Part Number Hot Search : 
10M22B AN509 IIRF2805 T83C51 USFB13 PEB3465 2SB173B 3P223
Product Description
Full Text Search
 

To Download L7022 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SOLID STATE D I V I S I O N
LIGHT EMITTING DIODE
LED
Light Emitting Diode
Light emitting diodes (LEDs) are opto-semiconductors that convert electric energy into light energy. Compared to semiconductor lasers (laser diodes or LD), LEDs offer advantages such as lower cost and longer service life. Hamamatsu Photonics has developed and produced various types of LEDs that enhance emission efficiency via a high output power LED chip mounted in a reflector (mirror) at the package base, which makes the light emitted from the chip edges reflect towards the front.
n Major applications
* Camera auto focus * Optical switches * Optical fiber communications * Spatial light transmission * Auxiliary light sources for CCD imaging
CONTENTS
Selection guide **************************************************************************************************************** 1 Description of terms ********************************************************************************************************* 5 Characteristic and use ***************************************************************************************************** 6
1. Basic structure *********************************************************************************************************************** 2. Characteristic ************************************************************************************************************************* 3. Operation ******************************************************************************************************************************* 4. Performance deterioration **************************************************************************************************** 5. How to measure radiant output power *********************************************************************************** 6. Quality assurance ****************************************************************************************************************** Precautions for use ********************************************************************************************************************** 6 6 7 8 8 8
9
Selection guide
Metal package with lens
****************************
These LEDs have a metal package sealed with a lens cap that delivers narrow directivity. Hermetically sealed packages are reliable even in highly humid environments.
1
2
Type No. L6112-01 L3989-01 L7558-01 L2791-02
Peak emission Spectral Photo wavelength half width (nm) (nm) 670 25 830 40 850
1
Radiant flux (mW) 2.5 3.6 7.0 2.0
Forward voltage (V) 1.80 1.45 1.45 1.50
50 60
(Typ.) Measurement condition: Cut-off Forward Feature frequency current (V) (mA) 20 Red emission 5 High-speed response 30 High-speed response, 50 high output power 3 Uniform emission, narrow directivity Multipurpose applications High output power High output power GaAs LED For optical fiber communications
880
1 1.40 4.5 80 890 L1915-01 * 50 L2656-03 1 1.45 9.0 50 890 L2690-02 1 1.45 9.0 50 890 0.3 1.30 3.4 45 945 L2388-01 * 2 L7560 100 1.80 0.65 50 850 * LEDs using silicone resin for wire coating (potting) have higher resistance to temperature cycling.
Metal package
*****************************
These LEDs are hermetically sealed in a metal package and can be used in highly humid environments. These metal package LEDs are ideal when characteristics similar to resin-potted package LEDs are required under environmental conditions requiring high resistance to humidity and temperature cycling.
3 4
(Typ.) Measurement Emission condition: Cut-off Peak emission Radiant flux Forward Forward Feature Type No. Photo size frequency voltage wavelength current (MHz) (V) (nm) (mm) (mW) (mA) 3 5 1.80 2.5 20 670 L6112-02 Red emission 1.2 4 30 1.45 5.8 830 L3989-02 High-speed response 0.8 Uniform emission, 30 1.50 2.0 L2791 880 0.4 narrow directivity 1 1.40 4.5 50 L1915-02 * 890 Multipurpose applications 1.2 3 Shadow of the wire 1 1.40 2.8 890 L1939-04 * 0.3 does not appear emission pattern * LEDs using silicone resin for wire coating (potting) have higher resistance to temperature cycling.
1
Selection guide
Resin-potted package (with reflector)
******************************
These are standard package LEDs potted with clear resin. A reflector (cavity) is provided on the metal stem (TO-46) to enhance the light extraction efficiency. The emission diameter is equal to the outer diameter of the reflector.
(Typ.) Type No. L3882 L6112 L3989 L7558 L1909 L1915 L4100 L2656 L2388 Emission size (mm) 1.2 1.2 0.8 0.8 0.8 1.2 0.65 0.8 0.8 Peak emission Radiant flux wavelength (mW) (nm) 1.8 660 670 5.5 830 8.0 850 14.0 890 10.0 890 10.0 890 14.0 890 15.0 945 6.0 Forward voltage (V) 1.80 1.80 1.45 1.45 1.40 1.40 1.45 1.45 1.30 Measurement condition: Cut-off Forward frequency current (MHz) (mA) 4 20 5 30 50 1 50 1 1 1 0.3 Feature Red emission Red high output power High-speed response High-speed response, high output power Multipurpose applications Multipurpose applications Small reflector diameter High output power GaAs LED
Resin-potted package (without reflector) ******************************
These resin-potted package LEDs use a metal stem having no reflector and are suitable for applications requiring a small diameter light spot.
1
2
Type No. L6108 L2791-03 L2690 L1939
Photo
1
2
Emission Peak emission Radiant flux size wavelength (mm) (mW) (nm) 670 5.5 880 5.0 0.16 890 14.0
o0.25 o0.4
0.3
Forward voltage (V) 1.80 1.50 1.45 1.40
890
10.0
(Typ.) Measurement condition: Cut-off Forward Feature frequency current (mA) (MHz) 20 5 Red high output power 3 Current-confined type 1 High output power 50 Shadow of the wire does not 1 appear emission pattern
3 4 5
Plastic package
******************************
These plastic-molded package LEDs can be easily inserted into place on PC boards and are available at a lower cost than metal stem types. When higher accuracy is required for mounting on PC boards we recommend using types with a reference positioning hole.
6 7
(Typ.) Type No. L2402 L2402-01 L2402-02 L3458 L3458-01 L3458-03 L6437 L6437-01 L2204 L2204-01 L2204-03 Photo
3 4 5 3 4 5 6 7 3 4 5
Emission Peak emission Radiant flux size wavelength (mm) (mW) (nm) 9.0 9.0 9.0 890 0.7 13.0 13.0 13.0 10.0 940 0.75 10.0 6.0 945 6.0 0.7 6.0
Forward voltage (V) 1.40 1.40 1.40 1.45 1.45 1.45 1.35 1.35 1.30 1.30 1.30
Measurement condition: Cut-off Forward frequency current (mA) (MHz) 1 1 1 1 1 1 50 0.3 0.3 0.3 0.3 0.3
Feature
High output power High output power High output power With reference positioning hole With reference positioning hole GaAs LED GaAs LED GaAs LED
2
Selection guide
LED array for spatial light transmission
*****************************
This is an LED array developed for automobile VICS. Applications also include spatial light transmission other than VICS.
(Typ.) Type No. Peak emission wavelength (nm) 870 Radiant flux (mW) 78.0 Forward voltage (V) 4.60 Cut-off frequency (MHz) 10 Measurement condition: Forward current (mA) 100 Feature High output power Small package Directivity ideal for automobile VICS
L7022
LED for camera auto focus
*****************************
1 2
These are LEDs primarily developed for auto focus cameras. LED chips with a low forward current are used assuming that the camera is battery-driven. When operated at a constant voltage, a larger current flows in these LED than in normal LEDs, so higher output power can be obtained. We do not recommend using these LEDs for optical switches and other applications requiring reliability over long, continuous operation.
3
4
(Typ.) Type No. Photo Emission size (mm) L4492 L5128 L5871
1 2 3
Measurement condition: Peak emission Pulse * Cut-off Forward Radiant flux wavelength forward voltage frequency current (mW) (nm) (MHz) (mA) (V) 8.0 7.0 900 7.0 2.4 1 50
Feature TO-46 Resin-potted package 3 channel LED With reference positioning hole With reference positioning hole Long, narrow emission pattern Current-confined structure inside chip, small emission diameter
0.65 0.65 0.65
L6486
3
0.3 x 0.7
7.0
L6007-01
4
0.4
880
2.0
2.7
4
* Forward current: 1.0 A
3
Selection guide
Miniature LED
*****************************
1
2
3
Type No. L5276 L5586 L6286 L5766 L6287 L6895-10
Photo
1
2 3
Peak emission wavelength (nm) 880 940 940 660 940 940
Spectral half width (nm) 60 45 45 20 45 45
Forward voltage (V) 1.3 1.25 1.25 2.0 1.25 1.25
Radiant flux Min. (mW) 1.0 0.5 0.8 0.5 1.4 1.2
(Typ., unless otherwise noted) Measurement condition: Feature Forward current (mA) 20 20 20 20 20 High output power High output power, 20 Pd plated leads
For optical link
*****************************
(Typ.) Type No. L7140-10 L7726 L8045 Peak emission wavelength (nm) 650 650 650 Spectral half width (nm) 20 10 20 Forward voltage (V) 1.9 2.3 1.9 Measurement condition: Forward current (mA) 20 30 20 Feature For 50 Mbps optical link For 156 Mbps optical link For 50 Mbps optical link Wide operating temperature range: -40 to +85 C
4
Description of terms
Term
Peak emission wavelength Spectral half width Forward voltage Reverse current Radiant flux (Radiant output power) Radiant flux density Cut-off frequency Duty ratio Forward current Reverse voltage Pulsed forward current Allowable power dissipation Operating temperature Storage Temperature * 20 mm in data sheets
Symbol
Unit
nm nm V A mW mW/cm2 MHz % mA V mA mW C C
Description
Wavelength at which the maximum emission occurs. Full width at half maximum of emission spectrum, expressed in wavelength (nm). Voltage drop between the anode and cathode due to a current flowing in the forward direction. Current flowing in the reverse direction between the anode and cathode. Quantity of radiant energy per unit time. Radiant flux per unit area measured at a specified distance *1 from the LED emission surface to the detector. Response to sine wave modulation, defined as the frequency at which the modulated output decreases by 3 dB compared to a low frequency response. The ratio of the ON period to the time period corresponding to one cycle of a pulsed current. Current flowing in the forward direction between the anode and cathode. Voltage applied between the anode and cathode in the reverse direction. Maximum forward current in pulsed operation specified by the pulse width and duty ratio. Maximum power dissipation that is allowed inside an element. Ambient temperature while device is in operation. Ambient temperature while device is not in operation.
lp Dl
VF IR
fe
PE fc DR IF VR IFP PD Topr Tstg
5
Characteristic and use
The structures, characteristics and operation methods of Hamamatsu typical LEDs are explained below.
1. LED basic structure
The LED (Light Emitting Diode) chip has an internal P-N junction, and an electrode is provided on each surface of the chip to make ohmic contact. The P-N junction is formed by epitaxial growth using the substrate of a GaAs crystal. The crystal internal structure differs depending on the emission wavelength to be used, radiant power and cutoff frequency. The crystal undergoes diffusion and evaporation processes before manufacture into a complete LED chip. Figure 1-1 LED chip structure
ELECTRODE n-GaAlAs
2. Characteristic
2-1 Forward current vs. forward voltage
The LED has forward current vs. forward voltage characteristics similar to those of rectifier diodes. The characteristic curves of individual LED types differ slightly, depending on the element structure and other factors. (See Figure 2-1 below.) Figure 2-1 Forward current vs. forward voltage
GaAs (GaAlAs)
p-GaAlAs
p-GaAs SUBSTRATE ELECTRODE
KLEDC0003EA
FORWARD CURRENT IF
FORWARD VOLTAGE VF
KLEDC0006EA
Figure 1-1 shows the structure of a high-power infrared LED. In general, an LED chip is mounted (die-bonded) on a goldplated metal base or silver-plated lead frame. The electrode is connected to the lead pin using a gold wire which is resincoated or sealed with metal cap for protection. Figure 1-2 shows the details of a chip assembled on a metal base. Figure 1-2 LED chip assembly
GOLD WIRE ( 25-30 m)
DIE-BONDING RESIN LED CHIP
GLASS
Curve A shows typical characteristics of a low-resistance LED. Compared to curve A which is a normal LED, it is clear that the forward voltage (VF) required to produce the same current value is lower. "Resistance" referred to here does not mean the term commonly used for "electrical resistance" but instead indicates the slope of a tangent for the characteristic curve at the specified current or voltage (differential resistance). In general, using an LED with a lower VF allows easier circuit design. If the LED is operated at the same current value but a higher VF is applied, the power consumption will be larger, causing a subsequent temperature rise. This results in detrimental effects such as a decrease in the output power, peak emission wavelength shift and deterioration of the LED.
METAL BASE
2-2 Radiant output power vs. forward current
In DC operation, the radiant output power vs. forward current characteristics usually show a linear line up to the maximum rating. Likewise, nearly linear characteristics can be obtained with pulsed operation if the pulse width and duty ratio are selected properly. Therefore, if the power at a certain current value is measured, the approximate power at a different current value can be readily estimated. However, if the temperature of the emission area increases due to the ambient temperature and heat generated from the LED itself, the output power is reduced and saturation is seen in the characteristic graph.
LEAD PIN
KLEDC0004EA
To enhance radiant power, some LEDs use a metal base with a concave area which serves as a reflector, and the LED chip is mounted in it as shown in Figure 1-3. Figure 1-3 LED chip mount example
LIGHT
METAL BASE LED CHIP REFLECTOR REFLECTOR
KLEDC0005EA
6
Characteristics and operation
3. Operation
3-1 DC drive
When using an LED in optical switch applications, the most common method is DC drive using a forward current. In this method, care should be taken not to allow the forward current to exceed its absolute maximum rating for the LED. If the ambient temperature of the LED is high, it is necessary to take into account the allowable forward current vs. ambient temperature characteristics. Figure 3-1 Example of DC drive
AMMETER A 500 CONSTANT VOLTAGE SOURCE 5V LED
3-2 Pulse drive
In pulse drive, the current value should not exceed the absolute maximum ratings. The simplest pulse drive is when the output from a pulse generator is directly fed into both ends of the LED. However, this method is usually insufficient in terms of current capacity. In such cases, the use of a transistor is recommended, as shown in Figure 3-3. Figure 3-3 Example of pulse drive circuit
+5 V LED 5V 0V 10 k9 2SC1624
KLEDC0009EA KLEDC0007EA
Figure 3-1 shows the simplest circuit. When a constant current of 20 mA is to flow in this circuit, first set the variable resistor to the maximum resistance position and apply the voltage. Then, observing the ammeter, gradually reduce the resistance of the variable resistor until the current reaches 20 mA. If no variable resistor is used, the resistance value should be calculated. For example, if the forward voltage at 20 mA is 1.4 V, the resistance R is given by: R = (5.0 V - 1.4 V)/0.02 A = 180 9. Thus a 180 9 resistor should be used. With the circuit shown in Figure 3-1, the forward current slightly varies according to fluctuations in the forward voltage of the LED. To prevent this, a constant current circuit using an op amp is suggested. Figure 3-2 shows a simple constant current circuit using an operational amplifier. Figure 3-2 Example of constant current circuit using operational amplifier
+5 V
In addition, when the LED should be driven at high-speed, a high-speed driver is required. Figure 3-4 shows a typical circuit using a high-speed driver. Figure 3-4 Example of high-speed pulse drive circuit
Vs=5 V
74HC00, etc.
R2 LED
R4
R1 INVERTER R1=510 R2=40 (=R3) R3=40 (IF=50 mA) R4=510 R5=510 Tr1, Tr2=2SC1254
Tr1
Tr2 VB
R3
R5
KLEDC0002EA
REFERENCE VOLTAGE + V=0.6 V 100 k -5 V 100 k
2SC1624
LED
In the circuit shown in Figure 3-4, the LED turns on when the input is at the H level. The forward voltage IF which flows through the LED can be obtained in "IF = (Vs/2 - VB)/R3". [With this circuit, IF = (5/2 - 0.5)/40 = 0.05 (A)] The response speed is determined by the time response of Tr1 and Tr2. It will be about 20 MHz if 2SC1815 is used, and about 100 MHz if 2SC1254 is used.
RL=30
KLEDC0008EA
In the case of Figure 3-2, a reference voltage of 0.6 V is applied to the positive phase input terminal (+) of the operational amplifier. Because the potential of the negative phase input terminal (-) becomes nearly equal to this reference voltage, the voltage drop at both ends of load resistance RL will be 0.6 V, and a resultant current of 20 mA (0.6 V/30 9 = 20 mA) flows through the LED. Thus it is possible to select the desired LED drive current by changing the value of RL.
7
Characteristic and operation
4. Performance deterioration
When an LED is used for long periods of time, performance deterioration may take place. Common deterioration phenomena include a decrease in the output power and variations of the forward voltage. It is thought that these deteriorations result from the crystal dislocation and shift caused by heat generation in the emission area. These can be observed as a dark line or dark spot in the emission pattern. Deterioration may possibly occur from an external stress. If the LED is driven with a stress applied to the LED chip, its performance may unduly deteriorate. This stress may also issue from mechanical distortion on the package. Sufficient care must be exercised when mounting the LED.
5. How to measure radiant output power
5-1 Radiant flux: Be
For fe measurement, the full radiant output power is measured when a specified forward current flows into the LED. To measure the radiant power emitted in the horizontal direction, a reflector is provided as shown in Figure 5-1, so that the entire radiant power emitted in every direction from the LED can be detected by a photodiode placed in front of the LED. Figure 5-1 Measurement method for radiant output power
LED
Life expectancy
In general, the LED radiant output decrease exponentially with operating time, as expressed in the equation below. P = Po * exp (->t) ............ (4-1) Po: Initial radiant output power > : Deterioration factor t : Operating time The deterioration factor > depends on the element material, structure and operating conditions, and is usually assumed as follows:
SILICON PHOTODIODE
KLEDC0010EA
REFLECTOR
REFLECTOR
5-2 Radiant flux density: PE
PE is the quantity of radiant power per unit area (1 cm x 1 cm), measured at a distance of 2 cm away from the emission area of the LED. This measure can be satisfactorily used as a general guide for comparison of the radiant power of common LEDs, although LEDs with high directivity may sometimes show nonuniform distribution in the above measurement area.
> = >o * IF * exp (-Ea/kTj) ............ (4-2) >o: Constant
IF : Operating current Ea: Activated energy k : Boltzmann constant In Equation (4-2), the deterioration factor > includes IF added to the Arrhenius equation which relates to the junction temperature. As stated, the deterioration is caused by the dislocation and shift in the crystal. Equation (4-2) is based on the assumption that the dislocation and shift result from recombination energy not contributing to emission as well as from the lattice vibration due to temperature. The junction temperature Tj is given by the equation below. Tj = Rth * IF * VF + Ta ............ (4-3) Rth: Thermal resistance VF : Forward voltage Ta : Ambient temperature From the life test data measured under certain conditions, the deterioration factor under other conditions can be figured out using Equations (4-1), (4-2) and (4-3). For example, if we have the life test data measured at DC 50 mA for up to 3000 hours, > can be obtained using Equation (4-1). With this > and Equation (4-1), the extent of deterioration after 3000hour operation under the same conditions can be estimated. In contrast, to calculate the life data of the same LED operated under different conditions, >o should be obtained by substituting both Tj obtained from Equation (4-3) and > obtained previously for Equation (4-2). Then substituting the test conditions for Equation (4-2) gives the deterioration factor >. The activated energy Ea usually used is 0.5 to 0.8 eV and the thermal resistance ranges from 300 to 350 C/W for a TO-18 (TO-46) package.
6. Quality assurance
Reliability tests by Hamamatsu Photonics are generally performed in compliance with JEITA (Japan Electronic Information and Technology Association) standards. An example of major device reliability testing by Hamamatsu Photonics is shown below.
n Major reliable testing
Tested item Terminal strength Vibration Shock Solderability Solder heat resistance High-temperature storage Low-temperature storage High temperature and humidity storage Condition Pulling for 10 1 seconds, 90-degree bending, 2 times 100 to 2000 Hz, 200 m/s2, 48 minutes 1000 m/s2 for 6 ms, XYZ directions, 3 times each 235 5 C for 5 or 2 seconds 260 5 C for 10 seconds Reflow 235 C, 10 seconds Tstg Max. 1000 hours Tstg Min. 1000 hours 85 C, 85 %RH, 1000 hours ED-4701 A-111 A-121 A-122 A-131 A-132(except SMD) A-133(SMD) B-111 B-112 B-121 B-131
Temperature Tstg Min. to Tstg Max. cycling in air, 30 minutes each, 10 cycles
Continuous 25 5 C, IF Max. 1000 hours D-511 operation Note) Test standards conform to ED-4701 "Environmental and Endurance Test Methods for Semiconductor Devices"
8
Precautions for use
1 Precautions for storage 4 Cleaning
To protect the terminal leads from oxidation and stain or prevent the package from absorbing moisture, always keep the light-emitting device in a desiccator (filled with nitrogen). Use alcohol for cleaning. When carrying out ultrasonic cleaning, acoustic forces applied to the device greatly depend on the size of the cleaning bath, the output of the vibrator, the size of the board to which the device is attached, and the attachment method of the device. Thus, take into account these factors to confirm the acoustic forces applied to the device prior to the actual cleaning.
2
Precautions during transportation
Protect the light emitter from mechanical vibrations and shocks. The terminal leads might be deformed if they undergo strong vibrations and shocks. In particular, take great care in handling LEDs with micro-ball lenses (L2791 series and L7560).
5
Others
(1) Measures against static electricity
Static electricity charges from the human body or surge voltages from measuring equipment may degrade the performance of L2792 series LEDs, possibly leading to permanent damage. Therefore, the operator, worktable, and measuring equipment must be grounded to prevent such static electricity and surge voltage from being applied to the device.
3
Precautions for mounting
Do not allow any hard or sharp objects to touch the plastic package and epoxy-resin window as they are easily scratched.
(1) Lead forming
To form the leads, hold the roots of the leads securely and bend them so that no force is applied to the package. Lead forming should be done before soldering.
(2) Driving the device
When driving a device, always observe the absolute maximum ratings. Most faulty device operation results from trouble associated with the drive current. Take sufficient care not to allow a forward current larger than the rated value to flow the device. Do not apply a reverse voltage larger than the rated value to the device. The device must also be protected against voltage surges from the power supply.
(2) Cutting off the leads
If leads are cut when still at a high temperature, this may cause an electrical discontinuity. Always cut off the leads when they are at room temperature. Never cut off the leads just after they have been soldered.
(3) Soldering
Using a low-temperature melting solder (below 200 C), solder the leads at the temperature and dwell time specified in Table 1 below. If these conditions cannot be met, it is recommended that some form of heat sinking be used at the base of the lead so that the solder heat is not conducted to the package. Also be careful not to apply excessive force to the leads during soldering. Soldering at excessive temperatures and dwell times may cause the plastic package to melt or crack, resulting in performance deterioration. This sometimes leads to wiring breakage. If the leads are soldered while external force is applied to the device, the residual force tends to degrade the device performance. Care should also be taken not to apply force to the leads during soldering. Do not use any flux which is highly acidic, alkaline or inorganic because it may cause the part leads to erode. Use a rosin flux. Product name Plastic package LED Metal package LED Maximum soldering temperature 230 C 260 C Maximum soldering time 5 seconds (1 second *) 5 seconds (1 second *)
* For devices having a lead length less than 2 mm
9
MEMO
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
MEMO
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................
Notice * The information contained in this catalog does not represent or create any warranty, express or implied, including any warranty of merchantability or fitness for any particular purpose. The terms and conditions of sale contain complete warranty information and is available upon request from your local HAMAMATSU representative. * The products described in this catalog should be used by persons who are accustomed to the properties of photoelectronics devices, and have expertise in handling and operating them. They should not be used by persons who are not experienced or trained in the necessary precations surrounding their use. * The information in this catalog is subject to change without prior notice. * Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or ommission. * No patent rights are granted to any of the circuits described herein.
HAMAMATSU PHOTONICS K.K., Solid State Division
1126-1, Ichino-cho, Hamamatsu City, 435-8558, Japan Telephone: (81)53-434-3311, Fax: (81)53-434-5184 Homepage: http://www.hamamatsu.com
Main Products
Si photodiodes Photo IC PSD InGaAs PIN photodiodes Compound semiconductor photosensors Image sensors Light emitting diodes Application products and modules Optical communication devices High energy particle/X-ray detectors Hamamatsu also supplies: Photoelectric Tubes Imaging Tubes Specially Lamps Imaging and Processing Systems
Sales Offices
ASIA: HAMAMATSU PHOTONICS K.K. 325-6, Sunayama-cho, Hamamatsu City, 430-8587, Japan Telephone: (81)53-452-2141, Fax: (81)53-456-7889 U.S.A.: HAMAMATSU CORPORATION Main Office 360 Foothill Road, P.O. BOX 6910, Bridgewater, N.J. 08807-0910, U.S.A. Telephone: (1)908-231-0960, Fax: (1)908-231-1218 E-mail: usa@hamamatsu.com Western U.S.A. Office: Suite 110, 2875 Moorpark Avenue San Jose, CA 95128, U.S.A. Telephone: (1)408-261-2022, Fax: (1)408-261-2522 E-mail: usa@hamamatsu.com United Kingdom: Hamamatsu Photonics UK Limited 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom Telephone: (44)1707-294888, Fax: (44)1707-325777 E-mail: info@hamamatsu.co.uk France, Portugal, Belgium, Switzerland, Spain: HAMAMATSU PHOTONICS FRANCE S.A.R.L. 8, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France Telephone: (33)1 69 53 71 00 Fax: (33)1 69 53 71 10 E-mail: infos@hamamatsu.fr Swiss Office: Richtersmattweg 6a CH-3054 Schupfen, Switzerland Telephone: (41)31/879 70 70, Fax: (41)31/879 18 74 E-mail: swiss@hamamatsu.ch Belgian Office: 7, Rue du Bosquet B-1348 Louvain-La-Neuve, Belgium Telephone: (32)10 45 63 34 Fax: (32)10 45 63 67 E-mail: epirson@hamamatsu.com Spanish Office: Centro de Empresas de Nuevas Tecnologies Parque Tecnologico del Valles 08290 CERDANYOLA, (Barcelona) Spain Telephone: (34)93 582 44 30 Fax: (34)93 582 44 31 E-mail: spain@hamamatsu.com Germany, Denmark, Netherland, Poland: HAMAMATSU PHOTONICS DEUTSCHLAND GmbH Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany Telephone: (49)8152-375-0, Fax: (49)8152-2658 E-mail: info@hamamatsu.de Danish Office: Erantisvej 5 DK-8381 Tilst, Denmark Telephone: (45)4346/6333, Fax: (45)4346/6350 E-mail: lkoldbaek@hamamatsu.de Cat. No. KLED0002E01 Oct. 2001 DN Printed in Japan (7,000) Netherlands Office: PO BOX 50.075, 1305 AB ALMERE, The Netherlands Telephone: (31)36-5382123, Fax: (31)36-5382124 E-mail: hamamatsu_NL@compuserve.com Poland Office: ul. Chodkiewicza 8 PL-02525 Warsaw, Poland Telephone: (48)22-660-8340, Fax: (48)22-660-8352 E-mail: info@hamamatsu.de North Europe: HAMAMATSU PHOTONICS NORDEN AB Smidesvagen 12 SE-171 41 Solna, Sweden Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se Italy: HAMAMATSU PHOTONICS ITALIA S.R.L. Strada della Moia, 1/E 20020 Arese, (Milano), Italy Telephone: (39)02-935 81 733 Fax: (39)02-935 81 741 E-mail: info@hamamatsu.it Rome Office: Via Fosso del Torrino, 51 00144 Roma, Italy Telephone: (39)06-52246492, Fax: (39)06-52246493 E-mail: inforoma@hamamatsu.it Hong Kong: HAKUTO ENTERPRISES LTD. Room 404, Block B, Seaview Estate, Watson Road, North Point, Hong Kong Telephone: (852)25125729, Fax: (852)28073155 Taiwan: HAKUTO Taiwan Ltd. 3F-6, No. 188, Section 5, Nanking East Road Taipei, Taiwan R.O.C. Telephone: (886)2-2753-0188 Fax: (886)2-2746-5282 KORYO ELECTRONICS CO., LTD. 9F-7, No.79, Hsin Tai Wu Road Sec.1, Hsi-Chih, Taipei, Taiwan, R.O.C. Telephone: (886)2-2698-1143, Fax: (886)2-2698-1147 Republic of Korea: SANGKI TRADING CO., LTD. Suite 431, World Vision Bldg., 24-2, Yoido-Dong, Youngdeungpo-ku, Seoul, Republic of Korea Telephone: (82)2-780-8515 Fax: (82)2-784-6062 Singapore: HAKUTO SINGAPORE PTE LTD. Block 2, Kaki Bukit Avenue 1, #04-01 to #04-04 Kaki Bukit Industrial Estate, Singapore 417938 Telephone: (65)7458910, Fax: (65)7418201
Hamamatsu Photonics K. K., Solid State Division is certified by Lloyd's Register Quality Assurance.
Information in this catalog is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. (c) 2001 Hamamatsu Photonics K.K.
Quality, technology, and service are part of every product.


▲Up To Search▲   

 
Price & Availability of L7022

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X