![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 96101 AUTOMOTIVE MOSFET Typical Applications l l l IRF7103QPBF HEXFET(R) Power MOSFET Anti-lock Braking Systems (ABS) Electronic Fuel Injection Power Doors, Windows & Seats Advanced Process Technology Dual N-Channel MOSFET Ultra Low On-Resistance 175C Operating Temperature Repetitive Avalanche Allowed up to Tjmax Automotive [Q101] Qualified Lead-Free VDSS 50V RDS(on) max (mW) 130@VGS = 10V 200@VGS = 4.5V ID 3.0A 1.5A Benefits l l l l l l l S1 G1 S2 G2 1 2 3 4 8 7 6 5 D1 D1 D2 D2 Description Specifically designed for Automotive applications, these HEXFET(R) Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET's are a 175C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. The efficient SO-8 package provides enhanced thermal characteristics and dual MOSFET die capability making it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available Top View SO-8 in Tape & Reel. Absolute Maximum Ratings Parameter ID @ TC = 25C ID @ TC = 70C IDM PD @TC = 25C VGS EAS IAR EAR dv/dt TJ, TSTG Continuous Drain Current, VGS @ 4.5V Continuous Drain Current, VGS @ 4.5V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Junction and Storage Temperature Range Max. 3.0 2.5 25 2.4 16 20 22 See Fig.16c, 16d, 19, 20 12 -55 to + 175 Units A W mW/C V mJ A mJ V/ns C Thermal Resistance Symbol RJL RJA Parameter Junction-to-Drain Lead Junction-to-Ambient Typ. --- --- Max. 20 50 Units C/W www.irf.com 1 07/23/07 IRF7103QPBF Electrical Characteristics @ TJ = 25C (unless otherwise specified) V(BR)DSS V(BR)DSS/TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Min. 50 --- --- --- 1.0 3.4 --- --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.057 --- --- --- --- --- --- --- --- 10 1.2 2.8 5.1 1.7 15 2.3 255 69 29 Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 130 VGS = 10V, ID = 3.0A m 200 VGS = 4.5V, ID = 1.5A 3.0 V VDS = VGS, ID = 250A --- S VDS = 15V, ID = 3.0A 2.0 VDS = 40V, VGS = 0V A 25 VDS = 40V, VGS = 0V, TJ = 55C 100 VGS = 20V nA -100 VGS = -20V 15 ID = 2.0A --- nC VDS = 40V --- VGS = 10V --- VDD = 25V --- ID = 1.0A ns --- RG = 6.0 --- RD = 25 --- VGS = 0V --- pF VDS = 25V --- = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units --- --- --- --- 35 45 3.0 A 12 1.2 53 67 V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25C, IS = 1.5A, VGS = 0V TJ = 25C, IF = 1.5A di/dt = 100A/s D S Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width 400s; duty cycle 2%. Surface mounted on 1 in square Cu board Starting TJ = 25C, L = 4.9mH TJ 175C ISD 2.0A, di/dt 155A/s, VDD V(BR)DSS, Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive avalanche performance. RG = 25, IAS = 3.0A. (See Figure 12). 2 www.irf.com IRF7103QPBF 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 100 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 10 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 4.5V 4.5V 10 1 20s PULSE WIDTH Tj = 25C 1 0.1 1 10 100 20s PULSE WIDTH Tj = 175C 0.1 0.1 1 10 100 VDS , Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100.00 2.5 ID, Drain-to-Source Current () T J = 175C RDS(on) , Drain-to-Source On Resistance (Normalized) ID = 3.0A 2.0 10.00 T J = 25C 1.5 1.0 0.5 1.00 3.0 6.0 VDS = 25V 20s PULSE WIDTH 9.0 12.0 15.0 0.0 -60 -40 -20 0 VGS = 10V 20 40 60 80 100 120 140 160 180 VGS, Gate-to-Source Voltage (V) TJ , Junction Temperature ( C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3 IRF7103QPBF 10000 VGS = 0V, f = 1 MHZ Ciss = C + Cgd , C gs ds SHORTED Crss = C gd Coss = C + Cgd ds VGS , Gate-to-Source Voltage (V) 12 I D = 2.0A VDS = 40V VDS = 25V VDS = 10V 9 C, Capacitance(pF) 1000 Ciss 100 6 Coss Crss 3 10 1 10 100 0 0 3 6 9 12 VDS , Drain-to-Source Voltage (V) QG, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 10 100 ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) TJ = 175 C ID, Drain-to-Source Current (A) 10 1 1 TJ = 25 C 100sec 1msec 0.1 Tc = 25C Tj = 175C Single Pulse 0 1 10 10msec 0.1 0.4 V GS = 0 V 0.6 0.8 1.0 1.2 0.01 VSD ,Source-to-Drain Voltage (V) 100 1000 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF7103QPBF 3.0 VDS 2.4 RD VGS RG ID , Drain Current (A) D.U.T. + 1.8 -V DD VGS 1.2 Pulse Width 1 s Duty Factor 0.1 % 0.6 Fig 10a. Switching Time Test Circuit VDS 90% 25 50 75 100 125 150 175 0.0 TC , Case Temperature ( C) Fig 9. Maximum Drain Current Vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 100 (Z thJA ) D = 0.50 10 0.20 0.10 Thermal Response 0.05 0.02 1 0.01 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T 0.1 0.00001 0.0001 0.001 0.01 0.1 t1/ t 2 +TA 1 10 J = P DM x Z thJA P DM t1 t2 t 1, Rectangular Pulse Duration (sec) Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRF7103QPBF RDS(on) , Drain-to -Source On Resistance () 0.14 RDS (on) , Drain-to-Source On Resistance () 0.15 2.500 2.000 VGS = 4.5V 0.13 1.500 0.12 0.11 ID = 3.0A 1.000 0.10 0.500 VGS = 10V 0.09 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 0.000 0 5 10 15 20 25 30 35 40 ID , Drain Current (A) -V GS, Gate -to -Source Voltage (V) Fig 12. Typical On-Resistance Vs. Gate Voltage Fig 13. Typical On-Resistance Vs. Drain Current 2.0 70 60 V GS(th) Gate threshold Voltage (V) 1.8 50 Power (W) 150 ID = 250A 1.5 40 30 20 10 1.3 1.0 -75 -50 -25 0 25 50 75 100 125 0 1.00 10.00 100.00 1000.00 TJ , Temperature ( C ) Time (sec) 6 Fig 14. Typical Threshold Voltage Vs. Junction Temperature Fig 15. Typical Power Vs. Time www.irf.com IRF7103QPBF EAS , Single Pulse Avalanche Energy (mJ) 60 TOP 48 BOTTOM ID 1.2A 2.5A 3.0A 15V 36 VDS L DRIVER 24 RG 20V D.U.T IAS + V - DD A 12 tp 0.01 Fig 16c. Unclamped Inductive Test Circuit 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( C) Fig 16a. Maximum Avalanche Energy Vs. Drain Current V(BR)DSS tp I AS Fig 16d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50K 12V .2F .3F QG VGS D.U.T. + V - DS QGS VG QGD VGS 3mA IG ID Current Sampling Resistors Charge Fig 17. Gate Charge Test Circuit Fig 18. Basic Gate Charge Waveform www.irf.com 7 IRF7103QPBF 1000 100 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses 0.01 0.05 0.10 Avalanche Current (A) 10 1 0.1 0.01 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 tav (sec) Fig 19. Typical Avalanche Current Vs.Pulsewidth 25 EAR , Avalanche Energy (mJ) 20 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 3.0A 15 10 5 0 25 50 75 100 125 150 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av *f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave) *tav Starting T J , Junction Temperature (C) Fig 20. Maximum Avalanche Energy Vs. Temperature 8 www.irf.com IRF7103QPBF SO-8 Package Outline Dimensions are shown in millimeters (inches) 9 6 ' & ! % " $ 7 9DH 6 6 i p 9 @ r r C F G DI8C@T HDI H6Y $"! %'' # (' " ! &$ (' '( (%' #(& $ $AA76TD8 !$AA76TD8 !!'# !## (( (% % $ A A' HDGGDH@U@ST HDI H6Y "$ &$ !$ "" $ ( !$ #' $ "' # !&AA76TD8 %"$AA76TD8 $' %! !$ $ # !& A A' % @ $ # C !$Ab dA 6 %Y r r 6 FAA#$ 8 Ab#dA 'YAG & 'YAp 'YAi !$Ab dA 6 867 IPU@T) AA9DH@ITDPIDIBAEAUPG@S6I8DIBAQ@SA6TH@A #$H ((# !AA8PIUSPGGDIBA9DH@ITDPI)AHDGGDH@U@S "AA9DH@ITDPITA6S@ATCPXIADIAHDGGDH@U@STAbDI8C@Td #AAPVUGDI@A8PIAPSHTAUPAE@9@8APVUGDI@AHT !66 $AAA9DH@ITDPIA9P@TAIPUADI8GV9@AHPG9AQSPUSVTDPIT AAAAAHPG9AQSPUSVTDPITAIPUAUPA@Y8@@9A $Ab%d %AAA9DH@ITDPIA9P@TAIPUADI8GV9@AHPG9AQSPUSVTDPIT AAAAAHPG9AQSPUSVTDPITAIPUAUPA@Y8@@9A!$Ab d &AAA9DH@ITDPIADTAUC@AG@IBUCAPAAG@69AAPSATPG9@SDIBAUP AAAAA6ATV7TUS6U@ APPUQSDIU 'YA&!Ab!'d %#%Ab!$$d "YA !&Ab$d 'YA &'Ab&d SO-8 Part Marking @Y6HQG@)AUCDTADTA6IADSA& AHPTA@U 96U@A8P9@AXX A2AG6TUA9DBDUAPAAUC@A@6S XXA2AX@@F GPUA8P9@ Q6SUAIVH7@S 9 DIU@SI6UDPI6G S@8UDAD@S GPBP www.irf.com <:: ;;;; ) Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ IRF7103QPBF SO-8 Tape and Reel TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR's Web site. 10 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/2007 www.irf.com |
Price & Availability of IRF7103QPBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |