![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
MIC920 Micrel MIC920 80MHz Low-Power SC-70 Op Amp Final Information General Description The MIC920 is a high-speed operational amplifier with a gain-bandwidth product of 80MHz. The part is unity gain stable. It has a very low 550A supply current, and features the SC-70 package. Supply voltage range is from 2.5V to 9V, allowing the MIC920 to be used in low-voltage circuits or applications requiring large dynamic range. The MIC920 is stable driving any capacitative load and achieves excellent PSRR and CMRR, making it much easier to use than most conventional high-speed devices. Low supply voltage, low power consumption, and small packing make the MIC920 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables. Features * * * * * * * 80MHz gain bandwidth product 115MHz -3dB bandwidth 550A supply current SC-70 or SOT-23-5 packages 3000V/s slew rate Drives any capacitive load Unity gain stable Applications * * * * * Video Imaging Ultrasound Portable equipment Line drivers Ordering Information Part Number MIC920BM5 MIC920BC5 Junction Temp. Range -40C to +85C -40C to +85C Package SOT-23-5* SC-70 * Contact factory for availabilty of SOT-23-5 package. Pin Configuration IN- 3 Functional Pinout V- 2 IN+ 1 IN- V- 2 IN+ 1 Part Identification 3 A37 4 5 4 5 OUT V+ OUT V+ SOT-23-5 or SC-70 SOT-23-5 or SC-70 Pin Description Pin Number 1 2 3 4 5 Pin Name IN+ V- IN- OUT V+ Pin Function Noninverting Input Negative Supply (Input) Inverting Input Output: Amplifier Output Positive Supply (Input) Micrel, Inc. * 1849 Fortune Drive * San Jose, CA 95131 * USA * tel + 1 (408) 944-0800 * fax + 1 (408) 944-0970 * http://www.micrel.com December 2001 1 MIC920 MIC920 Micrel Absolute Maximum Ratings (Note 1) Supply Voltage (VV+ - VV-) ........................................... 20V Differentail Input Voltage (VIN+ - VIN-) .......... 4V, Note 3 Input Common-Mode Range (VIN+, VIN-) .......... VV+ to VV- Lead Temperature (soldering, 5 sec.) ....................... 260C Storage Temperature (TS) ........................................ 150C ESD Rating, Note 4 ................................................... 1.5kV Operating Ratings (Note 2) Supply Voltage (VS) ....................................... 2.5V to 9V Junction Temperature (TJ) ......................... -40C to +85C Package Thermal Resistance ............................................. SOT-23-5 .......................................................... 260C/W SC-70-5 ............................................................. 450C/W Electrical Characteristics (5V) V+ = +5V, V- = -5V, VCM = 0V, RL = 10M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted. Symbol VOS VOS IB IOS VCM CMRR PSRR AVOL VOUT Parameter Input Offset Voltage VOS Temperature Coefficient Input Bias Current Input Offset Current Input Common-Mode Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain CMRR > 72dB -2.5V < VCM < +2.5V 3.5V < VS < 9V RL = 2k, VOUT = 2V RL = 100, VOUT = 1V Maximum Output Voltage Swing positive, RL = 2k negative, RL = 2k positive, RL = 200 negative, RL = 200, Note 5 GBW PM BW SR ISC IS Unity Gain-Bandwidth Product Phase Margin -3dB Bandwidth Slew Rate Short-Circuit Output Current Av = 1, RL = 1k, CL = 1.7pF C=1.7pF, Gain=1, VOUT=5V, peak to peak, positive SR = 1190V/s source sink Supply Current Input Voltage Noise Input Current Noise No Load f = 10kHz f = 10kHz 45 20 CL = 1.7pF +1.5 +3.0 -3.25 75 95 65 85 104 82 85 3.6 -3.6 3.0 -2.5 67 32 100 1350 63 45 0.55 11 0.7 0.80 -1.0 -3.0 Condition Min Typ 0.43 1 0.26 0.04 0.6 0.3 +3.25 Max 5 Units mV V/C A A V dB dB dB dB V V V V MHz MHz V/s mA mA mA nV/Hz pA/Hz Electrical Characteristics V+ = +9V, V- = -9V, VCM = 0V, RL = 10M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted Symbol VOS VOS IB IOS VCM CMRR PSRR Parameter Input Offset Voltage Input Offset Voltage Temperature Coefficient Input Bias Current Input Offset Current Input Common-Mode Range Common-Mode Rejection Ratio Power Supply Rejection Ratio CMRR > 75dB -6.5V < VCM < +6.5V 3.5V < VS < 9V -7.25 60 95 91 104 Condition Min Typ 0.3 1 0.23 0.04 0.60 0.3 +7.25 Max 5 Units mV V/C A A V dB dB MIC920 2 December 2001 MIC920 Symbol AVOL VOUT GBW PM BW SR ISC IS Parameter Large-Signal Voltage Gain Condition RL = 2k, VOUT = 2V RL = 100, VOUT = 1V Maximum Output Voltage Swing positive, RL = 2k negative, RL = 2k Unity Gain-Bandwidth Product Phase Margin -3dB Bandwidth Slew Rate Short-Circuit Output Current AV = 1, RL = 1k, CL = 1.7pF C=1.7pF, Gain=1, VOUT=5V, peak to peak, negative SR = 2500V/s source sink Supply Current Input Voltage Noise Input Current Noise Note 1. Note 2. Note 3. Note 4. Note 5. Micrel Min 75 Typ 84 93 6.5 7.5 -7.5 80 30 115 3000 50 30 65 50 0.55 10 0.8 0.8 -6.2 Max Units dB dB V V MHz MHz V/s mA mA mA nV/Hz pA/Hz CL = 1.7pF No Load f = 10kHz f = 10kHz Exceeding the absolute maximum rating may damage the device. The device is not guaranteed to function outside its operating rating. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to change). Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Output swing limited by the maximum output sink capability, refer to the short-circuit current vs. temperature graph in "Typical Characteristics." December 2001 3 MIC920 MIC920 Micrel Test Circuits V+ 10F V+ 50 BNC 0.1F R2 5k 10F Input 0.1F 10k 10k 50 BNC 2k 3 5 BNC Input 4 BNC R1 5k R7c 2k R7b 200 R7a 100 R6 5k 3 5 0.1F 4 BNC MIC920 1 2 Output MIC920 1 2 Output 10k 0.1F 0.1F 50 All resistors 1% Input 0.1F R3 200k R4 250 R5 5k V- 10F All resistors: 1% metal film V- 10F R2 R2 + R 5 + R4 VOUT = VERROR 1 + + R1 R7 PSRR vs. Frequency CMRR vs. Frequency 100pF V+ V+ 10F 10pF R1 20 R2 4k 10F 3 0.1F 5 R3 27k S1 S2 3 5 0.1F 4 BNC MIC920 1 2 To Dynamic Analyzer MIC920 VIN 50 1 2 4 300 VOUT FET Probe 0.1F 1k R5 20 R4 27k 0.1F CL 10pF V- 10F 10F V- Noise Measurement Closed Loop Frequency Response Measurement MIC920 4 December 2001 MIC920 Micrel Typical Characteristics Offset Voltage vs. Temperature 1.25 SUPPLY CURRENT (mA) Supply Current vs. Temperature 0.60 V = 9V V = 5V V = 2.5V SUPPLY CURRENT (mA) Supply Current vs. Supply Voltage 0.62 0.60 0.58 0.56 0.54 0.52 0.50 0.48 0.46 0.44 0.42 0.40 2.5 OFFSET VOLTAGE (mV) 1.2 1.15 1.1 1.05 1 0.95 V = 2.5V 0.55 0.50 0.45 0.40 0.35 V = 5V V = 9V +85C +25C -40C 0.9 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) 0.30 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) 3.8 5.1 6.4 7.7 SUPPLY VOLTAGE (V) 9 Offset Voltage vs. Common-Mode Voltage 2.2 2 V = 2.5V 1.8 1.6 -40C 1.4 1.2 +25C 1 0.8 0.6 0.4 0.2 +85C 0 -900 -540 -180 180 540 900 COMMON-MODE VOLTAGE (V) 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 OFFSET VOLTAGE (mV) OFFSET VOLTAGE (mV) Offset Voltage vs. Common-Mode Voltage OFFSET VOLTAGE (mV) Offset Voltage vs. Common-Mode Voltage 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 V = 9V V = 5V -40C +25C -40C +25C +85C 1.48 2.96 4.44 5.92 -64 -72 -40C +85C 0.68 1.36 2.04 2.72 -2.04 -1.36 -0.68 0 3.40 -3.40 -2.72 -7.40 -5.92 -4.44 -2.96 COMMON-MODE VOLTAGE (V) COMMON-MODE VOLTAGE (V) Short-Circuit Current vs. Supply Voltage (Sourcing) 84 80 76 72 68 64 60 56 52 48 44 40 2.0 SHORT-CIRCUIT CURRENT (mA) SHORT-CIRCUIT CURRENT (mA) Short-Circuit Current vs. Supply Voltage (Sinking) 17 20 23 26 29 32 35 38 25C 85C 41 44 47 -40C 50 2.0 3.4 4.8 6.2 7.6 9.0 SUPPLY VOLTAGE (V) 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 OUTPUT VOLTAGE (V) Output Voltage vs. Output Current (Sourcing) V = 5V 85C 25C -40C -40C 25C 85C -8 -16 -24 -32 -40 -48 -56 -1.48 0 3.4 4.8 6.2 7.6 SUPPLY VOLTAGE (V) 9.0 OUTPUT CURRENT (mA) Output Voltage vs. Output Current (Sinking) 0.5 85C 0 -0.5 -1.0 -1.5 -2.0 25C -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 V = 5V Output Voltage vs. Output Current (Sourcing) 11 10 9 8 7 6 5 4 3 2 1 0 V = 9V OUTOUT VOLTAGE (V) OUTOUT VOLTAGE (V) Output Voltage vs. Output Current (Sinking) 1 25C 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 50 45 V = 9V 85C OUTPUT VOLTAGE (V) 25C -40C -40C 85C -16 -24 -32 -40 -48 -56 -64 -72 -80 0 -8 45.0 40.5 36.0 31.5 27.0 22.5 18.0 13.5 9.0 4.5 0 40 35 30 25 20 15 10 OUTPUT CURRENT (mA) OUTPUT CURRENT (mA) OUTPUT CURRENT (mA) December 2001 5 5 0 -80 0 7.40 MIC920 MIC920 Micrel Bias Current vs. Temperature 0.35 0.30 BIAS CURRENT (A) 0.25 0.20 0.15 0.10 0.05 0.00 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) 9V 5V Closed-Loop Frequency Response 25 20 15 10 GAIN (dB) Closed-Loop Frequency Response 25 20 15 GAIN (dB) 5 0 -5 -10 10 5 0 -5 5.0V 9.0V 9.0V 5.0V 2.5V -15 Av = -1 -20 R+ = R = 475 I -25 1E+6 10E+6 100E+6 200E+6 1M 100M 10M FREQUENCY (Hz) 2.5V -10 -15 Av = 2 R = RI = 475 F -20 -25 1E+6 10E+6 100E+6 200E+6 1M 100M 10M FREQUENCY (Hz) Closed-Loop Gain vs. Frequency 50 CLOSED-LOOP GAIN (dB) CLOSED-LOOP GAIN (dB) Closed-Loop Gain vs. Frequency 50 OPEN-LOOP GAIN (dB) Open-Loop Gain vs. Frequency 50 40 30 20 10 0 -10 -20 1000pF 471pF 200pF 40 30 20 10 0 -10 400pF 200pF 100pF 1000pF 0 40 30 20 10 0 -10 1.7pF 200pF 100pF 1000pF V = 5V 121pF 50pF 1.7pF 800pF -20 600pF -30 -40 V = 5V Av = 1 -50 1E+6 10E+6 100E+6 200E+6 100M 1M 10M FREQUENCY (Hz) 800pF -20 600pF 400pF -30 V = 9V -40 Av = 1 -50 1E+6 1E+7 1E+8 2E+8 1M 10M 100M FREQUENCY (Hz) -30 -40 -50 1M 1x106 10M 100M 10x106 100x106 200x106 FREQUENCY (Hz) Open-Loop Gain vs. Frequency GAIN BANDWIDTH (MHz) Gain Bandwidth and Phase Margin vs. Supply Voltage 85 80 75 70 31 65 60 55 29 27 Phase Margin 37 GAIN BANDWIDTH (MHz) 35 PHASE MARGIN () 33 Gain Bandwidth and Phase Margin vs. Load 70 60 50 40 30 20 10 0 0 30 Gain Bandwidth 25 Phase Margin 35 V = 5V 50 45 40 PHASE MARGIN () 50 40 OPEN-LOOP GAIN (dB) V = 9V 30 20 10 0 -10 -20 -30 -40 -50 1M 1x106 1000pF 471pF 200pF 121pF 50pF 1.7pF 10M 100M 10x106 100x106 200x106 FREQUENCY (Hz) Gain Bandwidth 50 25 0 1 2 3 4 5 6 7 8 9 10 SUPPLY VOLTAGE (V) 20 200 400 600 800 1000 CAPACITIVE LOAD (pF) Gain Bandwidth and Phase Margin vs. Load 90 Open-Loop Frequency Response 55 GAIN BANDWIDTH (dB) Open-Loop Frequency Response 225 GAIN BANDWIDTH (dB) 100 80 60 40 20 0 -20 -40 -60 -80 -100 100k Gain GAIN BANDWIDTH (MHz) 80 70 60 50 40 30 20 10 0 0 Gain Bandwidth V = 9V 100 PHASE MARGIN () 50 45 Phase Margin 40 35 30 25 PHASE MARGIN () Phase No Load Gain Phase No Load 20 0 -20 -40 -60 -80 -100 100k 45 0 -45 -90 -135 90 45 0 -45 -90 -135 100 100 20 200 400 600 800 1000 CAPACITIVE LOAD (pF) -180 -225 1M 10M 100M CAPACITIVE LOAD (pF) -180 -225 1M 10M 100M CAPACITIVE LOAD (pF) MIC920 6 December 2001 PHASE MARGIN () 80 60 40 V = 5V 100 180 135 90 V = 9V 100 225 180 135 MIC920 Micrel Positive PSRR vs. Frequency 120 100 PSRR (dB) PSRR (dB) Negative PSRR vs. Frequency 120 100 PSRR (dB) Positive PSRR vs. Frequency 120 100 80 60 40 20 0 0.1 1 10 100 1k FREQUENCY (kHz) V = 9V V = 5V V = 5V 80 60 40 20 0 0.1 1 10 100 1k FREQUENCY (kHz) 80 60 40 20 10k 0 0.1 1 10 100 1k FREQUENCY (kHz) 10k 10k Negative PSRR vs. Frequency 120 100 CMRR (dB) Common-Mode Rejection Ratio 100 90 80 70 60 50 40 30 20 10 0 V = 5V 100 90 80 CMRR (dB) Common-Mode Rejection Ratio V = 9V V = 9V PSRR (dB) 80 60 40 20 0 0.1 1 10 100 1k FREQUENCY (kHz) 70 60 50 40 30 20 10 0 10k 100x100 1x103 100 1k 10x103 100x103 1x106 10k 100k 1M 10x106 10M 100x100 1x103 100 1k FREQUENCY (Hz) 10x103 100x103 1x106 10k 100k 1M FREQUENCY (Hz) 10x106 10M Positive Slew Rate 1400 1200 V = 5V SLEW RATE (V/s) 1200 1000 Negative Slew Rate V = 5V SLEW RATE (V/s) 3500 3000 2500 2000 1500 1000 500 200 400 600 800 1000 LOAD CAPACITANCE (pF) 0 0 Positive Slew Rate V = 9V SLEW RATE (V/s) 1000 800 600 400 200 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF) 800 600 400 200 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF) Negative Slew Rate 3000 2500 NOISE VOLTAGE (nV/Hz1/2) V = 9V 70 60 50 40 30 20 10 0 10 Voltage Noise Density vs. Frequency 2.5 NOISE CURRENT (pA/Hz1/2) 2.0 1.5 1.0 0.5 0 10 Current Noise Density vs. Frequency SLEW RATE (V/s) 2000 1500 1000 500 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF) 100 1000 10000 100000 FREQUENCY (Hz) 100 1000 10000 100000 FREQUENCY (Hz) December 2001 7 MIC920 MIC920 Micrel Functional Characteristics Small Signal Response Small Signal Response INPUT (50mV/div) OUTPUT (50mV/div) TIME (100ns/div) OUTPUT (50mV/div) INPUT (50mV/div) VCC = 9.0V CL = 1.7F Av = 1.0V/V VCC = 5.0V CL = 1.7F Av = 1.0V/V TIME (100ns/div) Small Signal Response Small Signal Response INPUT (50mV/div) VCC = 9.0V CL = 100pF Av = +1 INPUT (50mV/div) VCC = 5.0V CL = 100pF Av = +1V/V OUTPUT (50mV/div) TIME (100ns/div) OUTPUT (50mV/div) TIME (100ns/div) Small Signal Response Small Signal Response INPUT (50mV/div) INPUT (50mV/div) VCC = 9.0V CL = 1000pF Av = +1V/V VCC = 5.0V CL = 1000pF Av = +1V/V OUTPUT (50mV/div) OUTPUT (50mV/div) TIME (100ns/div) TIME (100ns/div) MIC920 8 December 2001 MIC920 Micrel Large Signal Response V = 5V CL = 1.7pF Av = 1 Positive SR = 1350V/sec Negative SR = 1190V/sec Large Signal Response OUTPUT (2V/div) OUTPUT (2V/div) V = 9V CL = 1.7pF Av = 1 Positive SR = 3000V/sec Negative SR = 2500V/sec TIME (10ns/div) TIME (10ns/div) Large Signal Reponse V = 5V CL = 100pF Av = 1 Positive SR = 373V/sec Negative SR = 290V/sec Large Signal Response OUTPUT (2V/div) OUTPUT (2V/div) V = 9V CL = 100pF Av = 1 Positive SR = 672V/sec Negative SR = 424V/sec TIME (50ns/div) TIME (50ns/div) Large Signal Response V = 5V CL = 1000pF Av = 1 Positive SR = 75V/sec Negative SR = 41V/sec Large Signal Response OUTPUT (2V/div) Output (2V/div) V = 9V CL = 1000pF Av = 1 Positive SR = 97V/sec Negative SR = 60V/sec TIME (100ns/div) TIME (100ns/div) December 2001 9 MIC920 MIC920 Micrel Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10F capacitor in parallel with a 0.1F capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. Thermal Considerations The SC70-5 package and the SOT-23-5 package, like all small packages, have a high thermal resistance. It is important to ensure the IC does not exceed the maximum operating junction (die) temperature of 85C. The part can be operated up to the absolute maximum temperature rating of 125C, but between 85C and 125C performance will degrade, in particular CMRR will reduce. An MIC920 with no load, dissipates power equal to the quiescent supply current x supply voltage PD(no load) = VV + - VV - IS When a load is added, the additional power is dissipated in the output stage of the op amp. The power dissipated in the device is a function of supply voltage, output voltage and output current. PD(output stage) = VV + - VOUT IOUT Total Power Dissipation = PD(no load) + PD(output stage) Applications Information The MIC920 is a high-speed, voltage-feedback operational amplifier featuring very low supply current and excellent stability. This device is unity gain stable, capable of driving high capacitance loads. Driving High Capacitance The MIC920 is stable when driving high capacitance, making it ideal for driving long coaxial cables or other high-capacitance loads. Most high-speed op amps are only able to drive limited capacitance. Note: increasing load capacitance does reduce the speed of the device. In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor (<100) in series with the output. Feedback Resistor Selection Conventional op amp gain configurations and resistor selection apply, the MIC920 is NOT a current feedback device. Also, for minimum peaking, the feedback resistor should have low parasitic capacitance, usually 470 is ideal. To use the part as a follower, the output should be connected to input via a short wire. Layout Considerations All high speed devices require careful PCB layout. The following guidelines should be observed: Capacitance, particularly on the two inputs pins will degrade performance; avoid large copper traces to the inputs. Keep the output signal away from the inputs and use a ground plane. It is important to ensure adequate supply bypassing capacitors are located close to the device. ( ) ( ) Ensure the total power dissipated in the device is no greater than the thermal capacity of the package. The SC70-5 package has a thermal resistance of 450C/W. Max. AllowablePowerDissipation = TJ(max) - TA(max) 450C / W MIC920 10 December 2001 MIC920 Micrel Package Information 1.90 (0.075) REF 0.95 (0.037) REF 1.75 (0.069) 1.50 (0.059) 3.00 (0.118) 2.60 (0.102) DIMENSIONS: MM (INCH) 3.02 (0.119) 2.80 (0.110) 1.30 (0.051) 0.90 (0.035) 10 0 0.15 (0.006) 0.00 (0.000) 0.20 (0.008) 0.09 (0.004) 0.50 (0.020) 0.35 (0.014) 0.60 (0.024) 0.10 (0.004) SOT-23-5 (M5) 0.65 (0.0256) BSC 1.35 (0.053) 2.40 (0.094) 1.15 (0.045) 1.80 (0.071) 2.20 (0.087) 1.80 (0.071) DIMENSIONS: MM (INCH) 1.00 (0.039) 1.10 (0.043) 0.80 (0.032) 0.80 (0.032) 0.18 (0.007) 0.10 (0.004) 0.30 (0.012) 0.15 (0.006) 0.10 (0.004) 0.00 (0.000) 0.30 (0.012) 0.10 (0.004) SC-70 (C5) MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 TEL USA + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. (c) 2001 Micrel Incorporated December 2001 11 MIC920 |
Price & Availability of MIC920BC5
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |