42 TxB 40 39 38 37 36 35 34 33 32 31 30 29 28 VDDA IfInN1 IfInP1 VSSA IfInP2 IfInN2 AFCCap AGCCap VSSD PowerUpReset CVccExt Port B Port C Port A CDDL 1804 nanoNET TRX (NA1TR8) 27 26 25 24 23 13 VSSD 14 SpiTxD 15 SpiClk 16 SpiRxD 17 DilO1 18 DilO2 19 DilO3 20 DilO4 21 VSSD 22 VDDD + VCC Actuator Microcontroller Temperature Control Unit Note: Pin 20 (DilO4) 32.768 kHz clock operating after reset/power up. VCC + - Temperature Sensor Figure 2: Example application showing recommended circuitry Note: A full description of the sample application and PCB layout is provided in Appendix 1: Sample Application on page 27. Page 4 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. General Description nanoNET TRX Transceiver (NA1TR8) Datasheet 2 2 General Description Programmable Digital Support Block A programmable support block is provided, which consists of a real time clock, wake up circuitry, power management, low battery voltage measurement, and several adjustment and calibration functions for the analog part of the transceiver. The digital IO pin number 4 (DilO4) on the chip provides a 32.768 kHz clock for use by an external microcontroller on chip startup. It can be switched off after power up if not needed or it can be programmed to operate in another frequency (32.768 kHz or from 125 kHz to 16 MHz). Furthermore, the three other digital IO pins (DilO1, DilO2, DilO3) provided by the chip can also be programmed to operate in a frequency in the same range as DilO4. Moreover, all important functions of this block can be setup and controlled by an application software. A Receive Signal Strength Indicator (RSSI) is also provided, which can be supported and controlled by the application. This RSSI value is required when CSMA is implemented and can be used, for example, to indicate when the air interface is free or busy. The bit processing methods of the nanoNET chip include: + + The nanoNET IC is a extremely low power, highly integrated mixed signal chip utilizing Chirp Spread Spectrum (CSS), a novel wireless communication technology developed by Nanotron Technologies. Fully Integrated Chip The nanoNET chip is a fully integrated transceiver consisting of: + + a complete analog receiver (from antenna input to the demodulated digital data output). a complete transmitter (from digital data input to RF power amplifier output which can be directly connected to the antenna input) with additional support for an external power transistor. An external transistor or amplifier can boost transmission power from, for example, +8 dBm to +20 dBm (6.3 mW to 100 mW respectively). a programmable digital controller communicating with an external microcontroller via a serial peripheral interface (SPI). This controller incorporates a baseband controller and a Medium Access Controller (MAC). The baseband controller performs the processing of data (framing, error correction, en/decryption, and so on) while the MAC controller applies CSMA/CA, TDMA or hybrid-access schemes for medium access. + About Chirp Spread Spectrum Using CSS, this chip produces Upchirps and Downchirps with a symbol duration of Tsymbol = 1s and an effective frequency bandwidth of Bchirp = 64 MHz. CSS enables the development of different systems where application software can select physical data rates of 500 kbps, 1 Mbps, or 2 Mbps. Scrambling CRC (Cyclic Redundancy Check) generation and checking (CRC types include: ISO/ IEC3309, CCITT X.25, X.75, ETS 300 125 / IEC 60870-5-1 / CCITT-32) 128 bit encryption/decryption (stream cipher with support of one time pads) FEC (forward error correction) block coded + + Upchirp Downchirp Scrambling, encryption/decryption, and FEC can be enabled by the application, while the CRC type is selectable. Transmission power can be programmed by the application and can be reduced in steps (from maximum +8 dBm) in a range of Gain 35 dB. This means that the transmission power can vary from 27 dBm to +8 dBm without any additional external power amplifier or attenuator. Receiver Sensitivity The sensitivity of the nanoNET TRX Transceiver is defined by the raw data mode (data not coded or encrypted in anyway) where BER = 0.001. Sensitivity is Psensitivity = -92 dBm or better. For an isotropic antenna, link budget is equal to Alink_budget = 100 dB. NA-03-0111-0239-2.09 Page 5 This IC is designed in such a way that only a minimum number of external elements are required to develop a fully operational bi-directional wireless communication node. Even very slow microcontrollers can work together with this high speed transceiver, due to its use of FIFOs (First In, First Out). The nanoNET chip provides two buffers (a 1024 bit receive buffer and a 1024 bit transmit buffer) dedicated to storing the payload of either received packets or ready to be transmitted data packets. These buffers can be accessed independently of each other - the receive buffer can receive data from the antenna while the transmit buffer can simultaneously be filled with data for the next packet transmission. (c) 2007 Nanotron Technologies GmbH. 3 3 Block Diagram nanoNET TRX Transceiver (NA1TR8) Datasheet Block Diagram Antenna (optional impedance matching circuits) TxRx RxA TX RX DPA LNA PGC Analog IQ Modulator RxB SMIX VGA TxA TxB Digitally Controlled Oscillator I Q TX FDCO+ TX FDCORX FDCO+ RX FDCOFDCO CDV IfOutN IfInP1 IfInN1 IfInP2 IfInN2 LPF DAC DAC LPF 10:1 Divider FDCO/10 RC Oscillator VDDA Xtal2A Xtal2B Xtal1A Xtal1B 16 MHz 32.768 kHz LPF POMD 1 2 3 4 LPF POMD AGCCap RX Threshold AGC VSSA COMP COMP DilO1 DilO2 DilO3 DilO4 VSSD Radio Control Register and Radio Calibration Bit Detector Power Management MAC State Machine PowerUp Reset Digital Bit Processing (CRC, Scrambling, FEC, Encryption, Decryption) RTC Wake Up Timer Digital FIFO VSSD VDDD VDDCap Microcontroller Management Microcontroller Interface CVccExt CReset CIrq SpiClk SpiSsn SpiRxD SpiTxD Figure 3: nanoNET TRX Transceiver block diagram (simplified) Page 6 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Complementary Dispersive Delay Line DS1804C (CDDL) IfOutP Absolute Maximum Ratings nanoNET TRX Transceiver (NA1TR8) Datasheet 4 4 Absolute Maximum Ratings Table 2: Absolute maximum ratings Valuea Parameter Units Item Maximum received power Temperatures Operating temperature (operating ambient temperature range) Operating junction temperature (operating junction temperature range in TX mode) Operating junction temperature (operating junction temperature range in RX mode) Storage temperature (storage temperature range) Reflow solder temperature (lead-free package) Total power dissipation Supply voltage (VDDA, VDDD) -20 dBm 5.1 5.2 +85 C 5.3 +95 C 5.4 +90 C 5.5 +125 +242 450 3.6 C C mW V 5.6 5.7 5.8 5.9 a. It is critical that the ratings provided in Absolute Maximum Ratings be carefully observed. Stress exceeding one or more of these limiting values may cause permanent damage to the device. 5 Nominal Conditions + Nominal conditions are as specified below, except otherwise specified: + Reference design (for measurement purposes only) has been used. See Reference Design on page 33. Tjunct = 30 C VSSA = VSSD = GND VDDA = VDDD = 3.0 V Transmission/reception @ 1 Mbps and up/down chirp mode. Raw data mode: no CRC, no FEC, no encryption, no bit scrambling. BER = 0.001 during receive period. RF output power during transmit phase = 6.3 mW (+8 dBm) EIRP measured during continuous transmission. All RF ports are matched according to this specification. + + For range measurement, two identical nanoNET systems equipped with antennae representing 1.6 dBi gain have been used. Antennae with vertical E-polarization and omnidirectional horizontal radiation pattern have been used. Outdoor (open space) range measurement was performed on flat terrain, without vegetation higher than 0.2 m above ground, and without visible obstacles and other objects that could reasonably influence measurement results. Antennae for both nanoNET systems have been located 1.5 m above ground. Indoor range measurement was performed inside typical European office building where both nanoNET systems were located on the same floor. All RF powers (TX output power, RX sensitivity, etc.) are measured on the IC terminals (pins) under impedance matched conditions. NA-03-0111-0239-2.09 Page 7 + + + + + + + + + (c) 2007 Nanotron Technologies GmbH. 6 6 Pin Connections (MLF44 7X7 mm) nanoNET TRX Transceiver (NA1TR8) Datasheet Pin Connections (MLF44 7X7 mm) VDDA IfOutP 34 33 VDDA 32 IfInN1 31 IfInP1 30 VSSA 29 IfInP2 28 IfInN2 27 AFCCap 26 AGCCap 25 VSSD 24 PowerUpReset 23 CVccExt 12 VDDD 13 VSSD 14 SpiTxD 15 SpiClk 16 SpiRxD 17 DiIO1 18 DiIO2 19 DiIO3 20 DiIO4 21 VSSD 22 VDDD (c) 2007 Nanotron Technologies GmbH. VSSA VSSA VSSA VSSA 36 Pin 1 Identification IfOutN 35 RxA 38 RxB 37 TxA 41 TxB 40 44 VDDA Xtal2B Xtal2A Xtal1A Xtal1B TxRx VSSD Clrq CReset 1 2 3 4 5 6 7 8 9 43 42 39 NA1TR8 AT46205-1 nanoNET TRX (NA1TR8) A41T6886 452 DVX SpiSsn 10 VDDDCap 11 Figure 4: nanoNET TRX (MLF44) pin connections Note: The pinning of the nanoNET TRX Transceiver described in this datasheet includes a 44 pin package. See Package Dimensions on page 23. 7 Pin Description Table 3: nanoNET TRX Transceiver (NA1TR8) pin description Pin 1 2 3 4 5 Name VDDA Xtal2B Xtal2A Xtal1A Xtal1B Type - Input Input Input Input Description Power supply for analog part. Input for 32.768 kHz quartz oscillator. Input for 32.768 kHz quartz oscillator. Input for 16 MHz reference quartz oscillator. Input for 16 MHz reference quartz oscillator. External power amplifier control pin. Allows the use of an external amplifier. When activated by the register RfTxExtPampEnOutEn, this pin goes to low during TX mode. During nontransmit cycles, it has high-impedance. When not activated, it always has high-impedance. Ground (digital). Interrupt request to external microprocessor. Reset for external microprocessor. 6 TxRx Output 7 8 9 VSSD CIrq CReset - Output Output Page 8 NA-03-0111-0239-2.09 Pin Description nanoNET TRX Transceiver (NA1TR8) Datasheet 7 Table 3: nanoNET TRX Transceiver (NA1TR8) pin description Pin Name Type Description Serial Peripheral Interface Slave Select (low active) is externally asserted before the microcontroller (master) can exchange data with the nanoNET TRX IC. Must be low before data transactions and must stay low for the duration of the transaction. VDDD blocking capacitor pad used for blocking the internal digital power supply by at least one 100nF capacitor connected to VSSD. Power supply for digital part. Ground (digital). Serial Peripheral Interface Transmit Data (MISO). Serial Peripheral Interface Clock is generated by the microcontroller (master) and synchronizes data movement in and out of the device through the SpiRxD and SpiTxD respectively. Serial Peripheral Interface Receive Data (MOSI). Digital Input or Output (programmable), line 1. 10 SpiSsn Input 11 VDDDCap - 12 13 14 VDDD VSSD SpiTxD - - Output 15 SpiClk Input 16 17 SpiRxD DiIO1 Input Input/ Output Input/ Output Input/ Output 18 DiIO2 Digital Input or Output (programmable), line 2. 19 DiIO3 Digital Input or Output (programmable), line 3. Digital Input or Output (programmable), line 4. 20 DiIO4 Input/ Output Note: 32.768 kHz clock operating on this pin after reset/power up. Ground (digital). Power supply for digital part. Power supply for external microprocessor Power up reset line. Ground (digital). Capacitor for AGC. Capacitor for AFC. IF Input (channel 2, down-chirp) - connected to port B of Complementary Dispersive Delay Line (CDDL), line N. IF Input (channel 2, down-chirp) - connected to port B of Complementary Dispersive Delay Line (CDDL), line P. Ground (analog). 21 22 23 24 25 26 27 28 VSSD VDDD CVccExt Power UpReset VSSD AGCCap AFCCap IfInN2 - - Output Input Input - - Input 29 30 IfInP2 VSSA Input - (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 9 7 Pin Description nanoNET TRX Transceiver (NA1TR8) Datasheet Table 3: nanoNET TRX Transceiver (NA1TR8) pin description Pin 31 Name IfInP1 Type Input Description IF Input (channel 1, up-chirp) - connected to port C of Complementary Dispersive Delay Line (CDDL), line P. IF Input (channel 1, up-chirp) - connected to port C of Complementary Dispersive Delay Line (CDDL), line N. Power supply for analog part. IF Output - connected to port A of Complementary Dispersive Delay Line (CDDL), line P. IF Output - connected to port A of Complementary Dispersive Delay Line (CDDL), line N. Ground (analog). Receiver input. Receiver input. Ground (analog). Transmitter output. Transmitter output. Ground (analog). Ground (analog). Power supply for analog part. 32 33 34 IfInN1 VDDA IfOutP Input - Output 35 36 37 38 39 40 41 42 43 44 IfOutN VSSA RxB RxA VSSA TxB TxA VSSA VSSA VDDA Output - Input Input - Output Output - - - Page 10 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Electrical Specifications nanoNET TRX Transceiver (NA1TR8) Datasheet 8 8 Electrical Specifications 8.1 General DC Parameters Table 4: General DC parameters Parameter Operating frequency range Supply voltage range VDDA VDDD Modulation method Operating temperature range Supply currenta Power down (Internal Real Time Clock Active) Power up Standby Ready RX (up/down) TX (Pout = +8 dBm) Supply Voltage VDDA supply voltage VDDD supply voltage VIL (low level input voltage)b VIH (high level input voltage)b VOL (low level output voltage) VOH (high level output voltage) IOH (high output current) IOL (low output current) Min 2400 2.4 - -40 Typical 2441.750 3.0 Chirp +25 Max 2483.5 3.6 - +85 Unit MHz V - C - - - - - - 1.5 150 2.4 9.6 35 82 4 200 2.6 10.5 - - A A mA mA mA mA 2.4 2.4 -0.3 2.0 - 2.4 -2 2 3 3 - - - - - - 3.6 3.6 0.8 VDDD + 0.3 0.4 - - - V V V V V V mA mA a. Under nominal conditions, except otherwise specified. b. Given only for Vdd = 3.0 to 3.6 (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 11 8 Electrical Specifications nanoNET TRX Transceiver (NA1TR8) Datasheet 8.2 Transmitter (TX) Parameters Under nominal conditions unless specified. See Nominal Conditions on page 7. Table 5: Transmitter (TX) parameters Parameter Transmitter nominal output powera Transmitter output power controlled in steps Dynamic for output power control Number of steps for output power control Load impedance Type of load Transmitter spurious emissionsb (1 GHz ... 12.5 GHz) Transmitter carrier suppression Carrier frequency Carrier frequency accuracy Chirp sample frequency Reference quartz oscillator Quartz operating frequency Recommended accuracy Maximum equivalent serial resistance of the quartz resonator Load capacitance of quartz resonator Min 6 Typical 8 Max - Unit dBm - - - - - - - -0.5 - 39 19 150 Balanced - -20 2441.750 0.275 244.175 - - - - -80 - - +0.5 - dB - dBm/Hz dBc MHz MHz MHz - - - 16 50 - - - 50 MHz ppm pF - 27 - a. The transmitter output power is the average power related to the peak envelope power of the chirp waveform. (Due to shape of the waveform envelope, the measured average power of the chirp is about 1dB smaller than the peak envelope power.) b. The maximum transmitter output power has to be adjusted to 8 dBm to secure from overdrive. Page 12 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Electrical Specifications nanoNET TRX Transceiver (NA1TR8) Datasheet 8 8.3 Receiver (RX) Parameters Under nominal conditions unless specified. See Nominal Conditions on page 7. Note: The measurement results provided in this table were reached by using CDDL. For information on the CDDL, refer to the Complementary Dispersive Delay Line Datasheet. Table 6: Receiver (RX) parameters Parameter Receiver sensitivity @ 1 Mbps Receiver sensitivity @ 2 Mbps Input impedance @ 2.44 GHza Type of input Center frequency Gain from receiver input up to input to dispersive delay line (CDDL)a LO frequency LO frequency accuracy LO rejection noise PRX-LO @ LNA input pin Programmable frequency stepb IF frequency (center) IF frequency bandwidth (-3 dB)a (determined by CDDL) IF output impedance (balanced) @ 250 MHza Type of IF output Impedance of IF input 1 (balanced) @ 250 MHza Impedance of IF input 2 (balanced) @ 250 MHza Type of IF1, IF2 input Maximum received power a. Simulated results. b. The minimum change frequency of the LO. Min - - - - - - - -0.5 - - - 90 Typ -92 -86 7-j56 Balanced 2441.75 64 2691.75 0.275 - 500 250 - Max - - - - - - - 0.5 -40 - - - Unit dBm dBm - MHz dB MHz MHz dBm kHz MHz MHz - - - 100 Balanced 1.6 - - - - k - - - 1.6 Balanced - - - -20 k - dBm (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 13 8 Electrical Specifications nanoNET TRX Transceiver (NA1TR8) Datasheet 8.4 Digital Interface Parameters Under nominal conditions unless specified. See Nominal Conditions on page 7. Table 7: Digital sensor/actuator interface parameters Parameter Number of independent digital interfacesa Width of each interface Direction Type Value 4 1 Programmable In/Out (bi-directional, open-drain with pull-up) Unit Number bit - - a. At Pin number 4 (DilO4), 32.768 kHz clock operating after reset/power up. 8.5 Power Management and Sleep/Wake-Up Circuitry Parameters Under nominal conditions unless specified. See Nominal Conditions on page 7. Table 8: Power management and sleep/wake-up circuitry parameters Description Real Time Clock (RTC) Quartz operating frequency Recommended accuracy Load capacitance of quartz resonator Maximum equivalent serial resistance of quartz resonator RTC register length Epoch date Battery monitor Battery monitor voltage Min Typical Max Unit - - - 32.768 50 12.50 - - - kHz ppm pF - - - - 48 01.01.1970 50 - - k bit Date 2.4 2.7 3.6 V Basic dynamic performance (Note: Values in this section are simulation results only) Switch time from TX to RX (from Ack to Data mode) Switch time from TX to RX (from Data to Ack mode) Switch time from RX to TX (from Ack to Data mode) Switch time from RX to TX (from Data to Ack mode) - 24 - s - 8 - s - 24 - s - 8 - s Page 14 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Electrical Specifications nanoNET TRX Transceiver (NA1TR8) Datasheet 8 Table 8: Power management and sleep/wake-up circuitry parameters Description Turn-on time TX (user command received via SPI and begin of packet transmission) Turn-on time RX (user command received via SPI and begin of packet reception) Startup Time for 16 MHz XTAL until stable frequency generation Calibration time Min Typical Max Unit - 24 - s - 6 - s 1.5 - - 5 - ms ms .2 8.6 Interface to Digital Controller Parameters Under nominal conditions unless specified. See Nominal Conditions on page 7. Table 9: Interface to digital controller parameters Symbol Description Min Typical Max Unit Notes Maximum current output = 10mA / high impedance mode See footnotea See footnotea . CVccExt High current output / high impendance Voltage @ 10mA load VDD - 100 VDD - 20 VDD mV CReset CIRQ SpiRxD SpiClk, SpiSSn SpiTxD Push-pull, tristate Push-pull - - - - - - V V Input - - - V See footnotea Open-drain or push-pull - - - V See footnotea a. Vcc = 2.4V : VOH = 2.0V, VIH = 1.7V, VOL = 0.2V, VIL = 0.7V, Vcc = 3.0..3.6V : VOH = 2.4V, VIH = 1.7..2.0V, VOL = 0.2V, VIL = 0.8V Note: Level translator is required for 5V logic level microcontroller. (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 15 8 Electrical Specifications nanoNET TRX Transceiver (NA1TR8) Datasheet Intentionally Left Blank Page 16 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Timing Diagrams nanoNET TRX Transceiver (NA1TR8) Datasheet 9 9 Timing Diagrams Time values in the following diagrams are based on the values as shown in Power Management and Sleep/ Wake-Up Circuitry Parameters on page 14. 9.1 Switch Time from TX to RX (from Ack to Data mode) The switch time from TX to RX (from Ack to Data mode), tTxRxAckData, is 24 s. Tx A/B ... Ack Packet Rx A/B tTxRxAckData .. Data Packet Figure 5: Switch time from TX to RX (from Ack to Data mode) 9.2 Switch Time from TX to RX (from Data to Ack mode) The switch time from TX to RX (from Data to Ack mode), tTxRxDataAck, is 8 s. Tx A/B ... Data Packet Rx A/B tTxRxDataAck .. Ack Packet Figure 6: Switch time from TX to RX (from Data to Ack mode) 9.3 Switch Time from RX to TX (from Ack to Data mode) The switch time from RX to TX (from Ack to Data mode), tRxTxAckData, is 24 s. Rx A/B ... Ack Packet Tx A/B tRxTxAckData .. Data Packet Figure 7: Switch time from RX to TX (from Ack to Data mode) (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 17 9 Timing Diagrams nanoNET TRX Transceiver (NA1TR8) Datasheet 9.4 Switch Time from RX to TX (from Data to Ack mode) The switch time from RX to TX (from Data to Ack mode), tRxTxDataAck, is 8 s. Rx A/B ... Data Packet Tx A/B tRxTxDataAcl .. Ack Packet Figure 8: Switch time from RX to TX (from Data to Ack mode) 9.5 Turn-On Time TX The Turn-on time for TX, tTxTO, from the reception via SPI of a user command to the beginning of packet transmission is 24 s. Tx A/B SpiClk ... SpiRxD ... Csn Command requesting packet transmission tTxTO Packet transmission Figure 9: Turn-on time TX: time = tTxTO Page 18 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Timing Diagrams nanoNET TRX Transceiver (NA1TR8) Datasheet 9 9.6 Turn-On Time RX The Turn-on time for RX, tRxTO, from the reception via SPI of a user command to the beginning of packet reception is 6 s. SpiClk SpiRxD ... Csn Rx A/B ... Command requesting packet reception tRxTO Packet reception Figure 10: Turn-on time RX: time = tRxTO 9.7 16 MHz Crystal Start-Up Time The start-up time for the quartz oscillator until it reaches a stable frequency generation is within a range of 1.5 to 5 ms. See Power Management and Sleep/Wake-Up Circuitry Parameters on page 14. 9.8 LO Frequency Calibration Time The time for the Local Oscillator frequency calibration, is approximately 2 ms. See Power Management and Sleep/Wake-Up Circuitry Parameters on page 14. 9.9 SPI Bus Read and Write Timing The following timing diagrams shows the read and write timing of the SPI bus. For more details, see nanoNET TRX Serial Peripheral Interface Specifications. tLC tHC SpiClk tSRxD SpiRxD tSS SpiSsn Bit 0 ... tHRxD ... Bit N tHS ... Figure 11: SPI bus write timing (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 19 9 Timing Diagrams nanoNET TRX Transceiver (NA1TR8) Datasheet ... SpiClk tPDTxD SpiTxD ... tHTxD / tPTxDZ Bit 0 ... ... Bit N tHS SpiSsn ... ... Figure 12: SPI bus read timing The following table shows the SPI timing values. Table 6: SPI timing values Parameter fmax tLC tHC tSS tHS tSRxD tHRxD tPDTxD tHTxD tPTxDZ Min - 22 ns 22 ns 10 ns 5 ns 10 ns 5 ns - 2 ns - Max 16 MHz - - - - - 18 ns - 18 ns Comment SpiClk Low time SpiClk High time SpiClk SpiSsn Setup SpiSsn Hold SpiRxD Setup SpiRxD Hold SpiTxD Propagation Delay Drive SpiTxD Hold SpiTxD Propagation Delay High Impedance Page 20 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Output Power Control nanoNET TRX Transceiver (NA1TR8) Datasheet 10 10 Output Power Control The output power of the nanoNET TRX Transceiver can be set typically in a range of between -27 dBm to + 8 dBm. The following graphs show the range of possibilities. Nominal conditions except power supply voltage and RF output power. Figure 13: nanoNET TRX output power (pout[dBm] by register value) Figure 14: Total current consumption (IDDA[mA] by register value) (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 21 10 Output Power Control nanoNET TRX Transceiver (NA1TR8) Datasheet Figure 15: Total current consumption (IDDA[mA] by output power [dBm]) Page 22 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Package Dimensions nanoNET TRX Transceiver (NA1TR8) Datasheet 11 11 Package Dimensions The following shows the dimensions of MLF44 44 Pin 7x7 lead-free package. P Q M N A B Seating Plane H D E C G First Angle Projections Figure 16: MLF44 7x7 package dimensions Table 10: Package dimensions labels (unless specified, dimensions are in millimeters) Common Dimensions Label A B C D E G H M N P Q 0.80 - 0.00 0.18 4.55 4.55 Minimum Nominal 7.00 4.70 4.70 C/2 7.00 0.23 0.50 0.9 0.65 0.02 0.25 1.00 0.80 0.05 0.30 4.85 4.85 Maximum (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 23 12 12 Tape and Reel Information nanoNET TRX Transceiver (NA1TR8) Datasheet Tape and Reel Information An embossed tape and reel is used to facilitate automatic pick and place equipment feed requirements. The tape is used as the shipping container for the nanoNET TRX Transceiver (NA1TR8) and requires a minimum of handling. The antistatic/conductive tape provides a secure cavity for the product when sealed with the peel-back cover tape. 12.1 Reel Dimensions Reel Diameter 13" 1. Reel and hub size = 13 inch reel with 4 inch hub. Units Per Reel 2,500 Reel and Hub Size1 13/4 Includes flange distortion at outer edge:19.4 (0.764) Access hole at slot location: 40 (1.575) min. 1.5 (0.59) min. Measured at hub: 16.4 (0.646) nom. el Lab 330 (13.00) Arbor hole diameter: 13.0 (.512) 20.2 (0.795) min Measured at hub: 22.4 (0.882) max. Example Label Tape slot in core for tape start: 2.5 (0.098) min. width 10 (0.394) min. depth Note: Dimensions are in millimeters (inches are in brackets for reference purposes only). Hub diameter Figure 17: Reel dimensions 12.2 Tape Dimensions Package Type QFN (MLFP) Number of Leads 44 Nominal Package Size 7 x 7 x 0.9 mm Carrier Tape Width 16 mm Carrier Tape Pitch 12 mm Leader/Trailer Length1 EIA 1. The device loading orientation is in compliance with EIA-481. Carrier pitch 12 mm Tape width 16 mm nominal User direction of feed Figure 18: Tape dimensions Page 24 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Ordering Information nanoNET TRX Transceiver (NA1TR8) Datasheet 13 13 Ordering Information To order the product described in this datasheet, use the following information. Part Number Package Type Package Quantity RoHS Compliant1 Yes. A certificate of RoHS compliance is available from Nanotron Technologies on request. NA0108B MLF 44 7x7 mm Tape and reel 16 x 12 type 2,500 pieces per tape 1. The RoHS directive is "The Restriction of Hazardous Substances in Electrical and Electronic Equipment (ROHS) Directive (2002/95/EC)". The Directive aims to protect human health and the environment by restricting the use of certain hazardous substances in new equipment; and it complements the WEEE Directive. (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 25 13 Ordering Information nanoNET TRX Transceiver (NA1TR8) Datasheet Intentionally Left Blank Page 26 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Sample Application nanoNET TRX Transceiver (NA1TR8) Datasheet A1 A1 Sample Application A1.1 Recommended Circuitry The following application is an example of the nanoNET TRX Transceiver used with a temperature measurement and control device. Shaded area is recommended circuitry Bandpass Filter Balun VDDA VCC IfOutN RxA RxB IfOutP VDDA VSSA VSSA VSSA VSSA VDDA TxA 41 44 VDDA Xtal2B Xtal2A Xtal1A Xtal1B TxRx VSSD CIrq CReset SpiSsn VDDDCap 1 2 3 4 5 6 7 8 9 10 11 12 VDDD 43 42 TxB 40 39 38 37 36 35 34 33 32 31 30 29 28 VDDA IfInN1 IfInP1 VSSA IfInP2 IfInN2 AFCCap AGCCap VSSD PowerUpReset CVccExt Port B Port C Port A CDDL 1804 nanoNET TRX (NA1TR8) 27 26 25 24 23 13 VSSD 14 SpiTxD 15 SpiClk 16 SpiRxD 17 DilO1 18 DilO2 19 DilO3 20 DilO4 21 VSSD 22 VDDD + VCC Actuator Microcontroller Temperature Control Unit Note: Pin 20 (DilO4) 32.768 kHz clock operating after reset/power up. VCC + - Temperature Sensor Figure 19: Example application showing recommended circuitry (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 27 A1 Sample Application nanoNET TRX Transceiver (NA1TR8) Datasheet A1.2 Recommended PCB Layout for RF Part Figure 20: Recommended PCB layout for RF part: schematic 1 of 1 Page 28 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Sample Application nanoNET TRX Transceiver (NA1TR8) Datasheet A1 Top layer Layer 3 GND GND Top layer Layer 3 VCC VCC Figure 21: RF part: PCB board overview Figure 22: RF part: names (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 29 A1 Sample Application nanoNET TRX Transceiver (NA1TR8) Datasheet Antenna pads GND GND GND VCC VCC Figure 23: RF part: top layer Figure 24: RF part: layer 2 GND GND VCC Figure 25: RF part: layer 3 Figure 26: RF part: bottom layer Page 30 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Sample Application nanoNET TRX Transceiver (NA1TR8) Datasheet A1 A1.3 Recommended PCB Layout for IF Part Figure 27: Recommended PCB layout for IF part: schematic 1 of 1 The following describes the layout requirements for the IF part: + + VSSA pin is connected to the ground plan under the chip. Short connection between chip and CDDL, with minimal width of wires and minimal pad areas for minimal influence of PCB parasitics (do not implement 50 microstrip). Equal lengths of traces for better CMRR. External coil (L1 = 47 nH) placed directly between the input pads of CDDL (PORT A). Use 4 layer PCB (top layer = layer 1, GND = inner layer 2, GND = inner layer 3, and bottom layer = layer 4). Differential output from CDDL (Port C) + + + Top layer GND Layer 3 VCC Pin 1 CDDL (on top layer) Differential IF output Differential input to CDDL (Port A) Approx. 5mm nanoNET chip Differential output of CDDL (Port B) Figure 28: IF part: PCB board overview (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 31 A1 Sample Application nanoNET TRX Transceiver (NA1TR8) Datasheet Figure 29: IF part: names VCC GND GND Figure 30: IF part: top layer Figure 31: IF part: layer 2 GND GND Figure 32: IF part: layer 3 Page 32 NA-03-0111-0239-2.09 Figure 33: IF part: bottom layer (c) 2007 Nanotron Technologies GmbH. Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet A2 A2 Reference Design Figure 34: Reference design: schematic 1 of 3 (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 33 A2 Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet Figure 35: Reference design: schematic 2 of 3 Page 34 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet A2 Figure 36: Reference design: schematic 3 of 3 (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 35 A2 Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet Figure 37: Reference design: top layer Figure 38: Reference design: layer 2 Figure 39: Reference design: layer 3 Page 36 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet A2 Figure 40: Reference design: bottom layer Figure 41: Reference design: top layer names Figure 42: Reference design: bottom layer names (Inverted) (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 37 A2 Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet Figure 43: Reference design: layers, standard structure (example) Page 38 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet A2 A2.1 Reference Design Bill of Materials Table 11: Reference design bill of materials Part Manufacturer Product Number 2322 705 70104 CRG0402J1 0K-10 ARV341 -2K2-5 ARV341 -1M-5 ARV341100K-5 ARV341 -220R-5 2238 869 15478 B37923K50 50C660 CM05CG10 0D50AH Farnell Mira PHYCOMP 2238 869 15229 Farnell Mira PHYCOMP 2238 869 15101 2238 587 15618 2238 787 15636 2238 587 15623 Farnell 578-058 (abgek.) 8210/150 301-9184 8210/270 301-9226 Distributor Order Number 195-273 Description Label Value Qty Package Company Company Resistors R1 100k 1 0402 PHYCOMP Farnell R2, R4 10k 2 0402 MEGGITT Farnell 389-8659 RA1 2k2 1 4R_ARRAY PHYCOMP Farnell 325-7447 RA2 1M 1 4R_ARRAY PHYCOMP Farnell 325-7605 RA3 100k 1 4R_ARRAY PHYCOMP Farnell 325-7540 RA4 220R 1 4R_ARRAY PHYCOMP Farnell 325-7381 Capacitors C15, C16 4.7pF 2 0402 PHYCOMP Farnell 301-9147 C21, C22 5.6pF 2 0402 Epcos C11 C20 C8, C9 C10, C13 C1, C7, C18 C12 10pF 15pF 22pF 27pF 100pF 1 1 2 2 3 0402 0402 0402 0402 0402 AVX 470pF 1 0402 PHYCOMP Farnell 301-9366 C2, C6 1nF 2 0402 PHYCOMP Farnell 301-9380 C3 C4, C5 C14, C17 C19, C23 C24, C26 C27, C28 C25 Inductors L1 L2, L5 L3 L4 10nF 1 0402 PHYCOMP Farnell 301-9275 100nF 10 0402 PHYCOMP 2238 787 19849 Farnell 301-9482 10uF/10V 4.7nH 2.7nH 6.8nH 5.6nH 1 1 2 1 1 3216 0402 0402 0402 0402 AVX Wurth Wurth Wurth Wurth TAJA106K0 10R 744784047 744784027 744765068 744784056 Farnell Wurth Wurth Wurth Wurth 197-130 744784047 744784027 744765068 744784056 (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 39 A2 Reference Design nanoNET TRX Transceiver (NA1TR8) Datasheet Table 11: Reference design bill of materials Part Manufacturer Product Number 74478447 74279269 748420245 748351124 7488920245 DS1804C "31M32712.5pF,20p pm" "32 M 16032 ,-40 ..+85" Distributor Order Number 74478447 74279269 748420245 748351124 7488920245 DS1804C 31M327 12.5pF, 20ppm 32 M 160 -32, -40 ..+85 Description Label L6 L7 Value 47nH 742 792 69 50R:150R 748351124 WE-ANT20245 CDDL_1804 Qty 1 1 1 1 1 1 Package 0402 0603 BAL0805 WE-BPF1008 WE_ANT20245 13.3 X 6.5 Company Wurth Wurth Wurth Wurth Wurth Nanotron Company Wurth Wurth Wurth Wurth Wurth Nanotron Balun Band pass filter SMD antenna CDDL BAL1 BP1 ANT1 DDL1 Quartz Q1, Q3 32.768kHz 2 31SMX SMI DEQTRON Q2 16.0MHz 1 32SMX SMI DEQTRON Surface mount shield: 27x27x5.08 surface mount coin cell holder: 20mm nanoNET transceiver 8-bit microcontroller Connectors SHIELD1 SHIELD_BMIS _103 1 BMIS-103 Laird Technologies BMIS-103 Laird Technologies BMIS-103 BAT1 BAT_CLIP20 1 BAT_CLIP20 Keystone 1061 Farnell 302-9773 IC1 NA1TR8 1 VFQFPN7X7 Nanotron NA1TR8 Atmega 16L-8MI 142-0701 -851 TMS-106 -03-G-S_RA DF17A(2.0) -40DP -0.5V(50) TMS-105 -03-G-S_RA TMS-104 -03-G-S_RA TMS-102 -03-G-S_RA Nanotron NA0108B Atmega 16L-8MI 363-4690 TMS-10601-G-S_RA DF17A(2.0) -40DP -0.5V(50) TMS-105 -01-G-S_RA TMS-104 -01-G-S_RA TMS-10201-G-S_RA IC2 ATMEGA16L 1 MLF44 JOHNSON _JACK_GND_2 CON_TMS _06X1_L_HEA CON_DF17 _40P_R05 _HEA CON_TMS _05X1_L_HEA CON_TMS _04X1_L_HEA CON_TMS _02X1_L_HEA ATMEL MSC RS Components SAMTEC X1 SMA-f 1 VITELEC X2 06X1 1 SAMTEC X3 CON_DF17 _40P_HEA 1 HIROSE MSC X4 05X1 1 SAMTEC SAMTEC X5 04X1 1 SAMTEC SAMTEC X6 02X1 1 SAMTEC SAMTEC Page 40 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. Abbreviations nanoNET TRX Transceiver (NA1TR8) Datasheet A3 A3 Abbreviations A C CIrq CReset CVcc CVccExt F H s AC Ack ADC ADD AFC AGC ASIC B B BA BALUN BCH BER BOM bps C C C CCITT CDDL C/I Clk CRC CMMR CMOS CS CSMA CSMA/CA CSS CSS Mode DAC Data dB dBi DBO-CSS dBm dBr DC DiIO DPA DPD DUT Eb EIRP ESD FCD FCM FDMA FEC FET FHSS FIFO FS GBWP GHz GND HBM I IC IEC IF I/O IOH IOL IRQ IQ Microampere (unit of electrical current) Microcontroller External microprocessor interrupt request External microprocessor reset External microprocessor battery supply voltage External microprocessor power supply voltage Microfarad (unit of electrical capacitance) MicroHenry (unit of electrical resistance) Microseconds (unit of time) Ohm (unit of electrical resistance) Alternating Current Acknowledgement packet type Analogue to Digital Converter Actor/sensor Automatic Frequency Control Automatic Gain Control Application Specific-IC Battery Frequency bandwidth Balun (See BALUN) Balun Unbalanced Bose-Chaudhuri-Hochquenghem Bit Error Rate Bill of Materials Bits per second (unit of data throughput) Capacitor Power of signal carrier Celsius (unit of temperature) Comite Consultatif International Telephonique et Telegraphique Complementary Dispersive Delay Line Carrier to Interference Ratio Clock Cyclic Redundancy Check Common Mode Rejection Ratio Complementary Metal Oxide Semiconductor Chip Select Carrier Sense Multiple Access Carrier Sense Multiple Access/Collision Avoidance Chirp Spread Spectrum Chirp Spread Spectrum Mode Digital to Analog Converter Data packet type Decibel (ratio between two values, such as signal power, voltage, or current levels in logarithmic scale) Gain referenced to isotropic antennae Differentially Bi-Orthogonal Chirp Spread Spectrum dB referenced to one milliwatt (10-3W = 1mW) Decibels relative to reference level Direct Current Digital Input/Output Differential Power Amplifier Differential Peak Detector Device Under Test Energy of bit Effective Isotropic Radiated Power Electrostatic Discharge Folded Chirp Detector Folded Chirp Mixer Frequency Division Multiplex Access Forward Error Correction Field Effect Transistor Frequency Hopping Spread Spectrum First In First Out Full Scale Gain Bandwidth Product Gigahertz (unit of frequency) Ground Human Body Model Inline Integrated Circuit International Electrotechnical Commission Intermediate Frequency Input/Output Output current high Output current low Interrupt request In-phase, Quadrature ISM ISO k kHz kpbs L LNA LO LPF LSB mA Mbaud Mbps MAC MHz MISO MIX MLF MOD MOSI MUX mW NC nF nH No ns OEM OSC OP OTA PA PAE PAMP PDK PEP pF PFD PLL Industrial Scientific Medical International Organization for Standardization KiloOhms (unit of electrical resistance) KiloHertz (unit of frequency) Kilobits per second (unit of data throughput) Inductance Low Noise Amplifier Local Oscillator Low Pass Filter Least Significant Bit MegaOhms (unit of electrical resistance) Milliampere (unit of electrical current) Megabauds Megabits per second (unit of data throughput) Medium Access Control MegaHertz (unit of frequency) Master In, Slave Out Mixer Micro Lead Frame Package Modulator Master Out Slave In Multiplexer milliwatt (unit of power) Not Connected Nanofarad (unit of electrical capacitance) NanoHenry (unit of electrical inductance) Power spectral density of thermal noises Nanosecond (unit of time) Original Equipment Manufacturer Oscillator Operational Amplifier Operational Transconductance Amplifier Power Amplifier Power Added Efficiency Power amplifier Process Development Kit Peak Envelope Power Picofarad (unit of electrical capacitance) Phase Frequency Detector Phase Locked Loop Power Out parts per million Printed Circuit Board Programmable Gain Amplifier Power Gain Control Peak Over Mean Detector Power Supply Rejection Ratio Proportional to Absolute Temperature Quadrature Quad Flat No-lead Resistor Radio Frequency Radio Frequency IDentification Read Only Memory Radio Signal Strength Indicator Real Time Clock Receiver Switch/button Successive Approximation Register Surface Acoustic Wave Symmetrical Double Sided Two Way Ranging Symmetric Low Noise Amplifier Symmetric Mixer Signal to Noise Ratio Serial Peripheral Interface Serial peripheral interface Clock Serial peripheral interface Slave select Serial peripheral interface Receive Data Serial peripheral interface Transmit Data Static RAM Single Side Band Time constant Duration time of the chirp waveform To Be Determined Time Division Multiple Access Temperature of junction Total Harmonic Distortion Transmission Line Transceiver Transistor-Transistor Logic Transmitter Pout ppm PCB PGA PGC POMD PSRR PTAT Q QFN R RF RFID ROM RSSI RTC RX S SAR SAW SDS-TWR SLNA SMIX SNR SPI SpiClk SpiSsn SpiRxD SpiTxD SRAM SSB t T TBD TDMA Tjunct THD TRL TRX TTL TX (c) 2007 Nanotron Technologies GmbH. INTERNAL NA-03-0111-0239-2.09 Page 41 A3 V VIH VIL VOH VOL VCA VCC VCO VDDA Abbreviations nanoNET TRX Transceiver (NA1TR8) Datasheet Volts (unit of electrical potential) Input voltage for High level Input voltage for Low level Output voltage for High level Output voltage for Low level Voltage Controlled Amplifier Battery supply voltage Voltage Controlled Oscillator Power supply for analog part VDDD VFQFPN VGA VSSA VSSD VSWR XTAL XCO Power supply for digital part Very thin Fine pitch Quad Flat Pack Nolead Package Variable Gain Amplifier Analog ground Digital ground Voltage Standing Wave Ratio Crystal Xtal (crystal) Controlled Oscillator Special Symbols CDS CGD CGS Cr D EG fT G GaAs Ge gm H IDSS k q rDS RMS Rth S Sij Si Drain-source capacitance Gate-drain capacitance Gate-source capacitance Feedback capacitance Drain Energy gap Transit frequency Gate, Gradient Gallium-Arsenide Germanium Short-circuit forward transconductance Hybrid parameter Drain current with VGS=0 Boltzmann constant, 1.38*10-23J/K or stability factor Electron charge, 1.602*10-19As Differential drain-source-resistance Root Mean Square Thermal resistance in K/W Source Scattering parameters Silicon T Tj TC Vpp VD VDS VGS VT VTO a b d eo r reff G o o m w D S Period Junction Temperature Temperature coefficient, e.g. TK(IDSS) Peak-to-Peak Voltage Diffusion voltage Drain-Source voltage Gate-Source voltage Thermal voltage, VT=kT/q Threshold voltage, Turn-on voltage Angle Current gain Partial derivative Dielectric constant of a vacuum Dielectric constant relative to a vacuum Effective relative dielectric constant Reflection coefficient Permeability of a vacuum Permeability relative to a vacuum Charge carrier mobility Angular frequency Difference Sum Page 42 NA-03-0111-0239-2.09 INTERNAL (c) 2007 Nanotron Technologies GmbH. Revision History nanoNET TRX Transceiver (NA1TR8) Datasheet Revision History Version 1.00 1.01 1.02 1.03 1.04 Date 2003-10-11 2003-12-16 2004-01-28 2004-03-15 2004-04-08 Description/Changes Initial Release from internal document. Updated images, chip designations on page 19, 20. Bill of Materials table updated and package dimensions added. New template added, BOM updated, Example Application updated. Example application diagram updated, BOM updated, minor textual changes. Title changed to Datasheet. Pinning has changed from 48 pins to 44 pins. The Pin diagram and descriptions have been changed accordingly. Layout suggestion of CDDL connection added. Current consumption for TX changed to 78 mA. Other minor changes. Datasheet updated to latest data. Minor textual changes. Document sign-off table added. Example application updated. BOM table updated. Block diagram updated. Parameters in this version for NA2TR1 chip. Nominal Conditions section added. General description updated. Modifications made to block diagram. Naming of Pin 2 and 3 corrected. Content of Absolute Maximum Ratings table modified. All parameters checked and reviewed. Example Application diagrams improved and updated. Both Bill of Materials tables modified. New section 10 added. Document status table added. Document status added. Chip values updated for NA1TR8. New feature: Programmable clock output at digital output. Template updated; Nominal conditions clarified (last point added); block diagram modified; term quartz oscillator used throughout; 32.768 kHz used throughout; VDDD, VDDA supply voltage typical added; Item 8.2.3 changed; timing diagrams added; output power graphs added; example application simplified and BOM deleted; new schematics and layout for recommended PCB layout for RF and IF part; RoHs directive data added; tape and reel information added; ordering information added; reference design appendix added. Note: The typical value for Item 8.1.10 supply current TX (Pout = +8 dBm) has been updated from 78 mA to 82 mA. 2.00 2004-08-09 2.01 2.02 2.03 2004-09-10 2004-09-17 2004-11-05 2.04 205-03-25 2.05 2005-04-07 2.06 2005-07-15 2.06 2005-07-15 Item 7.11 updated - description of pin clarified; clock signal provided by chip clarified; error corrected in SPI bus read timing diagram (SpiTxD); Minor textual changes; clarification of clock signal that can be provided by the chip (i.e., 32.768 kHz or from 125 kHz to 16 MHz); description of pin 11 VDDDCAP clarified; SpiTxD changed to SpiRxD in both Turn-on time RX and TX figures; error in SPI bus read timing figure fixed; Pin TxRx purpose clarified and elaborated; company address updated. Minor textual changes. Template changes; addition of chip summary section. 2.07 2005-10-21 2.08 2.09 2007-02-20 2007-12-20 (c) 2007 Nanotron Technologies GmbH. NA-03-0111-0239-2.09 Page 43 About Nanotron Technologies GmbH nanoNET TRX Transceiver (NA1TR8) Datasheet About Nanotron Technologies GmbH Nanotron Technologies GmbH develops world-class wireless products for demanding applications based on its patented Chirp Spread Spectrum - an innovation that guarantees high robustness, optimal use of the available bandwidth, and low energy consumption. Since the beginning of 2005, Nanotron's Chirp technology has been a part of the IEEE 802.15.4a draft standard for wireless PANs which require extremely robust communication and low power consumption. ICs and RF modules include the nanoNET TRX, the nanoLOC TRX, and ready-to-use or custom wireless solutions. These include, but are not limited to, industrial monitoring and control applications, medical applications (Active RFID), security applications, and Real Time Location Systems (RTLS). nanoNET is certified in Europe, United States, and Japan and supplied to customers worldwide. Headquartered in Berlin, Germany, Nanotron Technologies GmbH was founded in 1991 and is an active member of IEEE, the ZigBee alliance, and ISA-SP100. Further Information: For more information about this product and other products from Nanotron Technologies, contact a sales representative at the following address: Nanotron Technologies GmbH Alt-Moabit 60 10555 Berlin, Germany Phone: +49 30 399 954 - 0 Fax: +49 30 399 954 - 188 Email: sales@nanotron.com Internet: www.nanotron.com Page 44 NA-03-0111-0239-2.09 (c) 2007 Nanotron Technologies GmbH. |
Price & Availability of NA1TR8
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |