Part Number Hot Search : 
SSF1JG 576MH TLPGE B1709H 1620C BT606 PR1505 11178
Product Description
Full Text Search
 

To Download SMMS696 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
D D D D D D D D
Organization: - TM2SN64EPN . . . 2 097 152 x 64 Bits - TM4SN64EPN . . . 4 194 304 x 64 Bits Single 3.3-V Power Supply (10% Tolerance) Designed for 66-MHz 4-Clock Systems JEDEC 168-Pin Dual-In-Line Memory Module (DIMM) Without Buffer for Use With Socket TM2SN64EPN -- Uses Eight 16M-Bit Synchronous Dynamic RAMs (SDRAMs) (2M x 8-Bit) in Plastic Thin Small-Outline Packages (TSOPs) TM4SN64EPN -- Uses Sixteen 16M-Bit SDRAMs (2M x 8-Bit) in Plastic TSOPs Byte-Read/Write Capability Performance Ranges:
SYNCHRONOUS CLOCK CYCLE TIME tCK3 tCK2 (CL = 3) (CL = 2) ACCESS TIME CLOCK TO OUTPUT tCK3 tCK2 (CL = 3) (CL = 2) 7.5 ns 8 ns 8 ns 9 ns REFRESH INTERVAL
D D D D D D D D D
High-Speed, Low-Noise Low-Voltage TTL (LVTTL) Interface Read Latencies 2 and 3 Supported Support Burst-Interleave and Burst-Interrupt Operations Burst Length Programmable to 1, 2, 4, and 8 Two Banks for On-Chip Interleaving (Gapless Access) Ambient Temperature Range 0C to 70C Gold-Plated Contacts Pipeline Architecture Serial Presence-Detect (SPD) Using EEPROM
'xSN64EPN-10 'xSN64EPN-12
10 ns 12 ns
15 ns 15 ns
64 ms 64 ms
CL = CAS latency
description
The TM2SN64EPN is a 16M-byte, 168-pin dual-in-line memory module (DIMM). The DIMM is composed of eight TMS626812ADGE, 2 097 152 x 8-bit SDRAMs, each in a 400-mil, 44-pin plastic thin small-outline package (TSOP) mounted on a substrate with decoupling capacitors. See the TMS626812A data sheet (literature number SMOS691). The TM4SN64EPN is a 32M-byte, 168-pin DIMM. The DIMM is composed of sixteen TMS626812ADGE, 2 097 152 x 8-bit SDRAMs, each in a 400-mil, 44-pin plastic TSOP mounted on a substrate with decoupling capacitors. See the TMS626812A data sheet (literature number SMOS691).
operation
The TM2SN64EPN operates as eight TMS626812ADGE devices that are connected as shown in the TM2SN64EPN functional block diagram. The TM4SN64EPN operates as sixteen TMS626812ADGE devices connected as shown in the TM4SN64EPN functional block diagram.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright (c) 1997, Texas Instruments Incorporated
PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
1
PRODUCT PREVIEW
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
DUAL-IN-LINE MEMORY MODULE ( TOP VIEW )
TM2SN64EPN ( SIDE VIEW )
TM4SN64EPN ( SIDE VIEW ) A[0:10] A[0:8] A11/BA0 CAS CKE[0:1] CK[0:3] DQ[0:63] DQMB[0:7] NC RAS S[0:3] SA[0:2] SCL SDA VDD VSS WE
PIN NOMENCLATURE Row Address Inputs Column Address Inputs Bank-Select Zero Column-Address Strobe Clock Enable System Clock Data-In / Data-Out Data-In/Data-Out Mask Enable No Connect Row-Address Strobe Chip-Select Serial Presence-Detect (SPD) Device Address Input SPD Clock SPD Address / Data 3.3-V Supply Ground Write Enable
1
10 11
PRODUCT PREVIEW
40
41
84
2
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
AAAAAA A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA AAAAAA A A A A A A AAAAAA A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAA A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAA A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AA AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAA A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAA A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAAAA AAAAAAAAAAAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A A A AA AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAA AAAA A A AA AAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A AA A A A A A AA AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA A AA AA A
NO. 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 11 9 8 7 6 5 4 3 2 1 PIN DQMB1 DQMB0 NAME DQ15 VDD DQ14 DQ13 DQ12 DQ10 DQ11 VDD VDD VDD WE VDD DQ4 VSS DQ9 DQ8 DQ7 DQ6 DQ5 DQ3 DQ2 DQ1 VSS DQ0 VSS A0 VSS NC CK0 A10 NC NC NC NC NC A8 A6 A4 A2 S0 NO. 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 PIN NAME DQMB3 DQMB2
POST OFFICE BOX 1443
Pin Assignments
DQ31
DQ30
DQ29
VDD DQ28
DQ27
DQ26
DQ25
VSS DQ24
DQ17
VSS DQ16
VDD NC
VSS NC
NC
NC
NC
NC
S2
NO.
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
98
97
96
95
94
93
92
91
90
89
88
87
86
85
PIN NAME
DQ42
VSS DQ41
DQ40
DQ39
DQ38
DQ37
VDD DQ36
DQ35
DQ34
DQ33
VSS DQ32
NO.
140
VSS 139AAAAAA DQ48
138
137
136
135
134
133
132
131
130AAAAAA DQMB6
129
128
127
PIN NAME
DQMB7
DQ49
VSS CKE0
SMMS696 - AUGUST 1997
VDD NC
NC
NC
NC
NC
S3
PRODUCT PREVIEW
DQ23
DQ22
VSS DQ21
CKE1
VDD DQ20
DQ19
DQ18
VDD
SDA
VSS CK2
SCL
NC
NC
NC
NC
* HOUSTON, TEXAS 77251-1443
126 125 124 123 122 121 120 109 108 107 106 105 104 103 102 101 100 119 118 117 116 115 114 113 112 110 111 99 A11/BA0 DQMB5 DQMB4 DQ47 VDD DQ46 DQ45 DQ44 DQ43 VDD CK1 VDD CAS RAS VSS A1 VSS NC NC NC NC NC NC A9 A7 A5 A3 S1 168 167 166 165 164 163 162 161 160 159 158 157 156AAAAAA DQ59 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 DQ63 DQ62 DQ61 VDD DQ60 DQ58 DQ57 VSS DQ56 DQ55 DQ54 VSS DQ53 VDD DQ52 DQ51 DQ50 VDD VSS CK3 SA2 SA1 SA0 NC NC NC NC
3
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
dual-in-line memory module and components
The dual-in-line memory module and components include:
D D D
PC substrate: 1,27 0,1 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage Bypass capacitors: Multilayer ceramic Contact area: Nickel plate and gold plate over copper
functional block diagram for the TM2SN64EPN
S0 RC CS CS CK: U0, U4 CK0 U4 DQMB4 R DQ[0:7] DQ[32:39] 8 DQM DQ[0:7] CK2 CK1 RC CK: U1, U5 U0 DQMB0 R DQ[0:7] 8 DQM RC CK: U2, U6 RC CK: U3, U7 RC C RC CK3 U1 DQMB1 R DQ[8:15] 8 DQM DQ[0:7] DQMB5 R DQ[40:47] 8 DQM DQ[0:7] R = 10 RC = 10 C = 10 pF U5 C
PRODUCT PREVIEW
CS
CS
S2 CS CS
VDD
U2 DQMB2 R DQ[16:23] 8 DQM DQ[0:7] DQMB6 R DQ[48:55] 8 DQM DQ[0:7]
U6
VSS
U[0:7] Two 0.1 F (minimum) per SDRAM U[0:7]
SPD EEPROM CS CS SCL A0 U3 DQMB3 R DQ[24:31] RAS CAS WE CKE0 A[0:11] 8 DQM DQ[0:7] DQMB7 R DQ[56:63] 8 DQM DQ[0:7] Chip select Serial Presence Detect U7 SA0 SA1 SA2 A1 A2 SDA
RAS: SDRAM U[0:7] CAS: SDRAM U[0:7] WE: SDRAM U[0:7] CKE: SDRAM U[0:7] A[0:11]: SDRAM U[0:7]
LEGEND: CS = SPD =
4
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
functional block diagram for the TM4SN64EPN
S1 S0 CS CS CS CS VSS U0 DQMB0 R DQ[0:7] 8 DQM DQ[0:7] UB0 DQM DQ[0:7] DQMB4 R DQ[32:39] 8 U4 DQM DQ[0:7] UB4 DQM DQ[0:7] VDD CS CS CS CS CKE1 CKE0 RAS CAS WE A[0:11] 10 K CKE: UB[0:7] CKE: U[0:7] RAS: U[0:7], UB[0:7] CAS: U[0:7], UB[0:7] WE: U[0:7], UB[0:7] A[0:11]: U[0:7], UB[0:7] RC CK: U0, U4 CK0 CS CS CS CS CK1 U2 DQMB2 R DQ[16:23] 8 DQM DQ[0:7] UB2 DQM DQ[0:7] DQMB6 R DQ[48:55] 8 U6 DQM DQ[0:7] UB6 DQM CK2 DQ[0:7] RC CK: U1, U5 RC CK: UB0, UB4 RC CK: UB1, UB5 RC CK: U2, U6 RC CK: U3, U7 RC CK: UB2, UB6 CS CS CS CS CK3 RC CK: UB3, UB7 SPD EEPROM SCL A0 A1 A2 SDA R = 10 Rc = 10 VDD U[0:7], UB[0:7] Two 0.1 F (minimum) per SDRAM U[0:7], UB[0:7]
U1 DQMB1 R DQ[8:15] 8 DQM DQ[0:7]
UB1 DQM DQ[0:7] DQMB5 R DQ[40:47] 8
U5 DQM DQ[0:7]
UB5 DQM DQ[0:7]
S3 S2
U3 DQMB3 R DQ[24:31] 8 DQM DQ[0:7]
UB3 DQM DQ[0:7] DQMB7 R DQ[56:63] 8
U7 DQM DQ[0:7]
UB7 DQM DQ[0:7]
SA0 SA1 SA2
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
5
PRODUCT PREVIEW
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
absolute maximum ratings over ambient temperature range (unless otherwise noted)
Supply voltage range, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 4.6 V Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5 V to 4.6 V Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Power dissipation: TM2SN64EPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 W TM4SN64EPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 W Ambient temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0C to 70C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 55C to 125C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values are with respect to VSS.
PRODUCT PREVIEW
AAA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAA A AAA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAA AAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA
MIN 3 2 2 0 NOM MAX 3.6 UNIT V V V V V VDD VSS Supply voltage Supply voltage 3.3 0 VIH VIH-SPD High-level input voltage VIL TA Ambient temperature VIL MIN = -1.5 V ac (pulse width High-level input voltage for the SPD device Low-level input voltage VDD + 0.3 5.5 0.8 70 -0.3
recommended operating conditions
v 5 ns)
C
capacitance over recommended ranges of supply voltage and ambient temperature, f = 1 MHz (see Note 2)
PARAMETER TM2SN64EPN MIN TM4SN64EPN MIN MAX MAX UNIT pF pF pF pF pF pF pF pF
AAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAA A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAA A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A AAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A
Ci(CK) Ci(AC) Co Input capacitance, CK input 18 42 42 12 22 9 7 22 82 42 15 12 22 9 7 Input capacitance, address and control inputs: A0 - A11, RAS, CAS, WE Input capacitance, CKE input Output capacitance Ci(CKE) 8.5 Ci(DQMBx) Ci(Sx) Ci/o(SDA) Input capacitance, DQMBx input Input capacitance, Sx input Input/output capacitor, SDA input Ci(SPD) Input capacitor, SA0, SA1, SA2, SCL inputs NOTE 2: VDD = 3.3 V 0.3 V. Bias on pins under test is 0 V. 6
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) (see Note 3)
AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A A A A A A AAAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AAAAAAAAAAAA AAAAAAAAAAAAAAAAAA AAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAA A A AAAA A A AAA A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AAAAA A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAA AAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA AAAA A A AAAA A A AAA A AAA A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AAA A A A A A AAA A AA A A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A A AAAA A A AAAA A A A A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A
PARAMETER TEST CONDITIONS '2SN64EPN-10 MIN 2.4 '2SN64EPN-12 MIN MAX 2.4 MAX UNIT V V VOH VOL II High-level output voltage Low-level output voltage Input current (leakage) IOH = - 2 mA IOL = 2 mA 0.4 0.4 0 V < VI < VDD + 0.3 V, All other pins = 0 V to VDD 0 V < VO < VDD +0.3 V, Output disabled
TM2SN64EPN
"10 "10
"10 "10
A A
IO
Output current (leakage)
ICC1
Operating current
Burst length = 1, CAS latency = 2 tRC tRC MIN IOH/IOL = 0 mA, one bank CAS latency = 3 activated (see Note 4) CKE VIL MAX, tCK = 15 ns (see Note 5) CKE and CK VIL MAX, tCK = (see Note 6)
760 840 16 16
720 720
mA mA mA mA mA mA mA mA mA mA mA mA mA mA
ICC2P ICC2PS
Precharge standby current in g y power-down mode
16 16
16 24 24
16 24 24
ICC3P ICC3PS ICC3N
Active standby current in y power-down mode Active standby current in non-power-down mode
CKE VIL MAX, tCK = 15 ns (see Note 5) CKE VIH MIN, tCK = 15 ns (see Note 5) CKE VIH MIN, CK VIL MAX, tCK = (see Note 6)
CKE and CK VIL MAX, tCK = (see Note 6)
240 80
240
ICC3NS
80
ICC4
Burst current
Page burst, IOH/IOL = 0 mA CAS latency = 2 All banks activated, , nCCD = one cycle CAS latency = 3 (see Note 7) tRC tRC MIN CAS latency = 2 CAS latency = 3
800
760
1040 680 760
1000 640 640
ICC5
Auto refresh current Auto-refresh
ICC6 Self-refresh current CKE VIL MAX 16 16 mA NOTES: 3. All specifications apply to the device after power-up initialization. All control and address inputs must be stable and valid. 4. Control, DQ, and address inputs change state twice during tRC. 5. Control, DQ, and address inputs change state once every 30 ns. 6. Control, DQ, and address inputs do not change. 7. Control, DQ, and address inputs change once every cycle.
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
7
PRODUCT PREVIEW
ICC2NAAAAAAAAA VIH MIN, tCK = 15 ns (see Note 5) CKE Precharge standby current in CKE VIH MIN, CK VIL MAX, tCK = ICC2NS non-power-down mode (see Note 6)
200
200
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) (see Note 3)
AA A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A AAAAAAAAAAA A A A A A A AAAAAAAAAAAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A A AAAAAAAAAAAA AAA A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A AAA AA AAA AA AA AA A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA A A A A AAA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAA AAA AA AAA AA AA AA AA AA A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A A AAA A A A A AAA A A A A A A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A A A A AAA AA AAA AA A A A A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AA A
PARAMETER TEST CONDITIONS '4SN64EPN-10 MIN 2.4 '4SN64EPN-12 MIN MAX 2.4 MAX UNIT V V VOH VOL II High-level output voltage Low-level output voltage Input current (leakage) IOH = - 2 mA IOL = 2 mA 0.4 0.4 0 V < VI < VDD + 0.3 V, All other pins = 0 V to VDD 0 V < VO < VDD +0.3 V, Output disabled
TM4SN64EPN
"20 "20
"20 "20
A A
IO
Output current (leakage)
ICC1
Operating current
Burst length = 1, CAS latency = 2 tRC tRC MIN IOH/IOL = 0 mA, one bank CAS latency = 3 activated (see Note 4) CKE VIL MAX, tCK = 15 ns (see Note 5) CKE VIH MIN, tCK = 15 ns (see Note 5) CKE VIH MIN, CK VIL MAX, tCK = (see Note 6) CKE and CK VIL MAX, tCK = (see Note 6)
768 848 32 32
728 728
mA mA mA mA mA mA mA mA
ICC2P ICC2PS ICC2N
Precharge standby current in g y power-down mode Precharge standby current in non-power-down mode Active standby current in y power-down mode
32 32
PRODUCT PREVIEW
400 32 48 48
400
ICC2NS ICC3P ICC3PS ICC3N
32 48 48
CKE VIL MAX, tCK = 15 ns (see Note 5) CKE VIH MIN, tCK = 15 ns (see Note 5) CKE VIH MIN, CK VIL MAX, tCK = (see Note 6)
CKE and CK VIL MAX, tCK = (see Note 6)
ICC3NS
Active standby current in non-power-down mode
480 160 808
480AAA mA 160 768 mA mA mA mA mA mA
ICC4
Burst current
Page burst, IOH/IOL = 0 mA CAS latency = 2 All banks activated, , nCCD = one cycle CAS latency = 3 (see Note 7) tRC tRC MIN CAS latency = 2 CAS latency = 3
1048 688 768 32
1008 648 648
ICC5 ICC6
Auto refresh current Auto-refresh Self-refresh current
CKE VIL MAX
32
NOTES: 3. 4. 5. 6. 7.
All specifications apply to the device after power-up initialization. All control and address inputs must be stable and valid. Control, DQ, and address inputs change state twice during tRC. Control, DQ, and address inputs change state once every 30 ns. Control, DQ, and address inputs do not change. Control, DQ, and address inputs change once every cycle.
8
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
ac timing requirements
'xSN64EPN-10 MIN tCK2 tCK3 tCH tCL tAC2 tAC3 tOH tLZ tHZ tIS tIH tCESP tRAS tRC tRCD tRP tRRD tRSA tAPR tAPW tWR tT tREF nCCD nCDD nCLE nCWL nDID nDOD nHZP2 nHZP3 Cycle time, CLK, CAS latency = 2 Cycle time, CLK, CAS latency = 3 Pulse duration, CLK high Pulse duration, CLK low Access time, CLK high to data out, CAS latency = 2 (see Note 8) Access time, CLK high to data out, CAS latency = 3 (see Note 8) Hold time, CLK high to data out Delay time, CLK high to DQ in low-impedance state (see Note 9) Delay time, CLK high to DQ in high-impedance state (see Note 10) Setup time, address, control, and data input Hold time, address, control, and data input Power-down/self-refresh exit time Delay time, ACTV command to DEAC or DCAB command Delay time, ACTV, REFR, or SLFR exit to ACTV, MRS, REFR, or SLFR command Delay time, ACTV command to READ, READ-P, WRT, or WRT-P command (see Note 11) Delay time, DEAC or DCAB command to ACTV, MRS, REFR, or SLFR command Delay time, ACTV command in one bank to ACTV command in the other bank Delay time, MRS command to ACTV, MRS, REFR, or SLFR command Final data out of READ-P operation to ACTV, MRS, SLFR, or REFR command Final data in of WRT-P operation to ACTV, MRS, SLFR, or REFR command Delay time, final data in of WRT operation to DEAC or DCAB command Transition time (see Note 12) Refresh interval Delay time, READ or WRT command to an interrupting command Delay time, CS low or high to input enabled or inhibited Delay time, CKE high or low to CLK enabled or disabled Delay time, final data in of WRT operation to READ, READ-P, WRT, WRT-P Delay time, ENBL or MASK command to enabled or masked data in Delay time, ENBL or MASK command to enabled or masked data out Delay time, DEAC or DCAB command to DQ in high-impedance state, CAS latency = 2 Delay time, DEAC or DCAB command to DQ in high-impedance state, CAS latency = 3 1 0 1 1 0 2 0 2 2 3 0 1 10 1 5 64 1 0 1 1 0 2 0 2 2 3 0 1 3 1 10 50 80 30 30 20 20 100 000 3 2 8 3 1 10 60 90 30 30 24 24 tRP - (CL -1) * tCK tRP + tCK 12 1 5 64 100 000 15 10 3 3 8 7.5 3 2 8 MAX 'xSN64EPN-12 MIN 15 12 4 4 9 8 MAX UNIT ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ms cycle cycle cycle cycle cycle cycle cycle cycle
nWCD Delay time, WRT command to first data in 0 0 0 0 cycle All references are made to the rising transition of CK unless otherwise noted. NOTES: 8. tAC is referenced from the rising transition of CK that is previous to the data-out cycle. For example, the first data out tAC is referenced from the rising transition of CK that is CAS latency - one cycle after the READ command. Access time is measured at output reference level 1.4 V. 9. tLZ is measured from the rising transition of CK that is CAS latency - one cycle after the READ command. 10. tHZ MAX defines the time at which the outputs are no longer driven and is not referenced to output voltage levels. 11. For read or write operations with automatic deactivate, tRCD must be set to satisfy minimum tRAS. 12. Transition time, tT, is measured between VIH and VIL.
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
9
PRODUCT PREVIEW
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
serial presence detect
The serial presence detect (SPD) is contained in a 2K-bit serial EEPROM located on the module. The SPD nonvolatile EEPROM contain various data such as module configuration, SDRAM organization, and timing parameters (see tables below). Only the first 128 bytes are programmed by Texas Instruments, while the remaining 128 bytes are available for customer use. Programming is done through an IIC bus using the clock (SCL) and data (SDA) signals. All Texas Instruments modules comply with the current JEDEC SPD Standard. See the Texas Instruments Serial Presence Detect Technical Reference (literature number SMMU001) for further details. Tables in this section lists the SPD contents as follows: Table 1 -TM2SN64EPN Table 2 -TM4SN64EPN
Table 1. Serial Presence-Detect Data for the TM2SN64EPN
BYTE NO. 0 DESCRIPTION OF FUNCTION Defines number of bytes written into serial memory during module manufacturing Total number of bytes of SPD memory device Fundamental memory type (FPM, EDO, SDRAM, . . .) Number of row addresses on this assembly Number of column addresses on this assembly Number of module banks on this assembly Data width of this assembly Data width continuation Voltage interface standard of this assembly SDRAM cycle time at maximum supported CAS latency (CL), CL = X SDRAM access from clock at CL = X DIMM configuration type (non-parity, parity, error correcting code [ECC]) Refresh rate / type SDRAM width, primary DRAM Error-checking SDRAM data width Minimum clock delay, back-to-back random column addresses Burst lengths supported Number of banks on each SDRAM device CAS latencies supported CS latency Write latency SDRAM module attributes LVTTL tCK = 10 ns tAC = 7.5 ns Non-Parity 15.6 s/ self-refresh x8 N/A 1 CK cycle 1, 2, 4, 8 2 banks 2, 3 0 0 Non-buffered/ Non-registered TM2SN64EPN-10 ITEM 128 bytes 256 bytes SDRAM 11 9 1 bank 64 bits DATA 80h 08h 04h 0Bh 09h 01h 40h 00h 01h A0h 75h 00h 80h 08h 00h 01h 0Fh 02h 06h 01h 01h 00h LVTTL tCK = 12 ns tAC = 8 ns Non-Parity 15.6 s/ self-refresh x8 N/A 1 CK cycle 1, 2, 4, 8 2 banks 2, 3 0 0 Non-buffered/ Non-registered TM2SN64EPN-12 ITEM 128 bytes 256 bytes SDRAM 11 9 1 bank 64 bits DATA 80h 08h 04h 0Bh 09h 01h 40h 00h 01h C0h 80h 00h 80h 08h 00h 01h 0Fh 02h 06h 01h 01h 00h
PRODUCT PREVIEW
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
10
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
serial presence detect (continued)
Table 1. Serial Presence-Detect Data for the TM2SN64EPN (Continued)
BYTE NO. DESCRIPTION OF FUNCTION TM2SN64EPN-10 ITEM VDD tolerance = (+10%), Burst read / write, precharge all, auto precharge tCK = 15 ns tAC = 8 ns N/A N/A tRP = 30 ns tRRD = 20 ns tRCD = 30 ns tRAS = 50 ns 16M Bytes Rev. 1 158 97h TBD TBD TBD TBD TBD TBD TBD TBD TBD DATA TM2SN64EPN-12 ITEM VDD tolerance = (+10%), Burst read / write, precharge all, auto precharge tCK = 15 ns tAC = 9 ns N/A N/A tRP = 30 ns tRRD = 24 ns tRCD = 30 ns tRAS = 60 ns 16M Bytes Rev. 1 231 97h TBD TBD TBD TBD TBD TBD TBD TBD TBD DATA
22
SDRAM device attributes: general
0Eh
0Eh
23 24 25 26 27 28 29 30 31 32 - 61 62 63 64 - 71 72 73-90 91 92 93-94 95-98 99-125 126-127 128-166 167-255
Minimum clock cycle time at CL = X - 1 Maximum data-access time from clock at CL = X - 1 Minimum clock cycle time at CL = X - 2 Maximum data-access time from clock at CL = X - 2 Minimum row precharge time Minimum row-active to row-active delay Minimum RAS-to-CAS delay Minimum RAS pulse width Density of each bank on module Superset features (may be used in the future) SPD revision Checksum for byte 0 - 62 Manufacturer's JEDEC ID code per JEP - 106E Manufacturing location Manufacturer's part number Die revision code PCB revision code Manufacturing date Assembly serial number Manufacturer specific data Vendor specific data System integrator's specific data Open
F0h 80h 00h 00h 1Eh 14h 1Eh 32h 04h 01h 9Eh 9700...00h
F0h 90h 00h 00h 1Eh 18h 1Eh 3Ch 04h 01h E7h 9700...00h
TBD indicates values are determined at manufacturing time and are module dependent. These TBD values are determined and programmed by the customer (optional).
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
11
PRODUCT PREVIEW
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
serial presence detect (continued)
Table 2. Serial Presence-Detect Data for the TM4SN64EPN
BYTE NO. 0 1 2 3 4 5 6 7 8 9 DESCRIPTION OF FUNCTION Defines number of bytes written into serial memory during module manufacturing Total number of bytes of SPD memory device Fundamental memory type (FPM, EDO, SDRAM, . . .) Number of row addresses on this assembly Number of column addresses on this assembly Number of module banks on this assembly Data width of this assembly Data width continuation Voltage interface standard of this assembly SDRAM cycle time at maximum supported CAS latency (CL), CL = X SDRAM access from clock at CL = X DIMM configuration type (non-parity, parity, error correcting code [ECC]) Refresh rate / type SDRAM width, primary DRAM Error-checking SDRAM data width Minimum clock delay, back-to-back random column addresses Burst lengths supported Number of banks on each SDRAM device CAS latencies supported CS latency Write latency SDRAM module attributes LVTTL tCK = 10 ns tAC = 7.5 ns Non-Parity 15.6 s/ self-refresh x8 N/A 1 CK cycle 1, 2, 4, 8 2 banks 2, 3 0 0 Non-buffered/ Non-registered VDD tolerance = (+10%), Burst read / write, precharge all, auto precharge tCK = 15 ns tAC = 8 ns N/A N/A TM4SN64EPN-10 ITEM 128 bytes 256 bytes SDRAM 11 9 2 banks 64 bits DATA 80h 08h 04h 0Bh 09h 02h 40h 00h 01h A0h 75h 00h 80h 08h 00h 01h 0Fh 02h 06h 01h 01h 00h LVTTL tCK = 12 ns tAC = 8 ns Non-Parity 15.6 s/ self-refresh x8 N/A 1 CK cycle 1, 2, 4, 8 2 banks 2, 3 0 0 Non-buffered/ Non-registered VDD tolerance = (+10%), Burst read / write, precharge all, auto precharge tCK = 15 ns tAC = 9 ns N/A N/A TM4SN64EPN-12 ITEM 128 bytes 256 bytes SDRAM 11 9 2 banks 64 bits DATA 80h 08h 04h 0Bh 09h 02h 40h 00h 01h C0h 80h 00h 80h 08h 00h 01h 0Fh 02h 06h 01h 01h 00h
PRODUCT PREVIEW
10 11 12 13 14 15 16 17 18 19 20 21
22
SDRAM device attributes: general
0Eh
0Eh
23 24 25 26
Minimum clock cycle time at CL = X - 1 Maximum data-access time from clock at CL = X - 1 Minimum clock cycle time at CL = X - 2 Maximum data-access time from clock at CL = X - 2
F0h 80h 00h 00h
F0h 90h 00h 00h
12
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
serial presence detect (continued)
Table 2. Serial Presence-Detect Data for the TM4SN64EPN (Continued)
BYTE NO. 27 28 29 30 31 32-61 62 63 64 - 71 72 73-90 91 92 93-94 95-98 99-125 126-127 128-166 167-255 DESCRIPTION OF FUNCTION Minimum row precharge time Minimum row-active to row-active delay Minimum RAS-to-CAS delay Minimum RAS pulse width Density of each bank on module Superset features (may be used in the future) SPD revision Checksum for byte 0 - 62 Manufacturer's JEDEC ID code per JEP - 106E Manufacturing location Manufacturer's part number Die revision code PCB revision code Manufacturing date Assembly serial number Manufacturer specific data Vendor specific data System integrator's specific data Open Rev. 1 159 97h TBD TBD TBD TBD TBD TBD TBD TBD TBD 01h 9Fh 9700...00h Rev. 1 232 97h TBD TBD TBD TBD TBD TBD TBD TBD TBD 01h E8h 9700...00h TM4SN64EPN-10 ITEM tRP = 30 ns tRRD = 20 ns tRCD = 30 ns tRAS = 50 ns 16M Bytes DATA 1Eh 14h 1Eh 32h 04h TM4SN64EPN-12 ITEM tRP = 30 ns tRRD = 24 ns tRCD = 30 ns tRAS = 60 ns 16M Bytes DATA 1Eh 18h 1Eh 3Ch 04h
TBD indicates values are determined at manufacturing time and are module dependent. These TBD values are determined and programmed by the customer (optional).
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
13
PRODUCT PREVIEW
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
device symbolization (TM2SN64EPN)
TM2SN64EPN Unbuffered Key Position YY MM T -SS = = = =
-SS
YYMMT
3.3-V Voltage Key Position Year Code Month Code Assembly Site Code Speed Code
NOTE A: Location of symbolization may vary.
PRODUCT PREVIEW
14
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
TM2SN64EPN 2097152 BY 64-BIT TM4SN64EPN 4194304 BY 64-BIT SYNCHRONOUS DYNAMIC RAM MODULES
SMMS696 - AUGUST 1997
MECHANICAL DATA
BS (R-PDIM-N168)
5.255 (133,48) 5.245 (133,22) Notch 0.157 (4,00) x 0.122 (3,10) Deep 2 Places
DUAL IN-LINE MEMORY MODULE
(Note D) Notch 0.079 (2,00) x 0.122 (3,10) Deep 2 Places 0.054 (1,37) 0.046 (1,17)
0.039 (1,00) TYP 0.125 (3,18) 0.118 (3,00) DIA 2 Places
0.050 (1,27) 0.125 (3,18)
0.014 (0,35) MAX
0.700 (17,78) TYP 1.130 (28,70) 1.120 (28,45) 0.106 (2,70) MAX 0.157 (4,00) MAX (For Double Sided DIMM Only) 4088181/A 06/97
NOTES: A. B. C. D. E.
All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Falls within JEDEC MO-161 Dimension includes De-panelization variations; applies between notch and tab edge. Outline may vary above notches to allow router/panelization irregularities.
POST OFFICE BOX 1443
* HOUSTON, TEXAS 77251-1443
15
PRODUCT PREVIEW
0.118 (3,00) TYP
IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.
Copyright (c) 1999, Texas Instruments Incorporated


▲Up To Search▲   

 
Price & Availability of SMMS696

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X