![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
CMOS Low Power Consumption 4 Voltage Regulators and 2 Voltage Detectors Built-In. Output Control Circuit Output Voltage and Detect Voltage Range : 2V to 5V Output Voltage Accuracy and Detect Voltage Range: 2% 16 Pin TSSOP Package Applications Battery Operated Power Supply Systems Mobile Phones, Cordless Phones, and other Portable Communication Systems. General Description The XC641A series are highly precise, low power consumption, multi power supply IC s, manufactured using CMOS and laser trimming technologies. The IC consists of a highly precise reference, 4 voltage regulators, 2 voltage detectors, and an output control circuit. Because the regulators can be disabled through the EN pins, in stand-by, current consumption can be greatly reduced. The minimal input / output differential supports efficient voltage circuit design. The XC641A is particularly suitable for use with battery powered equipment where power supply control is all Features Output Voltage / Detect Voltage Range : 2V to 5V : Selectable in 0.1V increments ( Semi-Custom ) Highly Accurate : Setup voltage 2% Low power consumption : TYP 25 A TYP 6 A [ When the EN input is OFF (standard products) ] Output voltage temperature characteristics : TYP 100ppm/ C Small Package : TSSOP-16 y important. The series comes in a small TSSOP-16 package. Pin Assignment PIN NUMBER PIN NAME FUNCTION Pin Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 OUT4 DIN2 CD1 DOUT2 DOUT1 OUT1 EXT1 VSS EXT2 OUT2 EN1 EN2 EN3 DIN1 OUT3 VDD Voltage Regulator 4 Output Voltage Detector 2 Input Delay Generating Circuit Output Voltage Detector 2 Output Voltage Detector 1 Output Voltage Regulator 1 Output Voltage Monitor Voltage Regulator 1 External Transistor Connection Ground Voltage Regulator 2 External Transistor Connection Voltage Regulator 2 Output Voltage Monitor Voltage Regulator 1 Enable ( Positive Logic ) Voltage Regulator 2 Enable ( Positive Logic ) Voltage Regulator 3 Enable ( Positive Logic ) Voltage Detector 1 Input Voltage Regulator 3 Output Power Supply OUT4 DIN2 CD1 DOUT2 DOUT1 OUT1 EXT1 VSS 1 2 3 4 5 6 7 8 16 15 14 VDD OUT3 DIN1 EN3 EN2 EN1 OUT2 EXT2 TSSOP-16 TOP VIEW 13 12 11 10 9 Functions INPUT EN1 H L EN2 EN3 VOLTAGE REGULATOR OUTPUT VR1 ON OFF VR2 VR3 H L - H L ON OFF - - - ON OFF - H = High Level : L = Low Level Block Diagram VDD EN1 Enable VR1 EN Regulator 1 EXT1 OUT1 EN2 Enable VR2 EN Regulator 2 EXT2 OUT2 y EN3 Enable VR3 EN Regulator 3 OUT3 Regulator 4 OUT4 DIN1 VD1 SENS Detector 1 DOUT1 VD2 SENS DIN2 Detector 2 Delay Circuit DOUT2 CD1 VSS Absolute Maximum Ratings PARAMETER Input Voltage Output Voltage EXT Pin Voltage DIN Pin Voltage DOUT Pin Voltage CD1 Pin Voltage EN Pin Voltage Output Current EXT Pin Current DOUT Pin Current Power Dissipation Power Dissipation ( mounted ) Operating Ambient Temperature Storage Temperature All voltage is ground standardised. SYMBOL VIN VOUT VEXT VDIN VDOUT VCD1 VEN IOUT IEXT IDOUT Pd Pd Topr Tstg RATINGS -0.3 to 12 -0.3 to VIN +0.3 -0.3 to 12 -0.3 to VIN +0.3 -0.3 to 12 -0.3 to VIN +0.3 -0.3 to VIN +0.3 200 50 20 350 630 -30 to +80 -40 to +125 Ta = 25 C UNITS V V V V V V V mA mA mA mW mW C C y Note : Please ensure that the sum total of power used within the IC does not exceed the continuous total power dissipation (Pd) figure. The figure for total continuous power dissipation ( mounted ) represents the value when tested on a single sided glass epoxy board of dimensions : 21mm x 32mm ; t = 1.6mm Electrical Characteristics (XC641A0001V) Voltage Conditions CONDITIONS Input Voltage SYMBOL VINDEF VALUE 4.4 UNITS V Set-Up Voltage Table CIRCUIT Voltage Regulator 1 Voltage Regulator 2 Voltage Regulator 3 Voltage Regulator 4 Voltage Detector 1 Voltage Detector 2 PARAMETER Output Voltage Output Voltage Output Voltage Output Voltage Detect Voltage Detect Voltage SYMBOL VOUT(T) VOUT(T) VOUT(T) VOUT(T) VDF1 VDF2 VALUE 3.0 3.0 3.0 3.0 3.4 2.5 Ta = 25 C UNITS V V V V V V Voltage Regulator 1 Ta=25C CIRCUIT 1 1 1 1 2 1 1 3 PARAMETER Output Voltage Maximum Output Current * Load Stability * Input-Output Voltage Diff. * Supply Current Input Stability * Output Voltage Temperature Characteristics * EXT Output Voltage EXT Leak Current SYMBOL VOUT(E) IOUT max VOUT IOUT VDIF ISS VOUT VIN * VOUT VOUT Topr * VOUT VEXT ILEAK CONDITIONS IOUT=50mA VIN=VINDEF VIN=VINDEF VIN=VINDEF 1mA IOUT 100mA IOUT=100mA VIN=VINDEF, (No Load) IOUT=50mA IOUT=10mA MIN 2.94 TYP 3.0 1000 MAX 3.06 UNITS V mA -50 100 8 0.04 100 50 mV mV 12 0.3 A %/V ppm/C 7 0.5 V A Note : 1. VOUT(T) = Specified Output Voltage : VOUT(E) = Effective Output Voltage. 2. Parameter characteristics marked with an asterisk may vary according to which type of external transistor is used. A transistor with a value of hFE = 100 or greater and a low saturation voltage is recommended. Unless otherwise stated, use of the following external components are recommended : PNP Transistor, 2SA1213-Y : RBE, 200K : CL, 10 F Tantalum Capacitor. 3. The values given for ISS refer to the actual IC values ( see application circuits ) 4. The IC's supply current is calculated as follows : Supply Current = ISS + ( Load Current / hFE ) + ( 0.6 / RBE ) 5. VDIF = { VIN1 - VOUT1 } VOUT1 = A voltage equal to 98% of the Output Voltage whenever an amply stabilised IOUT {VOUT(T)+1.0V} is input. VIN1 = The Input Voltage when VOUT1 appears as Input Voltage is gradually decreased. 6. The Maximum Output Current value represents the value at the time the Output Voltage has decreased to VOUT (E) x 0.9. Due to the limitations of Continuous Total Power Dissipation with the 2SA1213 transistor, the Maximum Output Current Value cannot be continually achieved. y Voltage Regulator 2 Ta=25C CIRCUIT 1 1 1 1 2 1 1 3 PARAMETER Output Voltage Maximum Output Current * Load Stability * Input-Output Voltage Diff. * Supply Current Input Stability * Output Voltage Temperature Characteristics * EXT Output Voltage EXT Leak Current SYMBOL VOUT(E) IOUT max VOUT IOUT VDIF ISS VOUT VIN * VOUT VOUT Topr * VOUT VEXT ILEAK CONDITIONS IOUT=50mA VIN=VINDEF VIN=VINDEF VIN=VINDEF 1mA IOUT 100mA IOUT=100mA VIN=VINDEF, (No Load) IOUT=50mA IOUT=10mA MIN 2.94 TYP 3.0 1000 MAX 3.06 UNITS V mA -50 100 8 0.04 100 50 mV mV 12 0.3 A %/V ppm/C 7 0.5 V A Note : Characteristics are the same as for Regulator 1. Voltage Regulator 3 Ta=25C CIRCUIT 1 1 1 2 1 1 PARAMETER Output Voltage Load Stability Input-Output Voltage Diff. Supply Current Input Stability Output Voltage Temperature Characteristics SYMBOL VOUT(E) VOUT IOUT VDIF ISS VOUT VIN * VOUT VOUT Topr * VOUT CONDITIONS IOUT=35mA VIN=VINDEF VIN=VINDEF 1mA IOUT 35mA IOUT=35mA VIN=VINDEF, (No Load) IOUT=35mA VINDEF VIN 10.0V IOUT=35mA -30C Topr 80C MIN 2.94 TYP 3.0 MAX 3.06 UNITS V mV V A %/V ppm/C 50 0.3 3.0 0.1 100 4.5 0.3 Note : 1. VOUT(T) = Specified Output Voltage : VOUT(E) = Effective Output Voltage. 2. VDIF = { VIN1 - VOUT1 } VOUT1 = A voltage equal to 98% of the Output Voltage whenever an amply stabilised IOUT {VOUT(T)+1.0V} is input. VIN1 = The Input Voltage when VOUT1 appears as Input Voltage is gradually decreased. Voltage Regulator 4 Ta=25C CIRCUIT 1 1 1 1 1 y PARAMETER Output Voltage Load Stability Input-Output Voltage Diff. Input Stability Output Voltage Temperature Characteristics SYMBOL VOUT(E) VOUT IOUT VDIF VOUT VIN * VOUT VOUT Topr * VOUT CONDITIONS IOUT=15mA VIN =VIN DEF VIN =VIN DEF 1mA IOUT 15mA IOUT=15mA IOUT=15mA VIN DEF VIN 10.0V IOUT=15mA -30C Topr 80C MIN 2.94 TYP 3.0 MAX 3.06 UNITS V mV V %/V ppm/C 50 0.3 0.1 100 0.3 Note : 1. VOUT(T) = Specified Output Voltage : VOUT(E) = Effective Output Voltage. 2. VDIF = { VIN1 - VOUT1 } VOUT1 = A voltage equal to 98% of the Output Voltage whenever an amply stabilised IOUT {VOUT(T)+1.0V} is input. VIN1 = The Input Voltage when VOUT1 appears as Input Voltage is gradually decreased. 3. As operational shutdown cannot be achieved with Voltage Regulator 4, please standardize to the IC circuit's stand-by current parameters. Voltage Detector 1 Ta=25C CIRCUIT 4 4 4 3 4 PARAMETER Detect Voltage Hysteresis Range Input Current Output Current Detect Voltage Temperature Characteristics SYMBOL VDF VHYS IIN IOUT VDF Topr * VOUT CONDITIONS VIN = VINDEF VIN = VINDEF MIN 3.332 x 0.02 TYP 3.4 VDF x 0.05 0.8 MAX 3.468 x 0.08 1.4 UNITS V V A mA ppm/C VIN = VINDEF Nch VDS = 0.5V VIN = VINDEF 6.0 11.5 100 Voltage Detector 2 Ta=25C CIRCUIT 4 4 4 3 5 4 PARAMETER Detect Voltage Hysteresis Range Input Current Output Current Delay Circuit Current Detect Voltage Temperature Characteristics SYMBOL VDF VHYS IIN IOUT ICDO VDF Topr * VOUT CONDITIONS VIN = VINDEF VIN = VINDEF MIN 2.450 x 0.02 TYP 2.5 VDF x 0.05 0.8 MAX 2.550 x 0.08 1.4 UNITS V V A mA VIN = VINDEF Nch VDS = 0.5V VIN = VINDEF VIN = VINDEF 0.25 6.0 11.5 0.50 100 0.80 A ppm/C y Note : The delay circuit current is controlled by the set current circuit within the IC. Delay time depends upon the capacity of the external condensor. Approximate delay time can be calculated using the following formula : TD ( msec ) = 1.8 x C ( nF ) Input Pin PARAMETER EN 'High Level' Voltage EN 'Low Level' Voltage EN 'High Level' Current EN 'Low Level' Voltage SYMBOL VENH VENL IENH IENL -0.5 CONDITIONS MIN 1.3 0.4 0.1 0 TYP MAX UNITS V V A A Ta=25C CIRCUIT 1 1 1 1 Entire Circuit Ta=25C CIRCUIT 2 2 PARAMETER Supply Current ( Stand-By ) SYMBOL ISS ISTB CONDITIONS VIN = 8V, No Load VIN = 8V, VR1 = VR2 = VR3 = OFF MIN TYP 25 6.0 MAX 37.5 9.0 UNITS A A Note : The supply current (ISS) value of the entire IC is the IC's internal supply current value. ( This does not include current flowing through externally connected components nor the input current through the detect pins of voltage detectors 1, 2 ) Notes on Use : IC 1. Please sufficiently strengthen the GND wiring and the power supply (VDD) line, as when the power supply line impedance is high, the voltage regulators and detectors are prone to oscillation leading to possible instability. 2. In order to lower the power supply line impedance, we recommend that a capacitor of 10 F (Tantalum) or more be connected at the shortest point possible between the VDD pin and the GND pin. 3. To protect the IC from surge at the input pin, an input protect diode is built-in. Therefore, do not apply voltages that exceed the VDD pin voltage. 4. Please ensure that the sum total of the IC's power consumption does not exceed the stipulated figure for total continuous power dissipation ( Pd ). Pd < P1 + P2 + P3 + P4 + P5 + P6 The following equations can be used to calculate the IC's power consumption : Regulator 1 : P1 = ( VDD - 0.6V ) x IEXT1, IEXT1 to IOUT1 / hFE Regulator 2 : P2 = ( VDD - 0.6V ) x IEXT2, IEXT2 to IOUT2 / hFE Regulator 3 : P3 = ( VDD - VOUT3 ) x IOUT3 Regulator 4 : P4 = ( VDD - VOUT4 ) x IOUT4 Detector 1 : P5 = VDOUT1 x IDOUT1 Detector 2 : P6 = VDOUT2 x IDOUT2 Voltage Regulator 1, 2 ( external transistor type ) 1. In order to prevent regulator oscillation ( caused by power supply impedance ), we recommend that a capacitor of 10 F (Tantalum) or more be connected between the external transistor's emitter y and the GND pin. 2. In order to prevent regulator phase compensation, we recommend that a capacitor of 10 F (Tantalum) or more be connected between the IOUT1, IOUT2 pins and the GND pin. 3. In order to prevent oscillation we recommend that a resistor of around 200k be connected between the external transistor's base pin and emitter pin. Voltage Regulator 3, 4 ( built-in transistor type ) 1. Please connect a capacitor of 1F (Tantalum) or more between the voltage regulator's output pins ( OUT3, OUT4 ) and the GND pin. 2. In order to prevent regulator oscillation ( caused by power supply impedance ), we recommend that a capacitor be connected between the VDD pin and the GND pin. 3. Since a short circuit protector is not built-in, when the OUT3 or OUT4 pin is short circuited to the GND pin, resulting surge current may damage the IC. Voltage Detectors 1. In order to prevent regulator oscillation ( caused by power supply impedance ), we recommend that a capacitor be connected between the VDD pin and the GND pin. 2. Should the VDD pin voltage become excessively low, we recommend that a Schottky Diode be connected between the CD1 pin and the VDD pin, in order to prevent voltages over the established VDD + 0.3V being applied to the capacitor connection pin ( CD1 ). Please use a Schottky Diode of VF = 0.3V ( IF = 10mA ). If a large reverse current, IR (max.), is used, the delay circuit current will increase and delay time will be shortened. 3. When not using the delay circuit, please use the IC with the CD1 pin open. Notes on Use (contd.) : Input Protection Circuit ( equivalent circuit ) VDD Input Pin VSS The XC641A has a built-in circuit to protect the IC against surge at the input pin. Should a voltage higher than VDD be applied at the input pin, please note that current will flow from the input pin to VDD. (Use within the stipulated absolute maximum ratings). y Ordering Information : XC641A x x x x x x a SYMBOL a bc SYMBOL b DESCRIPTION Package Type : V = TSSOP-16 DESCRIPTION Voltage Characteristics : Based on internal standards c Device Orientation : R = Embossed Tape ( Right ) L = Embossed Tape ( Left ) Application Circuits Application Circuit 1 P XC641A0 OUT4 DIN2 CD1 VDD OUT3 DIN1 EN3 EN2 EN1 OUT2 EXT2 OUT1,OUT2, OUT3,OUT4 P pin connection P DOUT2 DOUT1 OUT1 10F + 1F + P A + VDD V 1F + 10F + 200k EXT1 VSS 200k 10F Application Circuit 2 XC641A0 y VIN OUT4 DIN2 VDD OUT3 DIN1 EN3 EN2 EN1 OUT2 EXT2 200k 200k A CD1 DOUT2 DOUT1 OUT1 EXT1 VSS VDD 0.1 F 0.1 F Application Circuit 3 EXT1,EXT2, DOUT1,DOUT2 XC641A0 OUT4 DIN2 VDD OUT3 DIN1 EN3 EN2 EN1 OUT2 EXT2 pin connection P P P VIN 0.1 F CD1 DOUT2 DOUT1 OUT1 EXT1 VSS 10 F + VDD A P Application Circuit 4 100k P P 100k XC641A0 OUT4 DIN2 CD1 DOUT2 VDD OUT3 DIN1 EN3 EN2 EN1 OUT2 EXT2 DOUT1,DOUT2 pin connection 10F + VDD A 0.1F DOUT1 OUT1 EXT1 VSS A V Application Circuit 5 y XC641A0 OUT4 DIN2 CD1 DOUT2 VDD OUT3 DIN1 EN3 EN2 EN1 OUT2 EXT2 10F + VDD 0.1F A DOUT1 OUT1 EXT1 VSS RCD 470k XC641A Series Electrical Characteristics (1) Output Voltage vs. Input Voltage VR1 (2.8V) 3.0 IOUT=50mA VR2 (3.0V) 3.2 IOUT=50mA Output Voltage:VOUT (V) 2.8 2.6 2.4 2.2 2.0 0 2 4 6 8 10 Output Voltage:VOUT (V) 3.0 2.8 2.6 2.4 2.2 0 2 4 6 8 10 Input Voltage:VIN (V) Input Voltage:VIN (V) VR3 (2.8V) 3.0 IOUT=35mA VR4 (3.0V) Output Voltage:VOUT (V) 3.2 3.0 2.8 2.6 2.4 2.2 IOUT=15mA y Output Voltage:VOUT (V) 2.8 2.6 2.4 2.2 2.0 0 2 4 6 8 10 0 2 4 6 8 10 Input Voltage:VIN (V) Input Voltage:VIN (V) (2) Output Voltage vs. Output Current VR1 (2.8V) Output Voltage:VOUT (V) Output Voltage:VOUT (V) 2.9 VIN=3.8V VR2 (3.0V ) 3.1 VIN=4.0V 2.8 3.0 2.7 2.9 2.6 2.8 2.5 0 100 200 300 400 500 2.7 0 100 200 300 400 500 Output Current:IOUT (mA) Output Current:IOUT (mA) (2) Output Voltage vs. Output Current (contd.) VR3 (2.8V) 2.9 VIN=3.8V VR4 (3.0V) 3.1 VIN=4.0V Output Voltage:VOUT (V) Output Voltage:VOUT (V) 2.8 2.7 2.6 2.5 0 10 20 30 40 50 60 70 3.0 2.9 2.8 2.7 0 10 20 30 40 50 Output Current:IOUT (mA) Output Current:IOUT (mA) (3) Supply Current vs. Input Voltage VR1 (2.8V) 10 10 VR2 (3.0V) Supply Current:ISS (A) y Supply Current:ISS (A) 8 6 4 2 0 0 2 4 6 8 10 8 6 4 2 0 0 2 4 6 8 10 Input Voltage:VDD (V) Input Voltage:VDD (V) VR3 (2.8V) 10 10 Stand-By (EN1=EN2=EN3=0V) Supply Current:ISS (A) Supply Current:ISS (A) 8 6 4 2 0 0 2 4 6 8 10 8 6 4 2 0 0 2 4 6 8 10 Input Voltage:VDD (V) Input Voltage:VDD (V) Input Voltage VDD (V) (4) Dropout Voltage vs. Output Current VR1 (2.8V) 0.5 0.5 VR2 (3.0V) Dropout Voltage:Vdif (V) Dropout Voltage:Vdif (V) 0.4 0.3 0.2 0.1 0.0 0 100 200 300 400 500 0.4 0.3 0.2 0.1 0.0 0 100 200 300 400 500 Output Current:IOUT (mA) Output Current:IOUT (mA) VR3 (2.8V) 1.5 1.5 VR4 (3.0V) Dropout Voltage:Vdif (V) y Dropout Voltage:Vdif (V) 1.0 1.0 0.5 0.5 0.0 0 10 20 30 40 50 60 70 0.0 0 10 20 30 40 50 Output Current:IOUT (mA) Output Current:IOUT (mA) (5) EN Pin Input Level Voltage vs. Input Voltage EN Pin Input Level Voltage:VEH (V) EN Pin Input Level Voltage:VEH (V) VR1 (2.8V) 2.0 VR2 (3.0V ) 2.0 1.5 1.5 1.0 0.5 1.0 0.5 0.0 0 2 4 6 8 10 0.0 0 2 4 6 8 10 Input Voltage:VDD (V) Input Voltage:VDD (V) (5) EN Pin Input Level Voltage vs. Input Voltage (contd.) VR3 (2.8V) EN Pin Input Level Voltage:VEH (V) 2.0 1.5 1.0 0.5 0.0 0 2 4 6 8 10 Input Voltage:VDD (V) (6) VD Output Voltage vs. Input Voltage VD1 (2.5V) 4 VIN-VOUT=100k VD2 (2.3V) 4 VIN-VOUT=100k Output Voltage:VOUT (V) 3 2 1 0 0 1 2 3 4 Output Voltage:VOUT (V) y 3 2 1 0 0 1 2 3 4 Input Voltage:VIN (V) Input Voltage:VIN (V) (7) Output Current vs. Input Voltage VD1 (2.5V) Output Current:IOUT (mA) Output Current:IOUT (mA) 20 15 10 5 0 0.0 VDS=0.5V VD2 (2.3V) 20 15 10 5 0 0.0 VDS=0.5V 0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0 Input Voltage:VDD (V) Input Voltage:VDD (V) (8) VD Input Current vs. Input Voltage VD1 (2.5V) 1.00 1.00 VD2 (2.3V) Input Current:IIN (A) 0.75 0.50 0.25 0.00 0 1 2 3 4 Input Current:IIN (A) 0.75 0.50 0.25 0.00 0 1 2 3 4 Input Voltage:VIN (V) Input Voltage:VIN (V) (9) Delay Time (fall) vs. Output Pin Capacitance VD1 (2.5V) Delay Time:TDL (sec) Delay Time:TDL (sec) VD2 (2.3V) VIN=8.0 0.6V y 1000 1000 VIN=8.0 ~ 0.6V 100 100 10 1.0E-11 1.0E-09 1.0E-07 10 1.0E-11 1.0E-09 1.0E-07 Output Pin capacitance (F) Output Pin capacitance (F) (10) Delay Time (rise) vs. Input Voltage VD1 (2.5V) 100 VIN=0.6~ 8.0V VD2 (2.3V) 100 VIN=0.6~ 8.0V Delay Time:TDL (sec) 10 Delay Time:TDL (sec) 0 2 4 6 8 10 10 1 1 0.1 0.1 0 2 4 6 8 10 Input Voltage:VDD (V) Input Voltage:VDD (V) (11) Delay Time (fall) vs. CD Pin External Capacitance VD2 1.0E-03 VIN=8.0 ~ 0.6V (12) Delay Time (rise) vs. CD Pin External Capacitance VD2 1.0E-01 VIN=0.6~ 8.0V Delay Time:TDL (sec) Delay Time:TDL (sec) 1E-10 1E-09 1E-08 1E-07 1E-06 1.0E-02 1.0E-04 1.0E-03 1.0E-04 1.0E-05 1E-11 1.0E-05 1E-11 1E-10 1E-09 1E-08 1E-07 CD External Capacitance (F) CD External Capacitance (F) (13) Load Transient Response VR1 (2.8V) Output Voltage Change: VOUT(V) 800 IOUT=10mA ~ 300mA,CL=10F(Tantalum) VR2 (3.0V) 1 800 IOUT=10mA ~ 300mA,CL=10F(Tantalum) Output Voltage Change: VOUT(V) 1 Output Current:IOUT (mA) Output Current:IOUT (mA) Output Voltage 600 Output Current 400 300mA 200 10mA 0 -3 -2 -1 0 Output Voltage 600 Output Current 300mA 200 10mA 0 -3 -2 0 y 400 -1 Time (40sec/div) Time (40sec/div) VR3 (2.8V) Output Voltage Change: VOUT(V) 160 IOUT=10mA ~50mA,CL=1F(Tantalum) VR4 (3.0V) 80 IOUT=10mA ~30mA,CL=1F(Tantalum) 1 1 Output Current:IOUT (mA) Output Voltage 120 0 Output Voltage 60 Output Current 30mA 20 10mA 0 -3 -2 0 80 Output Current 50mA 40 10mA 0 -1 40 -1 -2 -3 Time (150 sec/div) Time (200 sec/div) Output Voltage Change: VOUT(V) Output Current:IOUT (mA) (14) Input Transient Response 1 VR1 (2.8V) Output Voltage Change: VOUT(V) 6 CL=10F(Tantalum), IOUT=10mA VR1 (2.8V) 1.0 6 CL=10F(Tantalum),IOUT=100mA 1.0 Input Voltage:VIN (V) Input Voltage:VIN (V) 5 4 3 2 1 0 Input Voltage 0.5 Output Voltage 0.0 5 4 3 Input Voltage 0.5 Output Voltage 2 1 0 0.0 -0.5 -0.5 Time (200 sec/div) Time (200 sec/div) VR2 (3.0V) Output Voltage Change: VOUT(V) 6 CL=10F(Tantalum), IOUT=10mA VR2 (3.0V) 1.0 6 CL=10F(Tantalum), IOUT=100mA 1.0 Input Voltage:VIN (V) Input Voltage:VIN (V) Input Voltage 5 4 3 2 1 0 -0.5 Output Voltage 0.0 0.5 Input Voltage 5 4 3 2 1 0 -0.5 Output Voltage 0.0 0.5 y Time (200 sec/div) Time (200 sec/div) VR3 (2.8V) Output Voltage Change: VOUT(V) 6 CL=1F(Tantalum), IOUT=1mA VR3 (2.8V) 1.0 6 CL=1F(Tantalum),IOUT=10mA 1.0 Input Voltage:VIN (V) 5 4 3 Input Voltage:VIN (V) Input Voltage 0.5 Output Voltage Input Voltage 5 4 3 2 1 0 -0.5 Output Voltage 0.0 0.5 2 1 0 0.0 -0.5 Time (200 sec/div) Time (200 sec/div) VR4 (3.0V) VOUT(V) 6 CL=1F(Tantalum), IOUT=1mA VR4 (3.0V) 1.0 6 CL=1F(Tantalum),IOUT=10mA 1.0 Input Voltage:VIN (V) Input Voltage:VIN (V) 5 4 3 2 1 0 Input Voltage 0.5 Output Voltage 0.0 5 4 3 2 1 0 Input Voltage 0.5 Output Voltage 0.0 Output Voltage Change: -0.5 -0.5 Time (200 sec/div) Time (400 sec/div) Output Voltage Change: VOUT(V) Output Voltage Change: VOUT(V) Output Voltage Change: VOUT(V) Output Voltage Change: VOUT(V) (15) Input Transient Response 2 VR1 (2.8V) 10 CL=10F(Tantalum), IOUT=10mA VR2 (3.0V) 8 10 CL=10F(Tantalum), IOUT=10mA 8 Output Voltage:VOUT (V) 5 Input Voltage 6 5 Input Voltage 6 0 Output Voltage 4 0 Output Voltage -5 4 -5 2 2 -10 0 -10 0 Time (250 sec/div) Time (250 sec/div) VR3 (2.8V) 10 CL=1F(Tantalum),IOUT=10mA VR4 (3.0V) 8 10 CL=1F(Tantalum),IOUT=10mA 8 Output Voltage:VOUT (V) Input Voltage 5 6 5 Input Voltage 6 0 Output Voltage 4 0 Output Voltage -5 4 Output Voltage:VOUT (V) Input Voltage:VIN (V) Input Voltage:VIN (V) Output Voltage:VOUT (V) Input Voltage:VIN (V) Input Voltage:VIN (V) -5 2 2 y -10 0 -10 0 Time (250 sec/div) Time (200 sec/div) (16) EN Transient Response VR1 (2.8V) 10 VIN=3.8V, IOUT=50mA VR2 (3.0V) 10 VIN=4.0V,IOUT=50mA Output Voltage:VOUT (V) Output Voltage:VOUT (V) EN Input Voltage EN=1.3V EN Input Voltage 8 6 4 2 0 EN=0.4V Output Voltage EN=1.3V 8 6 4 2 0 EN=0.4V Output Voltage Time (200 sec/div) Time (200 sec/div) VR3 (2.8V) 8 VIN=3.8V,IOUT=35mA Output Voltage:VOUT (V) EN Input Voltage EN=1.3V 6 4 EN=0.4V 2 0 Output Voltage Time (200 sec/div) |
Price & Availability of TOR025
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |