Part Number Hot Search : 
FM101 100GN X5R1C BDY23 BR1300 SSM2211 W536Q030 7905A
Product Description
Full Text Search
 

To Download SLVU015 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 High Performance 45 A Synchronous Buck EVM Using the TPS5210
User's Guide
July 1999
Mixed-Signal Products
SLVU015
IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.
Copyright (c) 1999, Texas Instruments Incorporated
Related Documentation From Texas Instruments
Preface
Read This First
About This Manual
This user's guide describes the TPS5210EVM-126 (SLVP126), a 45-A synchronous buck converter evaluation module (EVM). The SLVP126 provides a convenient method to evaluate the performance of a high-current synchronous buck converter using the TPS5210 ripple regulator controller. A complete and tested power supply design is presented, and detailed test results for the SLVP126 EVM are included.
How to Use This Manual
This document contains the following chapters:
-
Chapter 1 Introduction contains the design summary, performance specifications, and voltage identification codes. Chapter 2 Schematic contains the schematic diagram. Chapter 3 Board Layout and I/O Connections contains board layout and I/O connection drawings. Chapter 4 Bill of Materials contains the bill of materials for the EVM. Chapter 5 Test Results contains test data for the EVM.
Related Documentation From Texas Instruments
1) Designing Fast Response Synchronous Buck Converters Using
the TPS5210 Application Report, Literature Number SLVA044.
2) TPS5210 Programmable Synchronous-Buck Regulator Controller
Data Sheet, Literature Number SLVS171.
3) VRM 8.3 DC-DC Converter Design Guidelines Intel document
Order number: 243870-001, June 1998.
FCC Warning
This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested
Read This First
iii
Trademarks
for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.
Trademarks
CopperStrap is a trademark of International Rectifier.
iv
Running Title--Attribute Reference
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Design Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Performance Specification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Voltage Identification Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1-2 1-3 1-4 1-5
2
Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1 Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Board Layout and I/O Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 3.2 Input/Output Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.1 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 5.1 Test Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5.1.1 Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5.1.2 Static Line and Load Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5.1.3 Output Voltage Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5.1.4 Efficiency and Power Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5.1.5 Output Start-Up and Overshoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 5.1.6 Frequency Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 5.1.7 Load Current Transient Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 5.1.8 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 5.1.9 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 5.1.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
3
4
5
Chapter Title--Attribute Reference
v
Running Title--Attribute Reference
Figures
2-1 3-1 3-2 3-3 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 SLVP126 Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 SLVP126 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 SLVP126 Assembled PWB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 SLVP126 Input/Output Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 SLVP126 Measured Line and Load Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 SLVP126 Measured Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 SLVP126 Measured Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 SLVP126 Measured Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 SLVP126 Measured Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 SLVP126 Measured Start-Up (VCC) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 SLVP126 Measured Start-Up (Enable) Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 SLVP126 Measured Load Transient Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Tables
1-1 1-2 4-1 Performance Specification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 Voltage Identification Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 SLVP126 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
vi
Chapter 1
Introduction
This user's guide describes the TPS5210EVM-126 (SLVP126), a 45-A synchronous buck converter evaluation module (EVM). The SLVP126 provides a convenient method to evaluate the performance of a high-current synchronous buck converter using the TPS5210 ripple regulator controller. A complete and tested power supply design is presented, and detailed test results for the SLVP126 EVM are included. The power supply is a programmable step-down dc-dc EVM that delivers up to 45 A of continuous current, at an output voltage that is programmable from 1.3 V to 3.5 V, determined by a 5-bit DAC code. The PWB board layout provides test points for viewing waveforms.
Topic
1.1 1.2 1.3 1.4
Page
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 Design Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 Performance Specification Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 Voltage Identification Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Introduction
1-1
Background
1.1 Background
High performance microprocessors may require 40 to 80 W of power for the CPU alone. Load current must be supplied at up to 30 A/s slew rate, and the output voltage must be kept within tight regulation and response time tolerances. Parasitic interconnect impedances between the power supply and the processor must be kept to a minimum. Fast responding synchronous buck dc/dc converters controlled by the Texas Instruments TPS5210 hysteretic controller are ideally suited for microprocessor power applications requiring fast response and precise regulation of rapidly changing loads. Conventional synchronous regulator control techniques include fixed frequency voltage-mode, fixed frequency current-mode, variable frequency current-mode, variable on-time, or variable off-time. CPU power supplies that use these control methods require additional bulk storage capacitors on the output to regulate VO within limits during the high di/dt load transients because of the limited bandwidth of the controller. Some controllers add a fast loop around the slower main control loop to improve the response time, but VO must deviate outside a fixed tolerance band before the fast loop becomes active. The TPS5210 hysteretic control method offers superior performance without additional output capacitance or difficult loop compensation design. The SLVP126 EVM is a modified version of the SLVP119 EVM (see Texas Instruments literature number SLVU010) optimized for high current, high efficiency, and main power input voltage of 12 V; it maintains tight static and dynamic output voltage regulation. The EVM also requires a 5-V, 30-mA input voltage for enable/inhibit and power good signals.
1-2
Design Summary
1.2 Design Summary
The SLVP126 EVM is a modification of the SLVP119 EVM. The following design changes from the SLVP119 EVM provide 45 A of output current (vs 20 A for the SLVP119 EVM).
-
The output inductor is a 1-H, planar construction inductor designed by Pulse Engineering Inc. (P/N P1605) in accordance with TI's requirements. The main power switches are high-current, high-efficiency power MOSFETs from International Rectifier (P/N IRF7811) in an SO-8 package with CopperStrapTM technology. The PWB is fabricated with 4-oz. copper to improve thermal characteristics and avoid expensive heatsinks. Input and output filters are designed for the increase in output current.
The SLVP126 EVM has all the features, which are described in detail in the datasheet for TPS5210 controller (Texas Instruments literature number SLVS171A). The features include undervoltage lockout, an inhibit signal, a power good signal, overvoltage protection, slow start, remote sense, and overcurrent protection. Current limit is set at 46 A.
CopperStrap is a trademark of International Rectifier.
Introduction
1-3
Performance Specification Summary
1.3 Performance Specification Summary
This section summarizes the performance specifications of the SLVP126 converter. Table 1-1 gives the performance specifications of the converters.
Table 1-1. Performance Specification Summary
Specification Main power (VI) Input voltage range 5-V Input 12-V Input Output voltage range Static voltage tolerance Line regulation Load regulation Transient res onse response Output current range Current limit Output ripple Soft-start rise time Operating frequency Efficiency, 10 A load Efficiency, 45 A load
Notes: 1) IO = 45 A 2) VID inputs set for VREF = 2 V. 3) IO = 20 A 4) Input voltage varied, can be at any point over entire range. 5) Main power input voltage adjusted to 12 VDC. 6) IO varied, can be at any point over entire range. Droop disabled. 7) IO pulsed from 0 A to 10 A, di/dt = 20 A/s.
Test Conditions
Min 11.4 4.5 11.4
Typ
Max 13 5 12 2 2 5.5 13 3.5 2.02
Units
V V V V
See Note 1 See Notes 2 and 3 See Notes 1 and 4 See Notes 5 and 6 See Note 7
1.3 1.98
0.05% 0.1% 0.1% 0.4% 55 50 mV pk sec 45 46 35 10 125 92.3% 85% A A mV ms kHz
See Note 4 See Note 4 See Note 4 See Note 5 See Notes 1 and 5 See Notes 2 and 4 See Notes 2 and 4
0
1-4
Voltage Identification Codes
1.4 Voltage Identification Codes
The output voltage is programmed by driving the 5 VID inputs. The output voltage for a given VID input is shown in Table 1-2.
Table 1-2. Voltage Identification Codes
VID Terminals (0 = GND, 1 = floating or pullup to 5 V) VID4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 VID3 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 VID2 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 VID1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 VID0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 VREF (Vdc) 1.30 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 No CPU 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50
Introduction
1-5
1-6
Chapter 2
Schematic
This chapter contains the schematic diagram for the SLVP126 EVM.
Topic
2.1
Page
Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Schematic
2-1
Schematic Diagram
2.1 Schematic Diagram
Figure 2-1 shows the SLVP126 EVM schematic diagram.
2-2
Figure 2-1. SLVP126 Schematic Diagram
Q2 IRF7811 Q2 IRF7811 Q3 IRF7811
IRF7811 Q4
Q5 IRF7811 Q6 IRF7811
Q9 IRF7811
7.50
51.1 1%
5.11K
0 Open
Schematic
Schematic Diagram
2-3
Schematic Diagram
2-4
Schematic
Chapter 3
Board Layout and I/O Connections
This chapter contains the board layout and I/O connection drawings for the SLVP126 EVM.
Topic
3.1 3.2
Page
Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Input/Output Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Board Layout and I/O Connections
3-1
Board Layout
3.1 Board Layout
The power supply module consists of one PWB. The board layout includes many test points so that waveforms may be viewed during operation. Figure 3-1 shows the front view and back view of the SLVP126 EVM board, and Figure 3-2 shows the assembled PWB.
Figure 3-1. SLVP126 Board Layout
3-2
Input/Output Connections
Figure 3-2. SLVP126 Assembled PWB
3.2 Input/Output Connections
Figure 3-3 shows the input/output connections to the SLVP126.
Figure 3-3. SLVP126 Input/Output Connections
Power Supply
5-V, 20-mA Supply -+
AWG20
AWG12 Power Supply AWG20
AWG12
12-V, 20-A Supply -+
AWG20
- Load + Note: All wire pairs should be twisted.
Board Layout and I/O Connections
3-3
3-4
Chapter 4
Bill of Materials
This chapter contains the bill of materials for the SLVP126 EVM.
Topic
4.1
Page
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Bill of Materials
4-1
Bill of Materials
4.1 Bill of Materials
Table 4-1 lists materials required for the SLVP126 EVM.
Table 4-1. SLVP126 Bill of Materials
Ref Des C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 Part Number ECS-H1AD476R GRM42-6X7R104K050A ECS-H1CD226R 16SA470M 16SA470M 16SA470M GRM42-6Y5V105Z025A GRM42-6Y5V105Z025A GRM42-6Y5V105Z025A GRM42-6X7R104K050A GRM42-6X7R104K050A GRM42-6X7R104K050A GRM42-6X7R102K050A 4SP820M 4SP820M 4SP820M 4SP820M GRM235Y5V106Z016A GRM235Y5V106Z016A GRM235Y5V106Z016A GRM235Y5V106Z016A GRM42-6X7R104K050A GRM42-6X7R104K050A GRM42-6X7R104K050A GRM42-6X7R102K050A GRM42-6X7R104K050A GRM42-6Y5V105Z025A GRM42-6X7R103K050A GRM42-6Y5V105Z025A GRM42-6X7R104K050A GRM42-6Y5V105Z025A Description Capacitor, tantalum, 47 F, 10 V, 20% Capacitor, ceramic, 0.1 F, 50 V, 10%, X7R Capacitor, tantalum, 22 F, 16 V, 20% Capacitor, Os-Con, 470 F, 16 V, 20% Capacitor, Os-Con, 470 F, 16 V, 20% Capacitor, Os-Con, 470 F, 16 V, 20% Capacitor, ceramic, 1 F, 25 V, +80%-20%, Y5V Capacitor, ceramic, 1 F, 25 V, +80%-20%, Y5V Capacitor, ceramic, 1 F, 25 V, +80%-20%, Y5V Capacitor, ceramic, 0.1 F, 50 V, 10%, X7R Capacitor, ceramic, 0.1 F, 50 V, 10%, X7R Capacitor, ceramic, 0.1 F, 50 V, 10%, X7R Capacitor, ceramic, 1000 pF, 50 V, 10%, X7R Capacitor, OS-Con, 820 F, 4 V, 20% Capacitor, OS-Con, 820 F, 4 V, 20% Capacitor, OS-Con, 820 F, 4 V, 20% Capacitor, OS-Con, 820 F, 4 V, 20% Capacitor, ceramic, 10 F, 16 V, Y5V Capacitor, ceramic, 10 F, 16 V, Y5V Capacitor, ceramic, 10 F, 16 V, Y5V Capacitor, ceramic, 10 F, 16 V, Y5V Capacitor, ceramic, 0.1 F, 50 V, 10%, X7R Capacitor, ceramic, 0.1 F, 50 V, 10%, X7R Capacitor, ceramic, 0.1 F, 50 V, 10%, X7R Capacitor, ceramic, 1000 pF, 50 V, 10%, X7R Capacitor, ceramic, 0.1 F, 50 V, 10%, X7R Capacitor, ceramic, 1 uF, 25 V, +80%-20%, Y5V Capacitor, ceramic, 0.01 F, 50 V, 10%, X7R Capacitor, ceramic, 1 F, 25 V, +80%-20%, Y5V Capacitor, ceramic, 0.1 F, 50 V, 10%, X7R Capacitor, ceramic, 1 F, 25 V, +80%-20%, Y5V MFG Panasonic muRata Panasonic Sanyo Sanyo Sanyo muRata muRata muRata muRata muRata muRata muRata Sanyo Sanyo Sanyo Sanyo TDK TDK TDK TDK muRata muRata muRata muRata muRata muRata muRata muRata muRata muRata
4-2
Bill of Materials
Table 4-1. SLVP126 Bill of Materials (Continued)
Ref Des C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 D1 J1 J2 J3 J4 L1 L2 P1 P2 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 P1605 929836-09-36-ND A19350-ND IRF7811 IRF7811 IRF7811 IRF7811 IRF7811 IRF7811 2N7002 ND50605 IRF7811 GRM42-6Y5V105Z025A GRM42-6X7R104K050A 4SP820M 4SP820M GRM235Y5V106Z016A GRM235Y5V106Z016A GRM42-6X7R104K050A 16SA470M GRM42-6Y5V105Z025A GRM42-6X7R104K050A SML-LX2832GC-TR MKDS3/2-5.08 MKDS3/2-5.08 ED1516-ND ED1514-ND Part Number GRM42-6X7R333Z050A GRM42-6X7R104K050A Description Capacitor, ceramic, 0.033 F, 50 V, 10%, X7R Capacitor, ceramic, 0.1 F, 50 V, 10%, X7R Open Capacitor, ceramic, 1 F, 25 V, +80%-20%, Y5V Capacitor, ceramic, 0.1 F, 50 V, 10%, X7R Capacitor, OS-Con, 820 F, 4 V, 20% Capacitor, OS-Con, 820 F, 4 V, 20% Capacitor, ceramic, 10 F, 16 V, Y5V Capacitor, ceramic, 10 F, 16 V, Y5V Capacitor, ceramic, 0.1 F, 50 V, 10%, X7R Capacitor, Os-Con, 470 F, 16 V, 20% Capacitor, ceramic, 1 F, 25 V, +80%-20%, Y5V Capacitor, ceramic, 0.1 F, 50 V, 10%, X7R Diode. LED, green, 2.1 V, SM Terminal block, 2-Pin, 32A, 5.08 mm Terminal block, 2-Pin, 32A, 5.08 mm Terminal block, 4-Pin, 6A, 3.5 mm Terminal block, 2-Pin, 6A, 3.5 mm Inductor, filter, 1.15 H, 11 A (8T #18 on T44-8/90 Core) Inductor, filter, 1 H Header, straight, 2x6, 0.1"(72-pin cut down) Header, straight, 1x2, 0.1" center FET, N-ch, 30-V, 13-A, 11-m FET, N-ch, 30-V, 13-A, 11-milliohm FET, N-ch, 30-V, 13-A, 11-m FET, N-ch, 30-V, 13-A, 11-m FET, N-ch, 30-V, 13-A, 11-m FET, N-ch, 30-V, 13-A, 11-m FET, N-ch, 60-V, 115-mA, 1.2- FET, N-ch, -60-V, 180-mA, 5- FET, N-ch, 30-V, 13-A, 11-m muRata muRata Sanyo Sanyo TDK TDK muRata Sanyo muRata muRata Lumex Phoenix Phoenix OST OST MicroMetals Pulse Engineering 3M AMP IR IR IR IR IR IR Diodes, Inc. Fairchild IR MFG muRata muRata
Q1, R1 not installed.
Bill of Materials
4-3
Bill of Materials
Table 4-1. SLVP126 Bill of Materials (Continued)
Ref Des R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R24 TP1-9, 12, 14-18 TP10,11, 19,20 TP13 FB Loop U1 Current Jumper NA NA 131-4244-00 8021 TPS5210DW 9912 929950-00-ND SLVP119 Adaptor, 3.5-mm probe clip ( or 131-5031-00) Wire, bare, solid, 22AWG IC, PWM ripple controller, adjustable output Wire, PVC, stranded, 12AWG, 600 V, 105C Shunt, jumper, 0.1 (for P1) PCB, TPS5210 EVM board Tektronix Belden TI Belden 3M Part Number Std Std Std Std Std Std Std Std Std Std Std Std Std Std Std Std Std Std Std Std Std Std 240-345 240-333 Description Resistor, chip, 0 , 1/10 W, 5% Resistor, chip, 0 , 1/10 W, 5% Resistor, chip, 0 , 1/10 W, 5% Resistor, chip, 3.3 , 1/10 W, 5% Resistor, chip, 3.3 , 1/10 W, 5% Resistor, chip, 3.3 , 1/10 W, 5% Resistor, chip, 2.7 , 1/8 W, 5% Resistor, chip, 5.11 k, 1/10 W, 1% Resistor, chip, 1.00 k, 1/10 W, 1% Resistor, chip, 7.50 k, 1/10 W, 1% Resistor, chip, 1.00 k, 1/10 W, 1% Resistor, chip, 150 , 1/10 W, 1% Resistor, chip, 51.1 , 1/10 W, 1% Resistor, chip, 20 k, 1/10 W, 1% Resistor, chip, 10 k, 1/10 W, 1% Resistor, chip, 100 , 1/10 W, 5% Resistor, chip, 1.00 k, 1/10 W, 1% Resistor, chip, 1.00 k, 1/10 W, 1% Resistor, chip, 2 k, 1/10 W, 5% Resistor, chip, 3.3 , 1/10 W, 5% Resistor, chip, 0 , 1/10 W, 5% Resistor, chip, 10 k, 1/10 W, 1% Test point, red Test point, black Farnell Farnell MFG
Q1, R1 not installed.
4-4
Chapter 5
Test Results
This chapter contains test results from the SLVP126 EVM.
Topic
5.1
Page
Test Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Test Results
5-1
Test Summary
5.1 Test Summary
Figures 5-1 to 5-8 show the detailed test results and waveforms for the SLVP126. The following are summarized results.
5.1.1
Test Conditions
The SLVP126 EVM was tested under the following conditions: Input voltage range: Output current range: Ambient conditions: 11.4 V - 12.6 V 0 A - 45 A Room temperature with Silver Box powersupply-fan forced air cooling.
The EVM was set up for testing per Figure 3-3 of this user's guide.
5.1.2
Static Line and Load Regulation
The precise reference voltage regulator in the TPS5210 controller uses positive and negative remote sense pins, and provides excellent regulation characteristics. The load regulation from no load to 45-A load current is less than 0.28%. The line regulation is less than 0.05% for the input voltage range from 11.4 V to 12.6 V. The initial output voltage setting is 2.0285 V, which is 1.45% higher than the nominal 2.000 V because of the active droop compensation circuit.
5.1.3
Output Voltage Ripple
The output voltage peak-to-peak ripple is less than 1%. This is a typical value but it can be optimized for lower ripple applications. Figure 5-5 shows measured output ripple waveforms. The output filter for this EVM design is optimized for fast transient response due to the high slew-rate load current transitions. Therefore, the output filter is not optimized for low ripple and has a moderate amount of output ripple.
5.1.4
Efficiency and Power Losses
The following table shows efficiency and power losses for 5-V input voltage, and a maximum 40-A output current:
Evaluation Board SLVP126, 2 V Efficiency, % 86.7 Power Losses, W 12.5
Figure 5-2 shows efficiency graphs versus load at different line voltages. Low power loss in components decreases their temperature rise and improves long term reliability. The EVM does not require forced air cooling at room temperature up to a load current of 30 amps.
5-2
Test Summary
5.1.5
Output Start-Up and Overshoot
Figure 5-6 shows start-up by applying 12 V while the 5-V enable signal is available. Figure 5-7 shows start-up by applying the 5-V enable signal while the 12-V input power is available. The figures show that the overshoot during startup never exceeds 2.1%. Output voltage rise time does not depend on the load current, and ramps up in a linear fashion. In this application, output voltage rise time is set to approximately 10 mS with an external capacitor.
5.1.6
Frequency Variation
The switching frequency for a hysteretic controller depends on the input and output voltages and the output filter characteristics. It has approximately the same frequency variation as constant off time controllers. The precise equation for the switching frequency, confirmed by experiment, is presented in TI's application report Designing Fast Response Synchronous Buck Converters Using the TPS5210 (literature number SLVA044), and in the paper, presented at HFPC-98, A Fast, Efficient Synchronous-Buck Controller for Microprocessor Power Supplies, that can be found at the URL http://www.ti.com/sc/docs/ msp/papers/index.htm. Figure 5-4 shows the frequency variation over all input voltage and output current combinations, and ranges from 155 kHz to 177 kHz.
5.1.7
Load Current Transient Response
The hysteretic controller has excellent dynamic characteristics (see Figure 5-8) and does not require any feedback compensation circuitry. The load current transient response characteristics depend not only on the controller, but also on how close the converter is located to the load, the connector, the stray inductance and resistance of the output voltage traces, and high frequency decoupling. A TI-designed voltage regulation module (VRM) based on the TPS5210 controller, p/n TPS5210EVM-116, meets the requirements of the Intel VRM rev. 8.3 specification. TI has also designed a dedicated load transient test board corresponding to the motherboard model specified by Intel in the same specification. The load current transient test waveforms obtained by using the load transient test board are shown in Figure 5-8 to illustrate the controller's dynamic characteristics. The controller responds to a load transient in the same switching cycle that the transient occurs. It is important to optimize the output filter to meet the high slew rate load current transient requirements, and to minimize cost by decreasing the number of expensive bulk capacitors. Special attention must be paid to high frequency decoupling to decrease the initial transient spike to an acceptable level, because it is not dependent on the controller characteristics.
5.1.8
Features
The EVM has all the features, which are described in detail in the datasheet for the TPS5210 controller.
Test Results
5-3
Test Summary
The features include undervoltage lockout for both 12-V and 5-V input, inhibit signal, power good signal, overvoltage protection, slow start, remote sense, and overcurrent protection. Overcurrent limit is set to approximately 46 A.
5.1.9
Test Data
The following graphs and oscilloscope waveforms show the main performance characteristics of the SLVP126 EVM.
Figure 5-1. SLVP126 Measured Line and Load Regulation
2.1
2.08 Droop is disabled
2.06
2.04 Vout, V
2.02
2
Droop is active
1.98
1.96
0 5 2.0285 2.0279 Vin = 12V Vin=11.4V 2.0283 2.0276 Vin=12.6V 2.0286 2.028 Vin=12V, 2.0282 2.0222 Droop Active
1.94
10 2.0275 2.0273 2.0276 2.0149
15 20 2.0273 2.0265 2.0274 2.0267 2.0273 2.0261 2.0066 1.997 Iout, A
25 30 2.0257 2.0251 2.0251 2.0246 2.0254 2.0248 1.9869 1.9765
35 2.0244 2.025 2.0239 1.9652
40 2.0238 2.0245 2.0235 1.9525
45 2.0234 2.0244 2.023 1.9382
5-4
Test Summary
Figure 5-2. SLVP126 Measured Efficiency
93.0 92.0 91.0 90.0 Efficiency, % 89.0 88.0 87.0 86.0 85.0 84.0 Vin = 11.4V Vin=12V Vin = 12.6V
5 90.4 90.0 89.5
10 92.5 92.3 92.0
15 92.4 92.4 92.0
20 91.8 91.7 91.5
25 90.8 90.8 90.7 Iout, A
30 89.5 89.4 89.6
35 88.1 88.4 88.4
40 86.7 86.7 86.9
45 85.1 85.0 85.2
Figure 5-3. SLVP126 Measured Power Dissipation
16.00
14.00
12.00
10.00 Ploss, W
8.00
6.00
4.00
2.00
0.00 Vin = 11.4V Vin=12V Vin = 12.6V
0 0.89 0.94 0.98
5 1.08 1.13 1.19
10 1.65 1.70 1.76
15 2.51 2.51 2.64
20 3.64 3.65 3.77 Iout, A
25 5.12 5.16 5.18
30 7.09 7.17 7.04
35 9.61 9.31 9.30
40 12.39 12.41 12.17
45 15.95 16.11 15.81
Test Results
5-5
Test Summary
Figure 5-4. SLVP126 Measured Switching Frequency
For Figure 5-4, the output voltage is set to 2 V by VID inputs.
180
170 Switching Frequency, kHz
160
150
140 Vin = 11.4V Vin=12V Vin = 12.6V
0 157 157 155
5 158 158 157
10 160 160 160
15 161 161 160
20 161 161 160
25 159 161 160
30 160 162 160
35 162 164 162
40 166 168 167
45 171 177 174
Iout, A
5-6
Test Summary
Figure 5-5. SLVP126 Measured Switching Waveforms
For Figure 5-5, the input voltage is set to 12 V and IO is set to 40 A.
Vo 20 mV/div
VDS Q4 5 V/div
Test Results
5-7
Test Summary
Figure 5-6. SLVP126 Measured Start-Up (VCC ) Waveforms
For Figure 5-6, 12-V input is applied with enable signal already present.
Vo 0.5 V/div
Vin 5 V/div
VCC 5 V/div
5-8
Test Summary
Figure 5-7. SLVP126 Measured Start-Up (Enable) Waveforms
For Figure 5-7, enable signal is applied with 12-V input already present.
Vo 0.5 V/div
Enable 2 V/div
Test Results
5-9
Test Summary
Figure 5-8. SLVP126 Measured Load Transient Response
For Figure 5-8, the output voltage transient response from a 10-A load current step with slew rate 20 A/S, is measured on SLVP116 (VRM 8.3) and TI's transient tester SLVP123 in accordance with Intel's requirements. The specification limits for this test: are 2.000 0.100 V.
VDS Q4
10/div
Vo 100 mV/div
Io 5 A/div
Specification Limits
5.1.10 Conclusion
Test results for the SLVP126 EVM demonstrate the advantages of TPS5210 controllers in meeting stringent power supply requirements, especially for DSPs and microprocessors. The power system designer now has a good solution to optimize his particular application. Detailed information on how to design dc-dc converters using the TPS5210 controller is presented in TI's application report, Designing Fast Response Synchronous Buck Regulators Using the TPS5210, literature number SLVA044.
5-10


▲Up To Search▲   

 
Price & Availability of SLVU015

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X