![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
* 8 AVR(R) * RISC - 131 - - 32 8 - - 16 MHz 16 MIPS - - 32K Flash : 10,000 - Boot Boot - 1024 EEPROM : 100,000 - 2K SRAM - JTAG ( IEEE 1149.1 ) - JTAG - - JTAG Flash EEPROM - 8 / - 16 / - RTC - PWM - 8 10 ADC 8 TQFP 7 2 1x, 10x, 200x - - USART - / SPI - - - - RC - / - 6 : ADC Standby Standby I/O - 32 I/O - 40 PDIP , 44 TQFP , 44 MLF - ATmega32L2.7 - 5.5V - ATmega324.5 - 5.5V - ATmega32L0 - 8 MHz - ATmega320 - 16 MHz ATmega32L 1 MHz, 3V, 25C - : 1.1 mA - : 0.35 mA - : < 1 A * * 32KB Flash 8 ATmega32 ATmega32L * * * * * * 2503F-AVR-12/03 Figure 1. ATmega32 PDIP (XCK/T0) PB0 (T1) PB1 (INT2/AIN0) PB2 (OC0/AIN1) PB3 (SS) PB4 (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET VCC GND XTAL2 XTAL1 (RXD) PD0 (TXD) PD1 (INT0) PD2 (INT1) PD3 (OC1B) PD4 (OC1A) PD5 (ICP) PD6 PA0 (ADC0) PA1 (ADC1) PA2 (ADC2) PA3 (ADC3) PA4 (ADC4) PA5 (ADC5) PA6 (ADC6) PA7 (ADC7) AREF GND AVCC PC7 (TOSC2) PC6 (TOSC1) PC5 (TDI) PC4 (TDO) PC3 (TMS) PC2 (TCK) PC1 (SDA) PC0 (SCL) PD7 (OC2) TQFP/MLF PB4 (SS) PB3 (AIN1/OC0) PB2 (AIN0/INT2) PB1 (T1) PB0 (XCK/T0) GND VCC PA0 (ADC0) PA1 (ADC1) PA2 (ADC2) PA3 (ADC3) (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET VCC GND XTAL2 XTAL1 (RXD) PD0 (TXD) PD1 (INT0) PD2 PA4 (ADC4) PA5 (ADC5) PA6 (ADC6) PA7 (ADC7) AREF GND AVCC PC7 (TOSC2) PC6 (TOSC1) PC5 (TDI) PC4 (TDO) AVR 2 ATmega32(L) 2503F-AVR-12/03 (INT1) (OC1B) (OC1A) (ICP) (OC2) PD3 PD4 PD5 PD6 PD7 VCC GND (SCL) PC0 (SDA) PC1 (TCK) PC2 (TMS) PC3 ATmega32(L) ATmega32 AVR RISC 8 CMOS ATmega32 1 MIPS/MHz Figure 2. PA0 - PA7 VCC PC0 - PC7 PORTA DRIVERS/BUFFERS PORTC DRIVERS/BUFFERS GND PORTA DIGITAL INTERFACE PORTC DIGITAL INTERFACE AVCC MUX & ADC AREF PROGRAM COUNTER ADC INTERFACE TWI STACK POINTER TIMERS/ COUNTERS OSCILLATOR PROGRAM FLASH SRAM INTERNAL OSCILLATOR XTAL1 INSTRUCTION REGISTER GENERAL PURPOSE REGISTERS X WATCHDOG TIMER OSCILLATOR XTAL2 MCU CTRL. & TIMING RESET INSTRUCTION DECODER Y Z CONTROL LINES ALU INTERRUPT UNIT INTERNAL CALIBRATED OSCILLATOR AVR CPU STATUS REGISTER EEPROM PROGRAMMING LOGIC SPI USART + - COMP. INTERFACE PORTB DIGITAL INTERFACE PORTD DIGITAL INTERFACE PORTB DRIVERS/BUFFERS PORTD DRIVERS/BUFFERS PB0 - PB7 PD0 - PD7 3 2503F-AVR-12/03 AVR 32 (ALU) CISC 10 ATmega32:32K Flash( RWW) 1024 EEPROM 2K SRAM I/O 32 32 JTAG / (T/C), / USART 8 10 (TQFP ) ADC SPI CPU USART A/D SRAM T/C SPI ADC CPU ADC I/O ADC Standby Standby Atmel ISP Flash ISP AVR Flash(Application Flash Memory) FlashFlash(Boot Flash Memory) RWW 8 RISC CPU Flash ATmega32 ATmega32 C / VCC GND A(PA7..PA0) A A/D A 8 I/O A B(PB7..PB0) B 8 I/O B B P55 C(PC7..PC0) C 8 I/O C JTAG PC5(TDI)PC3(TMS) PC2(TCK) TAP TD0 C P58 4 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) D(PD7..PD0) D 8 I/O D D P60 RESET XTAL1 XTAL2 AVCC AREF P35 Table 15 ADC AVCCAA/D ADC VCC VCC A/D C C 5 2503F-AVR-12/03 AVR CPU AVR CPU Figure 3. AVR Data Bus 8-bit Flash Program Memory Program Counter Status and Control Instruction Register 32 x 8 General Purpose Registrers Interrupt Unit SPI Unit Watchdog Timer Indirect Addressing Instruction Decoder Direct Addressing ALU Control Lines Analog Comparator I/O Module1 Data SRAM I/O Module 2 I/O Module n EEPROM I/O Lines AVR Harvard CPU ( ) Flash 32 8 ALU ALU 6 3 16 16 X Y Z ALU ALU / 16 16 32 (Boot ) / SPM (PC) SRAM SRAM 6 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) SP I/O SRAM 5 AVR AVR I/O I/O 64 CPU SPI I/O 0x20 - 0x5F ALU AVR ALU 32 ALU ALU 3 / 7 2503F-AVR-12/03 ALU AVR SREG Bit / 7 I R/W 0 6 T R/W 0 5 H R/W 0 4 S R/W 0 3 V R/W 0 2 N R/W 0 1 Z R/W 0 0 C R/W 0 SREG * Bit 7 - I: I I I RETI I I SEI CLI * Bit 6 - T: BLD BST T BST T BLD T * Bit 5 - H: H BCD * Bit 4 - S: , S = N V S N 2 V * Bit 3 - V: 2 2 * Bit 2 - N: * Bit 1 - Z: * Bit 0 - C: AVR RISC / * * * * 8 8 8 8 8 16 16 16 Figure 4 CPU 32 8 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 4. AVR CPU 7 R0 R1 R2 ... R13 R14 R15 R16 R17 ... R26 R27 R28 R29 R30 R31 $1A $1B $1C $1D $1E $1F X X Y Y Z Z $0D $0E $0F $10 $11 0 Addr. $00 $01 $02 Figure 4 32 SRAM X Y Z 9 2503F-AVR-12/03 XYZ R26..R31 Figure 5 Figure 5. X Y Z 15 X 7 R27 ($1B) XH 0 7 R26 ($1A) XL 0 0 15 Y 7 R29 ($1D) YH 0 7 R28 ($1C) YL 0 0 15 Z 7 R31 ($1F) ZH 0 7 R30 ($1E) ZL 0 0 / AVR SRAM 0x60 PUSH POP RET RETI AVRI/O8 AVR SPL SPH Bit 15 SP15 SP7 7 / R/W R/W 0 0 14 SP14 SP6 6 R/W R/W 0 0 13 SP13 SP5 5 R/W R/W 0 0 12 SP12 SP4 4 R/W R/W 0 0 11 SP11 SP3 3 R/W R/W 0 0 10 SP10 SP2 2 R/W R/W 0 0 9 SP9 SP1 1 R/W R/W 0 0 8 SP8 SP0 0 R/W R/W 0 0 SPH SPL 10 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) AVR CPU clkCPU Figure 6 Harvard 1 MIPS/MHz / / Figure 6. T1 T2 T3 T4 clkCPU 1st Instruction Fetch 1st Instruction Execute 2nd Instruction Fetch 2nd Instruction Execute 3rd Instruction Fetch 3rd Instruction Execute 4th Instruction Fetch Figure 7 ALU Figure 7. ALU T1 T2 T3 T4 clkCPU Total Execution Time Register Operands Fetch ALU Operation Execute Result Write Back AVR I PC BLB02 BLB12 P240 " " P42 "" RESET INT0 - 0 (GICR) IVSEL Flash P42 "" BOOTRST Flash P228 " - (RWW, Read-While-Write) " I I RETI I 11 2503F-AVR-12/03 "1" "0" I AVR CLI CLI CLI EEPROM EEPROM in cli r16, SREG ; ; EEPROM ; SREG (I ) ; SREG sbi EECR, EEMWE sbi EECR, EEWE out SREG, r16 C char cSREG; cSREG = SREG; /* */ _CLI(); EECR |= (1< sei ; sleep ; ; : MCU C _SEI(); /* */ _SLEEP(); /* */ /* : MCU */ AVR 4 4 4 PC 3 MCU MCU 4 12 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 4 PC( ) SREG I 13 2503F-AVR-12/03 AVR ATmega32 ATmega32 AVR ATmega32 EEPROM Flash ATmega32 32K Flash AVR 16 32 Flash 16K x 16 Flash (Boot) Flash10,000 ATmega32(PC)14 16K P228 " - (RWW, Read-While-Write)" P240 " " SPI JTAG Flash ( LPM ) P11 " " Figure 8. $0000 Application Flash Section Boot Flash Section $3FFF 14 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) SRAM Figure 9 ATmega32 SRAM 2144 I/O SRAM 96 I/O 2048 SRAM 5 R26 R31 Y Z 63 X Y Z ATmega3232 64I/O 2048SRAM P8 " " Figure 9. Register File R0 R1 R2 ... R29 R30 R31 I/O Registers $00 $01 $02 ... $3D $3E $3F Data Address Space $0000 $0001 $0002 ... $001D $001E $001F $0020 $0021 $0022 ... $005D $005E $005F Internal SRAM $0060 $0061 ... $085E $085F 15 2503F-AVR-12/03 Figure 10 SRAM clkCPU Figure 10. SRAM T1 T2 T3 clkCPU Address Data WR Data RD Compute Address Address Valid Memory Access Instruction Next Instruction EEPROM ATmega321024 EEPROM EEPROM 100,000 EEPROM P240 " " SPI JTAG EEPROM EEPROM / EEPROM I/O EEPROM Table 1 EEPROM / VCC / CPU P20 " EEPROM " EEPROM EEPROM EEPROM EEPROM CPU 4 EEPROM CPU 2 16 ATmega32(L) 2503F-AVR-12/03 Read Write ATmega32(L) EEPROM EEARH EEARL Bit 15 - EEAR7 7 14 - EEAR6 6 R R/W 0 X 13 - EEAR5 5 R R/W 0 X 12 - EEAR4 4 R R/W 0 X 11 - EEAR3 3 R R/W 0 X 10 - EEAR2 2 R R/W 0 X 9 EEAR9 EEAR1 1 R/W R/W 0 X 8 EEAR8 EEAR0 0 R/W R/W X X EEARH EEARL / R R/W 0 X * Bits 15..10 - Res: * Bits 9..0 - EEAR9..0: EEPROM EEPROM- EEARHEEARL1024EEPROM EEPROM 0 1023 EEAR EEPROM EEPROM EEDR Bit / 7 MSB R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 6 5 4 3 2 1 0 LSB R/W 0 EEDR * Bits 7..0 - EEDR7.0: EEPROM EEPROM EEDR EEAR EEDR EEAR EEPROM EECR Bit / 7 - R 0 6 - R 0 5 - R 0 4 - R 0 3 EERIE R/W 0 2 EEMWE R/W 0 1 EEWE R/W X 0 EERE R/W 0 EECR * Bits 7..4 - Res: * Bit 3 - EERIE: EEPROM SREG I "1" EERIE EEPROM EERIE EEWE EEPROM * Bit 2 - EEMWE: EEPROM EEMWEEEWEEEPROM EEMWE"1" 4 EEWE EEPROM EEMWE "0" EEWE EEMWE 4 EEPROM EEWE 17 2503F-AVR-12/03 * Bit 1 - EEWE: EEPROM EEWE EEPROM EEPROM EEWE EEPROM EEMWE EEPROM ( 3 4 ) 1. EEWE 2. SPMCSR SPMEN 3. EEPROM EEAR( ) 4. EEPROM EEDR( ) 5. EECR EEMWE "1" EEWE 6. EEMWE 4 EEWE CPU Flash EEPROM EEPROM Flash (2) CPU Flash CPU Flash (2) P228 " - (RWW, Read-While-Write) " 5 6 EEPROM EEPROM EEPROM EEAR EEDR EEPROM I EEWE EEWE CPU * Bit 0 - EERE: EEPROM EEREEEPROM EEPROM EERE EEAR EEPROM EEPROM CPU 4 EEPROM EEWE EEPROM EEAR EEPROM Table 1 CPU EEPROM Table 1. EEPROM EEPROM (CPU) Note: RC (1) 8448 1. 1 MHz CKSEL 8.5 ms 18 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) C EEPROM Boot Loader Boot Loader EEPROM SPM EEPROM_write: ; sbic EECR,EEWE rjmp EEPROM_write ; (r18:r17) out out out sbi sbi ret EEARH, r18 EEARL, r17 EEDR,r16 EECR,EEMWE EECR,EEWE ; (r16) ; EEMWE ; EEWE C void EEPROM_write(unsigned int uiAddress, unsigned char ucData) { /* */ while(EECR & (1< 2503F-AVR-12/03 C EEPROM EEPROM_read: ; sbic EECR,EEWE rjmp EEPROM_read ; (r18:r17) out out sbi in ret EEARH, r18 EEARL, r17 EECR,EERE r16,EEDR ; EERE ; C unsigned char EEPROM_read(unsigned int uiAddress) { /* */ while(EECR & (1< EEPROM EEPROM EEPROM CPU EEPROM EEPROM ( ) EEPROM EEPROM EEPROM CPU EEPROM AVR RESET BOD BOD I/O ATmega32 I/O P283 " " ATmega32I/OI/O I/OIN OUT 32 I/O 0x00 - 0x1F I/O SBI CBI SBIS SBIC IN OUT 0x00 - 0x3F SRAM LD ST I/O 0x20 20 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) "0" I/O "1" AVR CBI SBI CBI SBI 0x00 0x1F I/O 21 2503F-AVR-12/03 Figure 11AVR P30 " " Figure 11 Figure 11. Asynchronous Timer/Counter General I/O Modules ADC CPU Core RAM Flash and EEPROM clkADC clkI/O clkASY clkCPU clkFLASH AVR Clock Control Unit Reset Logic Watchdog Timer Source Clock Clock Multiplexer Watchdog Clock Watchdog Oscillator Timer/Counter Oscillator External RC Oscillator External Clock Crystal Oscillator Low-frequency Crystal Oscillator Calibrated RC Oscillator CPU clkCPU I/O clkI/O CPUAVR CPU I/O I/O / SPI USART I/O I/O USI clkI/O Flash Flash CPU / 32 kHz / ADC ADCCPUI/O ADC Flash clkFLASH clkASY ADC clkADC 22 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) ATmega32 Flash AVR Table 2. (1) / RC RC Note: 1. "1" "0" CKSEL3..0 1111 - 1010 1001 1000 - 0101 0100 - 0001 0000 CPU CPU MCU WDT Table 3 P283 " " Table 3. (VCC = 5.0V) 4.1 ms 65 ms (VCC = 3.0V) 4.3 ms 69 ms 4K (4,096) 64K (65,536) CKSEL = "0001" SUT = "10" RC ISP 23 2503F-AVR-12/03 XTAL1 XTAL2 Figure 12 CKOPT CKOPT XTAL2 CKOPT CKOPT 8 MHz CKOPT 16 MHz C1 C2 Table 4 Figure 12. C2 C1 XTAL2 XTAL1 GND CKSEL3..1 Table 4 Table 4. CKOPT 1 1 1 0 Note: CKSEL3..1 101(1) 110 111 101, 110, 111 (MHz) 0.4 - 0.9 0.9 - 3.0 3.0 - 8.0 1.0 C1 C2 (pF) - 12 - 22 12 - 22 12 - 22 1. 24 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 5 CKSEL0 SUT1..0 Table 5. 258 CK(1) 258 CK(1) 1K CK(2) 1K CK(2) 1K CK(2) 16K CK 16K CK 16K CK (VCC = 5.0V) 4.1 ms 65 ms - 4.1 ms 65 ms - 4.1 ms 65 ms CKSEL0 0 0 0 0 1 1 1 1 Notes: SUT1..0 00 01 10 11 00 01 10 11 BOD BOD 1. 2. 25 2503F-AVR-12/03 32.768 kHz CKSEL "1001" Figure 12 CKOPT XTAL1 XTAL2 36 pF SUT Table 6 Table 6. SUT1..0 00 01 10 11 Note: 1K CK 1K CK (1) (1) (VCC = 5.0V) 4.1 ms 65 ms 65 ms BOD 32K CK 1. RC Figure 13 RC f = 1/(3RC) C 22 pF CKOPT XTAL1 GND 36 pF R C RC Figure 13. RC VCC NC R XTAL2 XTAL1 C GND CKSEL3..0 Table 7 26 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 7. RC CKSEL3..0 0101 0110 0111 1000 (MHz) 0.9 0.9 - 3.0 3.0 - 8.0 8.0 - 12.0 SUT Table 8 Table 8. RC SUT1..0 00 01 10 11 Note: 18 CK 18 CK 18 CK 6 CK(1) (VCC = 5.0V) - 4.1 ms 65 ms 4.1 ms BOD BOD 1. RC RC 1.0 2.0 4.0 8.0 MHz 5V 25C Table 9 CKSEL (CKOPT) OSCCAL RC 5V 25C 1.0 MHz 3% www.atmel.com/avr 1% P242 " " Table 9. RC CKSEL3..0 0001(1) 0010 0011 0100 Note: 1. (MHz) 1.0 2.0 4.0 8.0 27 2503F-AVR-12/03 SUT Table 10 XTAL1 XTAL2 (NC) Table 10. RC SUT1..0 00 01 10(1) 11 Note: 1. 6 CK 6 CK 6 CK (VCC = 5.0V) - 4.1 ms 65 ms BOD OSCCAL Bit / 7 CAL7 R/W 6 CAL6 R/W 5 CAL5 R/W 4 CAL4 R/W 3 CAL3 R/W 2 CAL2 R/W 1 CAL1 R/W 0 CAL0 R/W OSCCAL * Bits 7..0 - CAL7..0: 1 MHz ( 0x00) OSCCAL RC Flash EEPROM OSCCAL OSCCAL 0xFF EEPROM Flash EEPROM Flash 10% 1.0 2.0 4.08.0 MHz Table 11 Table 11. RC . OSCCAL $00 $7F $FF (%) 50 75 100 (%) 100 150 200 28 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) XTAL1 Figure 14 CKSEL"0000" CKOPT XTAL1 GND 36 pF Figure 14. EXTERNAL CLOCK SIGNAL SUT Table 12 Table 12. SUT1..0 00 01 10 11 6 CK 6 CK 6 CK (VCC = 5.0V) - 4.1 ms 65 ms BOD MCU 2% MCU / / (TOSC1 TOSC2) AVR 32.768 kHz TOSC1 29 2503F-AVR-12/03 MCU AVR MCUCR SE SLEEP ( ADC Standby Standby ) MCUCR SM2 SM1 SM0 Table 13 MCU 4 MCU SLEEP SRAM MCU P22 Figure 11 ATmega32 MCU MCUCR Bit / 7 SE R/W 0 6 SM2 R/W 0 5 SM1 R/W 0 4 SM0 R/W 0 3 ISC11 R/W 0 2 ISC10 R/W 0 1 ISC01 R/W 0 0 ISC00 R/W 0 MCUCR * Bit 7 - SE: MCU SLEEP SE SLEEP SEMCU SE * Bits 6...4 - SM2..0: 2 1 0 Table 13 Table 13. SM2 0 0 0 0 1 1 1 1 Note: SM1 0 0 1 1 0 0 1 1 SM0 0 1 0 1 0 1 0 1 ADC Standby(1) Standby(1) 1. Standby Standby 30 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) SM2..0 000 SLEEP MCU CPU SPI USART ADC / clkCPU clkFLASH USART MCU MCU ACSR ACD ADC ADC SM2..0 001 SLEEP MCU CPU ADC / 2 clkI/O clkCPU clkFLASH ADC ADC AD ADC BOD / 2 SPM/EEPROM INT0 INT1 INT2 MCU ADC SM2..0 010 SLEEP MCU BOD INT0 INT1 INT2 MCU MCU P64 " " CKSEL P23 " " SM2..0 011 SLEEP MCU / 2 ASSR AS2 / 2 / 2 MCU TIMSK SREG I AS2 0 MCU clkASY Standby SM2..0 110 SLEEP MCU Standby 6 31 2503F-AVR-12/03 Standby SM2..0 111 SLEEP MCU Standby 6 Table 14. X X X(2) X(2) SPM / EEP ROM clkFLASH clkADC clkCPU clkASY ADC Standby (1) Standby (1) Notes: X X X X X TWI INT2 INT1 INT0 clkIO 2 X X A D C I/O X X X X X X X(3) X(3) X X X X X X (2) X X (2) X (3) X(2) X(3) X(2) X(3) X(2) X X X(2) 1. 2. ASSR AS2 3. INT2 INT1 INT0 AVR ADC ADC P187 " " 32 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) ADC P184 " " BOD BODEN BOD P37 " " BOD BOD ADC P39 " " P39 " " I/O clkI/O ADC clkADC P51 " " VCC/2 OCDEN * * * OCDEN JTAGEN MCUCSR JTD BOD JTAG JTAG JTAG TAP TDO TDO TDI TDO MCUCSR JTD JTAG JTAG 33 2503F-AVR-12/03 AVR I/O JMP Boot -- -- Figure 15 Table 15 I/O MCU SUT CKSEL P23 " " ATmega32 5 * * * * * VPOT MCU RESET MCU VBOT MCU JTAG AVR 1 MCU P210 "IEEE 1149.1 (JTAG) " Figure 15. DATA BUS MCU Control and Status Register (MCUCSR) PORF BORF EXTRF WDRF JTRF Power-on Reset Circuit Pull-up Resistor SPIKE FILTER Reset Circuit COUNTER RESET JTAG Reset Register Watchdog Timer Watchdog Oscillator Clock Generator CK Delay Counters TIMEOUT CKSEL[3:0] SUT[1:0] 34 ATmega32(L) 2503F-AVR-12/03 INTERNAL RESET BODEN BODLEVEL Brown-out Reset Circuit ATmega32(L) Table 15. 1.4 1.3 0.1 VCC (2) ( ) ( )(1) RESET RESET 2.3 2.3 0.9VCC 1.5 V V V s V s s mV VPOT VRST tRST VBOT tBOD VHYST Notes: BODLEVEL = 1 BODLEVEL = 0 2.5 3.7 2.7 4.0 2 2 50 3.2 4.2 BODLEVEL = 1 BODLEVEL = 0 1. VPOT 2. VBOT VCC = VBOT VCC ATmega32L BODLEVEL=1 ATmega32 BODLEVEL=0 BODLEVEL=1 ATmega32 35 2503F-AVR-12/03 (POR) Table 15 VCC POR POR POR CC V VCC RESET Figure 16. MCU RESET VCC. VCC VPOT RESET VRST TIME-OUT tTOUT INTERNAL RESET Figure 17. MCU RESET VCC VPOT RESET VRST TIME-OUT tTOUT INTERNAL RESET 36 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) RESET ( Table 15) VRST( ) tTOUT MCU Figure 18. CC ATmega32 BOD(Brown-out Detection) V CC BODLEVEL 2.7V (BODLEVEL )4.0V (BODLEVEL )BOD VBOT+ = VBOT + VHYST/2 VBOT- = VBOT - VHYST/2 BOD BODEN BOD(BODEN) VCC (VBOT- Figure 19) BOD VCC (VBOT+ Figure 19) tTOUT MCU VCC Table 15 tBOD BOD Figure 19. VCC VBOTVBOT+ RESET TIME-OUT tTOUT INTERNAL RESET 37 2503F-AVR-12/03 1 CK tTOUT P39 Figure 20. CC CK MCU MCUCSR MCU MCU Bit / 7 JTD R/W 0 6 ISC2 R/W 0 5 - R 0 4 JTRF R/W 3 WDRF R/W 2 BORF R/W 1 EXTRF R/W 0 PORF R/W MCUCSR * Bit 4 - JTRF: JTAG JTAG AVR_RESET JTAG MCU JTRF "0" * Bit 3 - WDRF: "0" * Bit 2 - BORF: "0" * Bit 1 - EXTRF: "0" * Bit 0 - PORF: "0" 38 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) ATmega32 ADC ADC 2.56V Table 16 1. BOD ( BODEN ) 2. (ACSR ACBG ) 3. ADC BOD ACBG ADC Table 16. VBG tBG IBG 1.15 1.23 40 10 1.35 70 V s A 1 Mhz VCC = 5V VCC P40 Table 17 WDR 8 ATmega32 P38 Figure 21. WATCHDOG OSCILLATOR WDTCR Bit / 7 - R 0 6 - R 0 5 - R 0 4 WDTOE R/W 0 3 WDE R/W 0 2 WDP2 R/W 0 1 WDP1 R/W 0 0 WDP0 R/W 0 WDTCR 39 2503F-AVR-12/03 * Bits 7..5 - Res: * Bit 4 - WDTOE: WDE WDTOE 4 WDE * Bit 3 - WDE: WDE "1" WDTOE "1" WDE 1. WDTOE WDE "1" WDE "1" 2. 4 WDE "0" * Bits 2..0 - WDP2, WDP1, WDP0: 2, 1 0 WDP2 WDP1 WDP0 Table 18 Table 17. WDP2 0 0 0 0 1 1 1 1 WDP1 0 0 1 1 0 0 1 1 WDP0 0 1 0 1 0 1 0 1 WDT 16K (16,384) 32K (32,768) 64K (65,536) 128K (131,072) 256K (262,144) 512K (524,288) 1,024K (1,048,576) 2,048K (2,097,152) VCC = 3.0V 17.1 ms 34.3 ms 68.5 ms 0.14 s 0.27 s 0.55 s 1.1 s 2.2 s VCC = 5.0V 16.3 ms 32.5 ms 65 ms 0.13 s 0.26 s 0.52 s 1.0 s 2.1 s C WDT ( ) 40 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) WDT_off: ; WDTOE WDE ldi out ldi out ret r16, (1< C void WDT_off(void) { /* WDTOE WDE */ WDTCR = (1< 2503F-AVR-12/03 ATmega32 ATmega32 AVR P11 "" Table 18. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Notes: (2) $000 (1) RESET INT0 INT1 INT2 TIMER2 COMP TIMER2 OVF TIMER1 CAPT TIMER1 COMPA TIMER1 COMPB TIMER1 OVF TIMER0 COMP TIMER0 OVF SPI, STC USART, RXC USART, UDRE USART, TXC ADC EE_RDY ANA_COMP TWI SPM_RDY JTAG AVR 0 1 2 / 2 / 2 / 1 / 1 A / 1 B / 1 / 0 / 0 SPI USART Rx USART USART Tx ADC EEPROM $002 $004 $006 $008 $00A $00C $00E $010 $012 $014 $016 $018 $01A $01C $01E $020 $022 $024 $026 $028 1. BOOTRST MCU Boot Loader P228 " - (RWW, Read-While-Write) " 2. GICRIVSEL Boot Boot Table 19BOOTRST/IVSEL Boot 42 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 19. (1) BOOTRST 1 1 0 0 Note: IVSEL 0 1 0 1 $0000 $0000 Boot Boot $0002 Boot + $0002 $0002 Boot + $0002 1. Boot P237 Table 100 BOOTRST "0" "1" ; ; IRQ0 ; IRQ1 ; IRQ2 ; Timer2 ; Timer2 ; Timer1 ; Timer1 A ; Timer1 B ; Timer1 ; Timer0 ; Timer0 ; SPI ; USART RX ; UDR ; USART TX ; ADC ; EEPROM ; ; ; SPM ATmega32 $000 $002 $004 $006 $008 $00A $00C $00E $010 $012 $014 $016 $018 $01A $01C $01E $020 $022 $024 $026 $028 ; $02A $02B $02C $02D $02E $02F ... ... RESET: ldi out ldi out sei r16,high(RAMEND) ; SPH,r16 r16,low(RAMEND) SPL,r16 ; ; RAM 43 2503F-AVR-12/03 BOOTRST Boot 4K GICR IVSEL $000 $001 $002 $003 $004 $005 ; .org $3802 $3802 $3804 ... $3828 .... jmp jmp .. jmp SPM_RDY EXT_INT0 EXT_INT1 ; IRQ0 ; IRQ1 ; ; SPM RESET: ldi out ldi out sei BOOTRST Boot 4K .org $002 $002 $004 ... $028 ; .org $3800 $3800 RESET: $3801 $3802 $3803 $3804 $3805 ldi out ldi out sei BOOTRST Boot 4K GICR IVSEL .org $3800 $3800 $3802 $3804 ... $3828 ; $382A $382B $382C $382D $382E $382F RESET: ldi out ldi out sei jmp jmp jmp .. jmp RESET EXT_INT0 EXT_INT1 44 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Boot GICR Bit / 7 INT1 R/W 0 6 INT0 R/W 0 5 INT2 R/W 0 4 - R 0 3 - R 0 2 - R 0 1 IVSEL R/W 0 0 IVCE R/W 0 GICR * Bit 1 - IVSEL: IVSEL "0" Flash IVSEL "1" Boot Boot BOOTSZ P228 " - (RWW, Read-While-Write) " IVSEL 1. IVCE 2. 4 IVSEL IVCE "0" IVCE IVSEL IVSEL IVCE 4 I Note: Boot BootBLB02 Boot BLB12 Boot Boot P228 " - (RWW, Read-While-Write) " 45 2503F-AVR-12/03 * Bit 0 - IVCE: IVSEL IVCE IVCE IVSEL 4 IVCE IVCE Move_interrupts: ; ldi out ldi out ret r16, (1< C void Move_interrupts(void) { /* */ GICR = (1< ATmega32(L) 2503F-AVR-12/03 ATmega32(L) I/O I/O AVR I/O - - SBI CBI ( / ) ( / ) LED VCC Figure 22 P269 " " Figure 22. I/O Rpu Pxn Logic Cpin See Figure 23 "General Digital I/O" for Details "x" "n" PORTB3 B 3 PORTxn I/O P61 "I/O " I/O - PORTx - DDRx - PINx / PINx "1" "0" "1" SFIOR PUD I/O P47 " I/O " P52 " " I/O I/O I/O Figure 23 I/O 47 2503F-AVR-12/03 Figure 23. I/O(1) PUD Q D DDxn Q CLR RESET WDx RDx Pxn Q D PORTxn Q CLR WPx RESET SLEEP RRx SYNCHRONIZER D Q D Q RPx PINxn L Q Q clk I/O PUD: SLEEP: clkI/O: PULLUP DISABLE SLEEP CONTROL I/O CLOCK WDx: RDx: WPx: RRx: RPx: WRITE DDRx READ DDRx WRITE PORTx READ PORTx REGISTER READ PORTx PIN Note: 1. WPx, WDx, RRx, RPx RDx clkI/O, SLEEP PUD : DDxn PORTxn PINxn P61 "I/O " DDxn DDRx PORTxn PORTx PINxn PINx DDxn DDxn "1" Pxn PORTxn "1" PORTxn PORTxn "1" ("1") ("0") ( ) ({DDxn, PORTxn} = 0b00) ({DDxn, PORTxn} = 0b11) ({DDxn, PORTxn} = 0b01) ({DDxn, PORTxn} = 0b10) SFIOR PUD ({DDxn, PORTxn} = 0b00) ({DDxn, PORTxn} = 0b11) 48 ATmega32(L) 2503F-AVR-12/03 DATA BUS ATmega32(L) Table 20 Table 20. DDxn 0 0 0 1 1 PORTxn 0 1 1 0 1 PUD (in SFIOR) X 0 1 X X I/O No Yes No No No (Hi-Z) (Hi-Z) ( ) ( ) DDxn PINxn Figure 23 PINxn Figure 24 tpd,max tpd,min Figure 24. SYSTEM CLK INSTRUCTIONS SYNC LATCH PINxn r17 0x00 tpd, max tpd, min 0xFF XXX XXX in r17, PINx SYNC LATCH PINxn tpd,max tpd,min 1/2 ~ 11/2 Figure 25 out in nop out SYNC LATCH tpd 49 2503F-AVR-12/03 Figure 25. SYSTEM CLK r16 INSTRUCTIONS SYNC LATCH PINxn r17 0x00 tpd 0xFF out PORTx, r16 nop 0xFF in r17, PINx 50 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) B 0 1 2 3 4 7 6 7 nop (1) ... ; ; ldi ldi out out nop ; in ... r16,PINB r16,(1< C (1) unsigned char i; ... /* */ /* */ PORTB = (1< 1. 0 1 6 7 2 3 0 1 Figure 23 ( ) SLEEP MCU Standby VCC/2 SLEEP SLEEP SLEEP P52 " " ("1") " " "1" "0" "0" "1" ( ) 51 2503F-AVR-12/03 VCC GND I/O Figure 26 Figure 23 AVR Figure 26. (1) PUOExn PUOVxn 1 0 PUD DDOExn DDOVxn 1 0 QD DDxn Q CLR PVOExn PVOVxn WDx RESET RDx 1 Pxn 0 Q D PORTxn DIEOExn DIEOVxn 1 0 Q CLR WPx RESET RRx SLEEP SYNCHRONIZER D SET RPx Q D Q PINxn L CLR Q CLR Q clk I/O DIxn AIOxn PUOExn: PUOVxn: DDOExn: DDOVxn: PVOExn: PVOVxn: DIEOExn: DIEOVxn: SLEEP: Pxn PULL-UP OVERRIDE ENABLE Pxn PULL-UP OVERRIDE VALUE Pxn DATA DIRECTION OVERRIDE ENABLE Pxn DATA DIRECTION OVERRIDE VALUE Pxn PORT VALUE OVERRIDE ENABLE Pxn PORT VALUE OVERRIDE VALUE Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE SLEEP CONTROL PUD: WDx: RDx: RRx: WPx: RPx: clkI/O: DIxn: AIOxn: PULLUP DISABLE WRITE DDRx READ DDRx READ PORTx REGISTER WRITE PORTx READ PORTx PIN I/O CLOCK DIGITAL INPUT PIN n ON PORTx ANALOG INPUT/OUTPUT PIN n ON PORTx Note: 1. WPx, WDx, RRx, RPxRDx I/O, SLEEP clk PUD Table 21 Figure 26 52 ATmega32(L) 2503F-AVR-12/03 DATA BUS ATmega32(L) Table 21. PUOE PUOV {DDxn, PORTxn, PUD} = 0b010 PUOE DDxnPORTxn PUD PUOV / / DDOV DDxn DDOE DDOV / / DDxn PVOV PVOE PORTxn PVOE PVOV PORTxn DIEOV DIEOE MCU ( ) DIEOE DIEOV / / MCU ( ) / PUOV DDOE DDOV PVOE PVOV DIEOE DIEOV DI AIO / 53 2503F-AVR-12/03 I/O SFIOR Bit / 7 ADTS2 R/W 0 6 ADTS1 R/W 0 5 ADTS0 R/W 0 4 - R 0 3 ACME R/W 0 2 PUD R/W 0 1 PSR2 R/W 0 0 PSR10 R/W 0 SFIOR * Bit 2 - PUD: DDxn PORTxn ({DDxn, PORTxn} = 0b01) I/O P48 " " A A ADC Table 22 A Table 22. A PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 ADC7 (ADC 7) ADC6 (ADC 6) ADC5 (ADC 5) ADC4 (ADC 4) ADC3 (ADC 3) ADC2 (ADC 2) ADC1 (ADC 1) ADC0 (ADC 0) Table 23 Table 24 A P52 Figure 26 Table 23. PA7..PA4 PUOE PUOV DDOE DDOV PVOE PVOV DIEOE DIEOV DI AIO PA7/ADC7 0 0 0 0 0 0 0 0 - ADC7 PA6/ADC6 0 0 0 0 0 0 0 0 - ADC6 PA5/ADC5 0 0 0 0 0 0 0 0 - ADC5 PA4/ADC4 0 0 0 0 0 0 0 0 - ADC4 54 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 24. PA3..PA0 PUOE PUOV DDOE DDOV PVOE PVOV DIEOE DIEOV DI AIO PA3/ADC3 0 0 0 0 0 0 0 0 - ADC3 PA2/ADC2 0 0 0 0 0 0 0 0 - ADC2 PA1/ADC1 0 0 0 0 0 0 0 0 - ADC1 PA0/ADC0 0 0 0 0 0 0 0 0 - ADC0 B B Table 25 Table 25. B PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 SCK (SPI ) MISO (SPI / ) MOSI (SPI / ) SS (SPI ) AIN1 ( ) OC0 (T/C0 ) AIN0 ( ) INT2 ( 2 ) T1 (T/C1 ) T0 (T/C0 ) XCK (USART / ) * SCK - B, Bit 7 SCKSPI DDB7 DDB7 PORTB7 * MISO - B, Bit 6 MISOSPI DDB6 DDB6 PORTB6 55 2503F-AVR-12/03 * MOSI - B, Bit 5 MOSI SPI DDB5 DDB5 PORTB5 * SS - B, Bit 4 SS DDB4 SPI DDB4 PORTB4 * AIN1/OC0 - B, Bit 3 AIN1 OC0PB3 T/C0 PB3 ( DDB3 1) PWM OC0 * AIN0/INT2 - B, Bit 2 AIN0 INT2 2 PB2 MCU * T1 - B, Bit 1 T1 T/C1 * T0/XCK - B, Bit 0 T0 T/C0 XCK USART (DDB0) (DDB0 ) (DDB0 ) USART XCK Table 26 Table 27 B P52 Figure 26 SPI MSTR INPUT SPI SLAVE OUTPUT MISO MOSISPI MSTR OUTPUT SPI SLAVE INPUT 56 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 26. PB7..PB4 PUOE PUOV DDOE DDOV PVOE PVOV DIEOE DIEOV DI AIO PB7/SCK SPE * MSTR PORTB7 * PUD SPE * MSTR 0 SPE * MSTR SCK 0 0 SCK - PB6/MISO SPE * MSTR PORTB6 * PUD SPE * MSTR 0 SPE * MSTR SPI 0 0 SPI - PB5/MOSI SPE * MSTR PORTB5 * PUD SPE * MSTR 0 SPE * MSTR SPI 0 0 SPI - PB4/SS SPE * MSTR PORTB4 * PUD SPE * MSTR 0 0 0 0 0 SPI SS - Table 27. PB3..PB0 PUOE PUOV DDOE DDOV PVOE PVOV DIEOE DIEOV DI AIO PB3/OC0/AIN1 0 0 0 0 OC0 OC0 0 0 - AIN1 PB2/INT2/AIN0 0 0 0 0 0 0 INT2 1 INT2 AIN0 PB1/T1 0 0 0 0 0 0 0 0 T1 - PB0/T0/XCK 0 0 0 0 UMSEL XCK 0 0 XCK /T0 - 57 2503F-AVR-12/03 C C Table 28 JTAG PC5(TDI) PC3(TMS) PC2(TCK) Table 28. C PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 TOSC2 ( 2) TOSC1 ( 1) TDI (JTAG ) TDO (JTAG ) TMS (JTAG ) TCK (JTAG ) SDA ( / ) SCL ( ) * TOSC2 - C, Bit 7 TOSC2 2 ASSR AS2 1 T/C2 PC7 I/O * TOSC1 - C, Bit 6 TOSC1 1 ASSR AS2 1 T/C2 PC6 I/O * TDI - C, Bit 5 TDI JTAG () JTAG I/O * TDO - C, Bit 4 TDO JTAG ( ) JTAG I/O TD0 TAP * TMS - C, Bit 3 TMSJTAG TAP JTAG I/O * TCK - C, Bit 2 TCK JTAG JTAG JTAG I/O * SDA - C, Bit 1 SDA TWCR TWEN 1 PC1 I/O 58 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 50 ns PORTC1 * SCL - C, Bit 0 SCL TWCR TWEN 1 PC0 I/O 50 ns PORTC0 Table 29 Table 30 C P52 Figure 26 Table 29. PC7..PC4 PUOE PUOV DDOE DDOV PVOE PVOV DIEOE DIEOV DI AIO PC7/TOSC2 AS2 0 AS2 0 0 0 AS2 0 - T/C2 OSC PC6/TOSC1 AS2 0 AS2 0 0 0 AS2 0 - T/C2 OSC PC5/TDI JTAGEN 1 JTAGEN 0 0 0 JTAGEN 0 - TDI PC4/TDO JTAGEN 0 JTAGEN SHIFT_IR + SHIFT_DR JTAGEN TDO JTAGEN 0 - - Table 30. PC3..PC0 (1) PUOE PUOV DDOE DDOV PVOE PVOV DIEOE DIEOV DI AIO Note: PC3/TMS JTAGEN 1 JTAGEN 0 0 0 JTAGEN 0 - TMS PC2/TCK JTAGEN 1 JTAGEN 0 0 0 JTAGEN 0 - TCK PC1/SDA TWEN PORTC1 * PUD TWEN SDA_OUT TWEN 0 0 0 - SDA PC0/SCL TWEN PORTC0 * PUD TWEN SCL_OUT TWEN 0 0 0 - SCL 1. PC0 PC1 AIO TWI 59 2503F-AVR-12/03 D D Table 31 Table 31. D PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 OC2 (T/C2 ) ICP1 (T/C1 ) OC1A (T/C1 A ) OC1B (T/C1 B ) INT1 ( 1 ) INT0 ( 0 ) TXD (USART ) RXD (USART ) * OC2 - D, Bit 7 OC2T/C2 PD7 T/C2 (DDD7 1) PWM OC2 * ICP - D, Bit 6 ICP1 - PD6 T/C1 * OC1A - D, Bit 5 OC1A A PD5 T/C1 A (DDD5 1) PWM OC1A * OC1B - D, Bit 4 OC1A A PD5 T/C1 A (DDD5 1) PWM OC1A * INT1 - D, Bit 3 INT1 1 PD3 MCU * INT0 - D, Bit 2 INT0 0 PD2 MCU * TXD - D, Bit 1 TXDUSART USART DDD1 * RXD - D, Bit 0 RXDUSART USART DDD0 PORTD0 60 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 32 Table 33 D P52 Figure 26 Table 32. PD7..PD4 PUOE PUOV DDOE DDOV PVOE PVOV DIEOE DIEOV DI AIO PD7/OC2 0 0 0 0 OC2 OC2 0 0 - - PD6/ICP 0 0 0 0 0 0 0 0 ICP - PD5/OC1A 0 0 0 0 OC1A OC1A 0 0 - - PD4/OC1B 0 0 0 0 OC1B OC1B 0 0 - - Table 33. PD3..PD0 PUOE PUOV DDOE DDOV PVOE PVOV DIEOE DIEOV DI AIO PD3/INT1 0 0 0 0 0 0 INT1 1 INT1 - PD2/INT0 0 0 0 0 0 0 INT0 1 INT0 - PD1/TXD TXEN 0 TXEN 1 TXEN TXD 0 0 - - PD0/RXD RXEN PORTD0 * PUD RXEN 0 0 0 0 0 RXD - I/O A PORTA Bit / 7 PORTA7 6 PORTA6 5 PORTA5 4 PORTA4 3 PORTA3 2 PORTA2 1 PORTA1 0 PORTA0 PORTA R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 A DDRA Bit / 7 DDA7 R/W 0 6 DDA6 R/W 0 5 DDA5 R/W 0 4 DDA4 R/W 0 3 DDA3 R/W 0 2 DDA2 R/W 0 1 DDA1 R/W 0 0 DDA0 R/W 0 DDRA 61 2503F-AVR-12/03 A PINA Bit / 7 PINA7 R N/A 6 PINA6 R N/A 5 PINA5 R N/A 4 PINA4 R N/A 3 PINA3 R N/A 2 PINA2 R N/A 1 PINA1 R N/A 0 PINA0 R N/A PINA B PORTB Bit / 7 PORTB7 6 PORTB6 5 PORTB5 4 PORTB4 3 PORTB3 2 PORTB2 1 PORTB1 0 PORTB0 PORTB R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 B DDRB Bit / 7 DDB7 R/W 0 6 DDB6 R/W 0 5 DDB5 R/W 0 4 DDB4 R/W 0 3 DDB3 R/W 0 2 DDB2 R/W 0 1 DDB1 R/W 0 0 DDB0 R/W 0 DDRB B PINB Bit / 7 PINB7 R N/A 6 PINB6 R N/A 5 PINB5 R N/A 4 PINB4 R N/A 3 PINB3 R N/A 2 PINB2 R N/A 1 PINB1 R N/A 0 PINB0 R N/A PINB C PORTC Bit / 7 PORTC7 6 PORTC6 5 PORTC5 4 PORTC4 3 PORTC3 2 PORTC2 1 PORTC1 0 PORTC0 PORTC R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 C DDRC Bit / 7 DDC7 R/W 0 6 DDC6 R/W 0 5 DDC5 R/W 0 4 DDC4 R/W 0 3 DDC3 R/W 0 2 DDC2 R/W 0 1 DDC1 R/W 0 0 DDC0 R/W 0 DDRC C PINC Bit / 7 PINC7 R N/A 6 PINC6 R N/A 5 PINC5 R N/A 4 PINC4 R N/A 3 PINC3 R N/A 2 PINC2 R N/A 1 PINC1 R N/A 0 PINC0 R N/A PINC D PORTD Bit / 7 PORTD7 6 PORTD6 5 PORTD5 4 PORTD4 3 PORTD3 2 PORTD2 1 PORTD1 0 PORTD0 PORTD R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 D DDRD Bit 7 DDD7 6 DDD6 5 DDD5 4 DDD4 3 DDD3 2 DDD2 1 DDD1 0 DDD0 DDRD 62 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) / R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 D PIND Bit / 7 PIND7 R N/A 6 PIND6 R N/A 5 PIND5 R N/A 4 PIND4 R N/A 3 PIND3 R N/A 2 PIND2 R N/A 1 PIND1 R N/A 0 PIND0 R N/A PIND 63 2503F-AVR-12/03 INT0 INT1 INT2 INT0..2 MCU MCUCR MCU MCUCSR (INT2 ) ( INT0/INT1) INT0 INT1 I/O P22 " " INT0/INT1 INT2 ( ) I/O MCU MCU 5.0V 25C 1 s P269 " " MCU SUT P22 " " MCU MCU MCU MCUCR MCU MCU Bit / 7 SE R/W 0 6 SM2 R/W 0 5 SM1 R/W 0 4 SM0 R/W 0 3 ISC11 R/W 0 2 ISC10 R/W 0 1 ISC01 R/W 0 0 ISC00 R/W 0 MCUCR * Bit 3, 2 - ISC11, ISC10: 1 Bit1 Bit 0 SREG I 1 INT1 Table 34 MCU INT1 Table 34. 1 ISC11 0 0 1 1 ISC10 0 1 0 1 INT1 INT1 INT1 INT1 * Bit 1, 0 - ISC01, ISC00: 0 Bit 1 Bit 0 SREG I Table 35 0 INT0 MCU INT0 64 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 35. 0 ISC01 0 0 1 1 ISC00 0 1 0 1 INT0 INT0 INT0 INT0 MCU MCUCSR Bit / 7 JTD R/W 0 6 ISC2 R/W 0 5 - R 0 4 JTRF R/W 3 WDRF R/W 2 BORF R/W 1 EXTRF R/W 0 PORF R/W MCUCSR * Bit 6 - ISC2: 2 SREG I GICR 2 INT2 ISC2 0 INT2 ISC2 1 INT2 INT2 INT2 Table 36 ISC2 GICR INT2 ISC2 GIFR INTF2 '1' Table 36. ( ) tINT ( ) 50 ns GICR Bit / 7 INT1 R/W 0 6 INT0 R/W 0 5 INT2 R/W 0 4 - R 0 3 - R 0 2 - R 0 1 IVSEL R/W 0 0 IVCE R/W 0 GICR * Bit 7 - INT1: 1 INT1 '1' SREG I MCU- MCUCSR1 1/0 (ISC11ISC10) INT1 INT1 * Bit 6 - INT0: 0 INT0 '1' SREG I MCU- MCUCSR0 1/0 (ISC01ISC00) INT0 INT0 65 2503F-AVR-12/03 * Bit 5 - INT2: 2 INT2 '1' SREG I MCU- MCUCSR2 1/0 (ISC2ISC2) INT2 INT2 GIFR Bit / 7 INTF1 R/W 0 6 INTF0 R/W 0 5 INTF2 R/W 0 4 - R 0 3 - R 0 2 - R 0 1 - R 0 0 - R 0 GIFR * Bit 7 - INTF1: 1 INT1 INTF1 SREG I GICR INT1 "1" MCU "1" * Bit 6 - INTF0: 0 INT0 INTF0 SREG I GICR INT0 "1" MCU "1" INT0 * Bit 5 - INTF2: 2 INT2 INTF2 SREG I GICR INT2 "1" MCU "1" INT2 INTF2 P51 " " 66 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) PWM 8 / 0 T/C0 8 / * * ( ) * PWM * * * 10 * (TOV0 OCF0) Figure 27 8 / P2 "ATmega32 " CPU I/O I/O P76 "8 / " Figure 27. 8 T/C TCCRn count clear direction Control Logic Clock Select Edge Detector BOTTOM TOP TOVn (Int.Req.) clk Tn Tn DATABUS ( From Prescaler ) Timer/Counter TCNTn =0 = 0xFF OCn (Int.Req.) = Waveform Generation OCn OCRn T/C(TCNT0) (OCR0) 8 ( Int.Req. ) TIFR TIMSK TIFR TIMSK T/C T0 ( )T/C T/C clkT0 OCR0 T/C PWM OC0 P68 " " OCF0 "n" T/C 0 TCNT0 T/C0 67 2503F-AVR-12/03 Table 37 Table 37. BOTTOM MAX TOP 0x00 BOTTOM 0xFF ( 255) MAX TOPTOP 0xFF (MAX) OCR0 T/C T/C T/C TCCR0 CS02:0 P79 "T/C0 T/C1 " 8 T/C Figure 28 Figure 28. DATA BUS TOVn (Int. Req.) Clock Select count TCNTn clear direction ( From Prescaler ) BOTTOM TOP Control Logic clkTn Edge Detector Tn ( ) count direction clear clkTn top bottom TCNT0 1 1 TCNT0 ( ) T/C clkT0 TCNT0 TCNT0 (0) clkT0 clkT0 CS02:0 (CS02:0 = 0) clkT0 CPU TCNT0 CPU ( ) T/C (TCCR0) WGM01 WGM00 OC0 P70 " " T/CTOV0WGM01:0 TOV0CPU 8TCNT0OCR0 TCNT0OCR0 OCF0 OCIE0 = 1 SREG I CPU OCF0 "1" WGM01:0 68 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) COM01:0 max bottom (P70 " " ) Figure 29 Figure 29. DATA BUS OCRn TCNTn = (8-bit Comparator ) OCFn (Int.Req.) top bottom FOCn Waveform Generator OCn WGMn1:0 COMn1:0 PWM OCR0 OCR0 top bottom PWM OCR0 CPU OCR0 CPU OCR0 PWM FOC0 "1" OCF0 / OC0 (COM01:0 OC0A "0"-"1" ) CPU TCNT0 OCR0 TCNT0 TCNT0 TCNT0 T/C TCNT0 OCR0 TCNT0 BOTTOM OC0 OC0 FOC0 OC0 COM01:0 COM01:0 TCNT0 69 2503F-AVR-12/03 COM01:0 COM01:0 (OC0) COM01:0 OC0 Figure 30 COM01:0 I/O I/O I/O COM01:0 I/O (DDR PORT) OC0 OC0 OC0 OC0 Figure 30. COMn1 COMn0 FOCn Waveform Generator D Q 1 OCn Pin OCn D Q 0 DATA BUS PORT D Q DDR clk I/O COM01:0 I/O OC0 DDR OC0 DDR_OC0 OC0 COM01:0 P76 "8 / " COM01:0 CTC PWM COM01:0 = 0 OC0 PWM P76 Table 39 PWM P77 Table 40 PWM P77 Table 41 COM01:0 PWM FOC0 - T/C - (WGM01:0) (COM01:0) COM01:0 PWM PWM COM01:0 (P70 " " ) P74 "T/C " Figure 34Figure 35Figure 36 Figure 37 (WGM01:0 = 0) 8 (TOP = 0xFF) 0x00 TCNT0 T/C TOV0 TOV0 9 TOV0 70 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) CPU CTC( ) CTC (WGM01:0 = 2) OCR0 TCNT0 OCR0 OCR0 TOP CTC Figure 31 TCNT0TCNT0OCR0 TCNT0 Figure 31. CTC OCn Interrupt Flag Set TCNTn OCn (Toggle) Period 1 2 3 4 (COMn1:0 = 1) OCF0 TOP TOP CTC TOP BOTTOM OCR0 TCNT0 0xFF 0x00 OCF0 CTC OC0 COM01:0 = 1 OC0 fOC0 = fclk_I/O/2 (OCR0 = 0x00) f clk_I/O f OCn = -----------------------------------------------2 N ( 1 + OCRn ) N (1 8 64 256 1024) TOV0 MAX 0x00 PWM PWM (WGM01:0 = 3) PWM PWM PWM BOTTOMMAX BOTTOM OC0 TCNT0 OCR0 BOTTOM OC0 PWM PWM PWM DAC ( ) PWM MAX Figure 32 TCNT0 71 2503F-AVR-12/03 PWM PWM TCNT0 OCR0 TCNT0 Figure 32. PWM OCRn Interrupt Flag Set OCRn Update and TOVn Interrupt Flag Set TCNTn OCn OCn (COMn1:0 = 2) (COMn1:0 = 3) Period 1 2 3 4 5 6 7 MAX T/C TOV0 PWM OC0 PWM COM01:0 2 PWM 3 PWM ( P77 Table 40 ) OC0 PWM OC0 OCR0 TCNT0 ( ) ( MAX BOTTOM) ( ) PWM f clk_I/O f OCnPWM = -----------------N 256 N (1 8 64 256 1024) OCR0 PWM OCR0 BOTTOM MAX+1 OCR0 MAX COM01:0 OC0 (COM01:0 = 1) 50% OCR0 0 fOC0 = fclk_I/O/2 CTC OC0 PWM PWM PWM (WGM01:0 = 1) PWM BOTTOM MAX MAX BOTTOM MAX TCNT0 OCR0 OC0 BOTTOM TCNT0 OCR0 OC0 PWM PWM 8 MAX TCNT0 MAX Figure 33 TCNT0 PWM PWM TCNT0 OCR0 TCNT0 72 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 33. PWM OCn Interrupt Flag Set OCRn Update TOVn Interrupt Flag Set TCNTn OCn OCn (COMn1:0 = 2) (COMn1:0 = 3) Period 1 2 3 BOTTOM T/C TOV0 PWM OC0 PWM COM01:0 2 PWM COM01:0 3 PWM ( P77 Table 41 ) OC0 OCR0 TCNT0 OC0 PWM PWM f clk_I/O f OCnPCPWM = -----------------N 510 N (1 8 64 256 1024) OCR0 PWM PWM OCR0 BOTTOM OCR0 MAX PWM Figure 33 2 OCn BOTTOM * Figure 33 OCR0A MAX OCR0A MAX OCn BOTTOM T/C MAX OCn OCR0A OCn * T/C T/C clkT0 Figure 34 T/C PWM MAX 73 2503F-AVR-12/03 Figure 34. T/C clkI/O clkTn (clkI/O /1) TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 TOVn Figure 35 Figure 35. T/C fclk_I/O/8 clkI/O clkTn (clkI/O /8) TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 TOVn Figure 36 ( CTC )OCF0 Figure 36. T/C OCF0 fclk_I/O/8 clkI/O clkTn (clkI/O /8) TCNTn OCRn - 1 OCRn OCRn + 1 OCRn + 2 OCRn OCRn Value OCFn 74 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 37 CTC OCF0 TCNT0 Figure 37. T/C CTC fclk_I/O/8 clkI/O clkTn (clkI/O /8) TCNTn (CTC) OCRn TOP - 1 TOP BOTTOM BOTTOM + 1 TOP OCFn 75 2503F-AVR-12/03 8 / T/C TCCR0 Bit / 7 FOC0 W 0 6 WGM00 R/W 0 5 COM01 R/W 0 4 COM00 R/W 0 3 WGM01 R/W 0 2 CS02 R/W 0 1 CS01 R/W 0 0 CS00 R/W 0 TCCR0 * Bit 7 - FOC0: FOC0 WGM00 PWM PWM TCCR0 1 OC0 COM01:0 FOC0 COM01:0 FOC0 OCR0TOPCTC FOC0 0 * Bit 6, 3 - WGM01:0: TOP T/C (CTC) PWM Table 38 P70 " " Table 38. (1) 0 1 2 3 Note: WGM01 (CTC0) 0 0 1 1 WGM00 (PWM0) 0 1 0 1 T/C PWM CTC PWM TOP 0xFF 0xFF OCR0 0xFF OCR0 TOP TOP TOV0 MAX BOTTOM MAX MAX 1. CTC0 PWM0 WGM01:0 * Bit 5:4 - COM01:0: OC0 COM01:0 OC0 1 OC0 COM01:0 WGM01:0 Table 39 WGM01:0 CTC COM01:0 . Table 39. PWM COM01 0 0 1 1 COM00 0 1 0 1 OC0 OC0 OC0 OC0 76 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 40 WGM01:0 PWM COM01:0 Table 40. PWM (1) COM01 0 0 1 1 Note: COM00 0 1 0 1 OC0 OC0A TOP OC0 OC0A TOP OC0 1. OCR0 TOP COM01 TOP OC0 P71 " PWM " Table 41 WGM01:0 PWM COM01:0 Table 41. PWM (1) COM01 0 0 1 1 Note: COM00 0 1 0 1 OC0 OC0 OC0 OC0 OC0 1. OCR0 TOP COM01 TOP OC0 P72 " PWM " * Bit 2:0 - CS02:0: T/C Table 42. CS02 0 0 0 0 1 1 1 1 CS01 0 0 1 1 0 0 1 1 CS00 0 1 0 1 0 1 0 1 T/C clkI/O/1 ( ) clkI/O/8 ( ) clkI/O/64 ( ) clkI/O/256 ( ) clkI/O/1024 ( ) T0 T0 T/C0 T0 T/C TCNT0 Bit / 7 R/W 0 6 R/W 0 5 R/W 0 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 0 TCNT0 R/W 0 TCNT0[7:0] 77 2503F-AVR-12/03 T/C 8 TCNT0 TCNT0 TCNT0 OCR0 OCR0 Bit / 7 R/W 0 6 R/W 0 5 R/W 0 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 0 OCR0 R/W 0 OCR0[7:0] 8 TCNT0 OC0 T/C TIMSK Bit / 7 OCIE2 R/W 0 6 TOIE2 R/W 0 5 TICIE1 R/W 0 4 OCIE1A R/W 0 3 OCIE1B R/W 0 2 TOIE1 R/W 0 1 OCIE0 R/W 0 0 TOIE0 R/W 0 TIMSK * Bit 1 - OCIE0: T/C0 OCIE0 I "1" T/C0 T/C0 TIFR OCF0 * Bit 0 - TOIE0: T/C0 TOIE0 I "1" T/C0 T/C0 TIFR TOV0 T/C TIFR Bit / 7 OCF2 R/W 0 6 TOV2 R/W 0 5 ICF1 R/W 0 4 OCF1A R/W 0 3 OCF1B R/W 0 2 TOV1 R/W 0 1 OCF0 R/W 0 0 TOV0 R/W 0 TIFR * Bit 1 - OCF0: 0 T/C0 OCR0( 0) OCF0 1 SREG I OCIE0(T/C0 ) OCF0 * Bit 0 - TOV0: T/C0 T/C0 TOV0 TOV0 1 SREG I TOIE0(T/C0 ) TOV0 PWM T/C0 0x00 TOV0 78 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) T/C0 T/C1 T/C1 T/C0 T/C1 T/C0 CSn2:0 = 1 T/C T/C fCLK_I/O 4 fCLK_I/O/8 fCLK_I/O/64 fCLK_I/O/256 fCLK_I/O/1024 T/C T/C1 T/C0 T/C (6 > CSn2:0 > 1) 1 N+1 N (8 64 256 1024) T/C T/C T/C T1/T0 T/C clkT1/clkT0 T1/T0 ( ) Figure 38 T1/T0 clkI/O CSn2:0 = 7 clkT1 CSn2:0 = 6 clkT0 Figure 38. T1/T0 Tn D LE Q D Q D Q Tn_sync (To Clock Select Logic) clk I/O Synchronization Edge Detector T1/T0 2.5 3.5 T1/T0 T/C 50% (fExtClk < fclk_I/O/2) (Nyquist ) ( ) fclk_I/O/2.5 79 2503F-AVR-12/03 Figure 39. T/C0 T/C1 (1) clk I/O Clear PSR10 T0 Synchronization T1 Synchronization clkT1 clkT0 Note: 1. (T1/T0) Figure 38 IO SFIOR Bit / 7 ADTS2 R/W 0 6 ADTS1 R/W 0 5 ADTS0 R/W 0 4 - R 0 3 ACME R/W 0 2 PUD R/W 0 1 PSR2 R/W 0 0 PSR10 R/W 0 SFIOR * Bit 0 - PSR10: T/C1 T/C0 T/C1 T/C0 T/C1 T/C0 0 80 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 16 / 1 16 T/C ( ) * 16 ( 16 PWM) * 2 * * * * ( ) * PWM * PWM * * * 4 (TOV1OCF1A OCF1B ICF1) "n" T/C "x" TCNT1 T/C1 16 T/C Figure 40 P2 Figure 1 CPU I/O I/O I/O I/O I/O P100 "16 / " Figure 40. 16 T/C (1) Count Clear Direction Control Logic TOVn (Int.Req.) clkTn Clock Select Edge Detector TOP BOTTOM ( From Prescaler ) Timer/Counter TCNTn Tn = =0 OCnA (Int.Req.) = OCRnA Fixed TOP Values Waveform Generation OCnA OCnB (Int.Req.) Waveform Generation OCnB DATABUS = OCRnB ICFn (Int.Req.) Edge Detector ( From Analog Comparator Ouput ) ICRn Noise Canceler ICPn TCCRnA TCCRnB Note: 1. P2 Figure 1 P55 Table 25 P60 Table 31 T/C1 81 2503F-AVR-12/03 / TCNT1 OCR1A/B ICR1 16 16 P84 " 16 " T/C TCCR1A/B 8 CPU ( Int.Req.) TIFR1 TIMSK1 TIFR1 TIMSK1 T/CT1 T/C( ) T/C clkT1 OCR1A/B T/C PWM OC1A/B P89 " " OCF1A/B ICP1 ( P184 " " ) ( ) T/C ( ) TOP T/C OCR1A ICR1 PWM OCR1A TOP OCR1A PWM OCR1A TOP TOP ICR1 OCR1A PWM Table 43. BOTTOM MAX TOP 0x0000 BOTTOM 0xFFFF ( 65535) MAX TOP TOP 0x00FF 0x01FF 0x03FF OCR1A ICR1 16T/C16AVRT/C * * * * * * * * 16 T/C I/O 16 T/C PWM10 WGM10 PWM11 WGM11 CTC1 WGM12 TCCR1A FOC1A FOC1B TCCR1B WGM13 16 T/C 16 T/C 82 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 16 TCNT1 OCR1A/B ICR1 AVR CPU 8 16 16 1688 16 16 16 CPU 16 8 8 16 16 CPU 16 16 OCR1A/B 16 16 16 OCR1A/B ICR1 "C" 16 (1) ... ; TCNT1 0x01FF ldi r17,0x01 ldi r16,0xFF out TCNT1H,r17 out TCNT1L,r16 ; TCNT1 r17:r16 in in ... r16,TCNT1L r17,TCNT1H C (1) unsigned int i; ... /* TCNT1 0x01FF */ TCNT1 = 0x1FF; /* TCNT1 i */ i = TCNT1; ... Note: 1. TCNT1 r17:r16 16 16 16 16 16 83 2503F-AVR-12/03 TCNT1 OCR1A/B ICR1 (1) TIM16_ReadTCNT1: ; in cli ; TCNT1 r17:r16 in in r16,TCNT1L r17,TCNT1H r18,SREG ; ; out SREG,r18 ret C (1) unsigned int TIM16_ReadTCNT1( void ) { unsigned char sreg; unsigned int i; /* */ sreg = SREG; /* */ _CLI(); /* TCNT1 i */ i = TCNT1; /* */ SREG = sreg; return i; } Note: 1. TCNT1 r17:r16 84 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) TCNT1 OCR1A/B ICR1 (1) TIM16_WriteTCNT1: ; in cli ; TCNT1 r17:r16 out TCNT1H,r17 out TCNT1L,r16 ; out SREG,r18 ret r18,SREG ; C (1) void TIM16_WriteTCNT1 ( unsigned int i ) { unsigned char sreg; unsigned int i; /* */ sreg = SREG; /* */ _CLI(); /* TCNT1 i */ TCNT1 = i; /* */ SREG = sreg; } Note: 1. r17:r16 TCNT1 16 T/C T/C B(TCCR1B) (CS12:0) P79 "T/C0 T/C1 " 16 T/C 16 Figure 41 T/C 85 2503F-AVR-12/03 Figure 41. DATA BUS (8-bit) TOVn (Int.Req.) TEMP (8-bit) Clock Select Count TCNTnH (8-bit) TCNTnL (8-bit) Clear Direction Control Logic clkTn Edge Detector Tn TCNTn (16-bit Counter) ( From Prescaler ) TOP BOTTOM ( ) Count Direction Clear clkT1 TOP BOTTOM TCNT1 1 1 TCNT1 / TCNT1 TCNT1 (0) 16 8 I/O TCNT1H 8 TCNT1L 8 CPU TCNT1H CPU TCNT1H (TEMP) TCNT1L TCNT1HTCNT1L TCNT1H CPU 8 16 TCNT1 clkT1 1 1 clkT1 CS12:0 CS12:0= 0 CPU TCNT1 clkT1 CPU TCCR1A TCCR1B WGM13:0 ( ) OC1x P91 " " WGM13:0 TOV1 TOV1 CPU 86 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) T/C ICP1 Figure 42 "n" / Figure 42. DATA BUS (8-bit) TEMP (8-bit) ICRnH (8-bit) WRITE ICRnL (8-bit) TCNTnH (8-bit) TCNTnL (8-bit) ICRn (16-bit Register) TCNTn (16-bit Counter) ACO* Analog Comparator ICPn ACIC* ICNC ICES Noise Canceler Edge Detector ICFn (Int.Req.) ICP1 ( ) ACO 16 TCNT1 ICR1 ICF1 ICIE1 = 1 ICF1 I/O "1" ICR1 ICR1L ICR1H TEMP CPU ICR1H TEMP ICR1 ICR1 TOP ICR1 WGM13:0 ICR1 ICR1H I/O ICR1L P84 " 16 " 16 ICP1T/C1 ACSR ACIC ICP1 ACO T1 (P79 Figure 38 ), 4 ICR1 TOP T/C 87 2503F-AVR-12/03 ICP1 4 4 TCCR1B ICNC1 ICR1 4 ICR1 ICR1 ICR1 TOP ICR1 ICF1 ( I/O "1") ICF1 16 TCNT1 OCR1x OCF1x OCIE1x = 1 OCF1x OCF1x I/O "1" WGM13:0 COM1x1:0 TOP BOTTOM (P91 " " ) A T/C TOP ( ) TOP Figure 43 "n" (n = 1 T/C1) "x" (A/B) 88 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 43. DATA BUS (8-bit) TEMP (8-bit) OCRnxH Buf. (8-bit) OCRnxL Buf. (8-bit) TCNTnH (8-bit) TCNTnL (8-bit) OCRnx Buffer (16-bit Register) TCNTn (16-bit Counter) OCRnxH (8-bit) OCRnxL (8-bit) OCRnx (16-bit Register) = (16-bit Comparator ) OCFnx (Int.Req.) TOP BOTTOM Waveform Generator OCnx WGMn3:0 COMnx1:0 T/C 12 PWM OCR1x (CTC) OCR1x TOP BOTTOM PWM OCR1x CPU OCR1x CPU OCR1x OCR1x( ) (T/C TCNT1 ICR1 ) OCR1x TEMP 16 OCR1x TEMP OCR1xH CPU I/O TEMP OCR1xL TEMP OCR1x OCR1x P84 " 16 " 16 PWM FOC1x "1" OCF1x / OC1x (COMx1:0 OC1x ) CPUTCNT1 OCR1x TCNT1 TCNT1 TCNT1 T/C TCNT1OCR1x PWM TOP TCNT1 TOP 0xFFFF TCNT1BOTTOM OC1x OC1x FOC1x OC1x 89 2503F-AVR-12/03 TCNT1 COM1x1:0 COM1x1:0 COM1x1:0 COM1x1:0 OC1x COM1x1:0 OC1x Figure 44 COM1x1:0 I/O I/O I/O COM1x1:0 I/O (DDR PORT) OC1x OC1x OC1x COM1x "0" Figure 44. COMnx1 COMnx0 FOCnx Waveform Generator D Q 1 OCnx Pin OCnx D DATABUS 0 Q PORT D Q DDR clk I/O COM1x1:0 OC1x I/O OC1x (DDR) OC1x DDR_OC1x Table 44Table 45 Table 46 OC1x COM1x1:0 P100 "16 / " COM1x1:0 COM1x1:0 CTC PWM COM1x1:0 = 0 OC1x PWM P99 Table 44 PWM P100 Table 45 PWM P100 Table 46 COM1x1:0 PWM FOC1x - T/C - (WGM13:0) (COM1x1:0) COM1x1:0 PWM PWM COM1x1:0 (P91 " " ) P97 " / " 90 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) (WGM13:0 = 0) (TOP = 0xFFFF) 0x0000 TCNT1T/CTOV1 TOV117 TOV1 CPU CTC( ) CTC (WGM13:0 = 4 12) OCR1A ICR1 TCNT1 OCR1A(WGM13:0 = 4) ICR1 (WGM13:0 = 12) OCR1A ICR1 TOP CTCFigure 45 TCNT1TCNT1OCR1A ICR1 TCNT1 Figure 45. CTC OCnA Interrupt Flag Set or ICFn Interrupt Flag Set (Interrupt on TOP) TCNTn OCnA (Toggle) Period 1 2 3 4 (COMnA1:0 = 1) OCF1A ICF1 TOP TOP CTC TOP BOTTOM OCR1A ICR1 TCNT1 0xFFFF 0x0000 OCR1A ICR1 PWM OCR1A TOP (WGM13:0 = 15) OCR1A CTC OC1A COM1A1:0 = 1 OC1A (DDR_OC1A = 1) fOC1A = fclk_I/O/2 (OCR1A = 0x0000) f clk_I/O f OCnA = ---------------------------------------------------2 N ( 1 + OCRnA ) N (1 8 64 256 1024) TOV1 MAX 0x0000 91 2503F-AVR-12/03 PWM PWM (WGM13:0 = 5 6 7 14 15) PWM PWM PWM BOTTOM TOP BOTTOM OC1x TCNT1 OCR1x TOP OCR1x PWM PWM PWM DAC ( ) PWM PWM 89 10 ICR1 OCR1A 2 (ICR1 OCR1A 0x0003) 16 (ICR1 OCR1A MAX) PWM log ( TOP + 1 ) R FPWM = ----------------------------------log ( 2 ) PWM 0x00FF 0x01FF 0x03FF (WGM13:0 = 5 6 7)ICR1 (WGM13:0 = 14) OCR1A (WGM13:0 = 15) Figure 46 OCR1A ICR1 TOP PWM TCNT1 PWM PWM TCNT1 OCR1x TCNT1 OC1x Figure 46. PWM OCRnx / TOP Update and TOVn Interrupt Flag Set and OCnA Interrupt Flag Set OCnA Interrupt Flag Set (Interrupt on TOP) TCNTn OCnx OCnx (COMnx1:0 = 2) (COMnx1:0 = 3) Period 1 2 3 4 5 6 7 8 TOP T/C TOV1 TOP OCR1A ICR1 OC1A ICF1 TOV1 TOP TOPTOP TCNT1OCR1x TOP OCR1x "0" TOP ICR1 OCR1A ICR1 ICR1 ICR1 TCNT1 0xFFFF 0x0000 OCR1A OCR1A OCR1A TCNT1 TOP 92 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) OCR1A TCNT1 TOV1 TOP ICR1 TOP OCR1A OC1A PWM PWM ( TOP ) OCR1A PWM OC1x PWM COM1x1:0 2 PWM 3 PWM ( P99 Table 44 ) OC1x DDR_OC1x PWM OC1x OCR1x TCNT1 ( ) ( TOP BOTTOM) ( ) PWM f clk_I/O f OCnxPWM = ----------------------------------N ( 1 + TOP ) N (1 8 64 256 1024) OCR1x PWM OCR1x BOTTOM(0x0000) TOP+1OCR1xTOP COM1x1:0 OC1A (COM1A1:0 = 1) 50% OCR1A TOP (WGM13:0 = 15) OCR1A 0(0x0000) fOC1A = fclk_I/O/2 CTC OC1A PWM PWM PWM (WGM13:0 = 1 2 3 11) 10 PWM BOTTOM TOP TOP BOTTOM TOP TCNT1 OCR1x OC1x BOTTOM TCNT1 OCR1x OC1x PWM PWM 8 9 10 ICR1 OCR1A 2 (ICR1 OCR1A 0x0003) 16 (ICR1 OCR1A MAX) PWM log ( TOP + 1 ) R PCPWM = ----------------------------------log ( 2 ) PWM 0x00FF 0x01FF 0x03FF (WGM13:0 = 12 3) ICR1 (WGM13:0 = 10) OCR1A (WGM13:0 = 11) TCNT1 TOP Figure 47 OCR1A ICR1 TOP PWM TCNT1 PWM PWM TCNT1 OCR1x TCNT1 OC1x 93 2503F-AVR-12/03 Figure 47. PWM OCRnx/TOP Update and OCnA Interrupt Flag Set or ICFn Interrupt Flag Set (Interrupt on TOP) TOVn Interrupt Flag Set (Interrupt on Bottom) TCNTn OCnx OCnx (COMnx1:0 = 2) (COMnx1:0 = 3) Period 1 2 3 4 BOTTOM T/C TOV1 TOP OCR1A ICR1 OCR1x OC1A ICF1 TOPTOP TCNT1OCR1x TOP OCR1x "0" Figure 47 T/C TOP OCR1x OCR1x / TOP PWM TOP TOP T/C TOP TOP PWM OC1x PWM COM1x1:0 2 PWM COM1x1:0 3 PWM ( P99 Table 44 ) OC1x DDR_OC1x OCR1x TCNT1 OC1x PWM PWM f clk_I/O f OCnxPCPWM = ---------------------------2 N TOP N (1 8 64 256 1024) OCR1x PWM PWM OCR1x BOTTOM OCR1x TOP PWM OCR1A TOP (WGM13:0 = 11) COM1A1:0 = 1 OC1A 50% PWM PWM (WGM13:0 = 8 9) - PWM - PWM PWM BOTTOM TOP TOP BOTTOM TOP TCNT1 OCR1x 94 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) OC1xBOTTOMTCNT1OCR1x OC1x PWM PWM OCR1x Figure 47 Figure 48 PWM PWM ICR1 OCR1A 2 (ICR1 OCR1A 0x0003) 16 (ICR1 OCR1A MAX) PWM log ( TOP + 1 ) R PFCPWM = ----------------------------------log ( 2 ) PWM ICR1 (WGM13:0 = 8) OCR1A (WGM13:0 = 9) TCNT1 TOP Figure 48 OCR1A ICR1 TOP PWM TCNT1 PWM PWM TCNT1 OCR1x TCNT1 OC1x Figure 48. PWM OCnA Interrupt Flag Set or ICFn Interrupt Flag Set (Interrupt on TOP) OCRnx / TOP Update and TOVn Interrupt Flag Set (Interrupt on Bottom) TCNTn OCnx OCnx (COMnx1:0 = 2) (COMnx1:0 = 3) Period 1 2 3 4 OCR1x T/C TOV1 TOP OCR1A ICR1 TCNT1 TOP OC1A CF1 TOP BOTTOM TOPTOP TCNT1OCR1x Figure 48 PWM OCR1x BOTTOM TOP ICR1 TOP OCR1A OC1A PWM PWM ( TOP ) OCR1A 95 2503F-AVR-12/03 PWM OC1x PWM COM1x1:0 2 PWM 3 PWM P100 ( Table ) OC1x PWM OC1x OCR1x TCNT1 ( ) TCNT1 ( ) PWM f clk_I/O f OCnxPFCPWM = ---------------------------2 N TOP N (1 8 64 256 1024) OCR1x PWM PWM OCR1x BOTTOM OCR1x TOP PWM OCR1A TOP (WGM13:0 = 9) COM1A1:0 = 1 OC1A 50% / / clkT1 OCR1x OCR1x ( ) Figure 49 OCF1x Figure 49. T/C OCF1x clkI/O clkTn (clkI/O /1) TCNTn OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2 OCRnx OCRnx Value OCFnx Figure 50 96 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 50. T/C OCF1x fclk_I/O/8 clkI/O clkTn (clkI/O /8) TCNTn OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2 OCRnx OCRnx Value OCFnx Figure 51 TOP PWM OCR1x BOTTOM TOP BOTTOM BOTTOM+1 TOP-1 BOTTOM TOV1 Figure 51. T/C clkI/O clkTn (clkI/O /1) TCNTn (CTC and FPWM) TOP - 1 TOP BOTTOM BOTTOM + 1 TCNTn (PC and PFC PWM) TOP - 1 TOP TOP - 1 TOP - 2 TOVn (FPWM) and ICFn (if used as TOP) OCRnx (Update at TOP) Old OCRnx Value New OCRnx Value Figure 52 97 2503F-AVR-12/03 Figure 52. T/C fclk_I/O/8 clkI/O clkTn (clkI/O /8) TCNTn (CTC and FPWM) TOP - 1 TOP BOTTOM BOTTOM + 1 TCNTn (PC and PFC PWM) TOP - 1 TOP TOP - 1 TOP - 2 TOVn (FPWM) and ICFn (if used as TOP) OCRnx (Update at TOP) Old OCRnx Value New OCRnx Value 98 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 16 / T/C1 A TCCR1A Bit / 7 COM1A1 6 COM1A0 5 COM1B1 4 COM1B0 3 FOC1A 2 FOC1B 1 WGM11 0 WGM10 TCCR1A R/W 0 R/W 0 R/W 0 R/W 0 W 0 W 0 R/W 0 R/W 0 * Bit 7:6 - COM1A1:0: A * Bit 5:4 - COM1B1:0: B COM1A1:0 COM1B1:0 OC1A OC1B COM1A1:0(COM1B1:0) "1"OC1A(OC1B) I/O OC1A(OC1B) OC1A(OC1B) COM1x1:0 WGM13:0 Table 44 WGM13:0 CTC ( PWM) COM1x1:0 Table 44. PWM COM1A1/COM1B1 0 0 1 1 COM1A0/COM1B0 0 1 0 1 OC1A/OC1B OC1A/OC1B OC1A/OC1B( ) OC1A/OC1B ( ) Table 45 WGM13:0 PWM COM1x1:0 99 2503F-AVR-12/03 Table 45. PWM(1) COM1A1/COM1B1 0 0 COM1A0/COM1B0 0 1 OC1A/OC1B WGM13:0 = 15: OC1A OC1B WGM13:0 OC1A/OC1B OC1A/OC1BOC1A/OC1B TOP OC1A/OC1B OC1A/OC1B TOP 1 1 Note: 0 1 1. OCR1A/OCR1B TOP COM1A1/COM1B1 OC1A/OC1B / P93 " PWM " Table 46WGM13:0PWMPWMCOM1x1:0 Table 46. PWM (1) COM1A1/COM1B1 0 0 COM1A0/COM1B0 0 1 OC1A/OC1B WGM13:0 = 9 14: OC1A OC1B WGM13:0 OC1A/OC1B OC1A/OC1B OC1A/OC1B OC1A/OC1B OC1A/OC1B 1 1 Note: 0 1 1. OCR1A/OCR1B TOP COM1A1/COM1B1 P94 " PWM " * Bit 3 - FOC1A: A * Bit 2 - FOC1B: B FOC1A/FOC1BWGM13:0PWM PWM TCCR1A FOC1A/FOC1B 1 COM1x1:0 OC1A/OC1B FOC1A/FOC1B COM1x1:0 CTC OCR1A TOP FOC1A/FOC1B FOC1A/FOC1B 0 * Bit 1:0 - WGM11:0: TCCR1B WGM13:2 ---- Table 47 T/C 100 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) ( ) (CTC) (PWM) P91 " " Table 47. (1) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Note: WGM13 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 WGM12 (CTC1) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 WGM11 (PWM11) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 WGM10 (PWM10) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 / 8 PWM 9 PWM 10 PWM CTC 8 PWM 9 PWM 10 PWM PWM PWM PWM PWM CTC PWM PWM TOP 0xFFFF 0x00FF 0x01FF 0x03FF OCR1A 0x00FF 0x01FF 0x03FF ICR1 OCR1A ICR1 OCR1A ICR1 - ICR1 OCR1A OCR1x TOP TOP TOP TOV1 MAX BOTTOM BOTTOM BOTTOM MAX TOP TOP TOP BOTTOM BOTTOM BOTTOM BOTTOM MAX - TOP TOP TOP TOP TOP BOTTOM BOTTOM TOP TOP - TOP TOP 1. CTC1 PWM11:0 WGM12:0 101 2503F-AVR-12/03 T/C1 B TCCR1B Bit / 7 ICNC1 R/W 0 6 ICES1 R/W 0 5 - R 0 4 WGM13 R/W 0 3 WGM12 R/W 0 2 CS12 R/W 0 1 CS11 R/W 0 0 CS10 R/W 0 TCCR1B * Bit 7 - ICNC1: ICNC1 ICP1 ICP1 4 4 4 * Bit 6 - ICES1: ICP1 ICES "0" ICES1 "1" ICES1 ICR1 ICF1 ICR1 TOP ( TCCR1A TCCR1B WGM13:0 ) ICP1 * Bit 5 - TCCR1B "0" * Bit 4:3 - WGM13:2: TCCR1A * Bit 2:0 - CS12:0: 3 T/C Figure 49 Figure 50 Table 48. CS12 0 0 0 0 1 1 1 1 CS11 0 0 1 1 0 0 1 1 CS10 0 1 0 1 0 1 0 1 (T/C ) clkI/O/1 ( ) clkI/O/8 ( ) clkI/O/64 ( ) clkI/O/256 ( ) clkI/O/1024 ( ) T1 T1 T1 T/C1 T/C1 TCNT1H TCNT1L Bit 7 6 5 4 3 2 1 0 TCNT1H TCNT1L TCNT1[15:8] TCNT1[7:0] 102 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) / R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 TCNT1HTCNT1LT/C1TCNT1 / 16 CPU 8 TEMPTEMP 16 P84 " 16 " TCNT1TCNT1OCR1x TCNT1 1A OCR1AH OCR1AL Bit 7 6 5 4 3 2 1 0 OCR1AH OCR1AL OCR1A[15:8] OCR1A[7:0] / R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 1B OCR1BH OCR1BL Bit 7 6 5 4 3 2 1 0 OCR1BH OCR1BL OCR1B[15:8] OCR1B[7:0] / R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 16 TCNT1 OC1x 16 CPU 8 TEMP TEMP 16 P84 " 16 " 1 ICR1H ICR1L Bit 7 6 5 4 ICR1[7:0] 3 2 1 0 ICR1H ICR1L ICR1[15:8] / R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 ICP1(T/C1) TCNT1 ICR1 ICR1 TOP 16 CPU 8 TEMP TEMP 16 P84 " 16 " T/C1 TIMSK(1) Bit / 7 OCIE2 R/W 0 6 TOIE2 R/W 0 5 TICIE1 R/W 0 4 OCIE1A R/W 0 3 OCIE1B R/W 0 2 TOIE1 R/W 0 1 OCIE0 R/W 0 0 TOIE0 R/W 0 TIMSK Note: 1. T/C T1 103 2503F-AVR-12/03 * Bit 5 - TICIE1: T/C1 "1" I "1" T/C1 TIFR ICF1 CPU T/C1 ( P42 " " ) * Bit 4 - OCIE1A: T/C1 A "1" I "1" T/C1 A TIFR OCF1A CPU T/C1 A ( P42 " " ) * Bit 3 - OCIE1B: T/C1 B "1" I "1" T/C1 B TIFR OCF1B CPU T/C1 B ( P42 " " ) * Bit 2 - TOIE1: T/C1 "1" I "1" T/C1 TIFR TOV1 CPU T/C1 ( P42 " " ) T/C TIFR Bit / 7 OCF2 R/W 0 6 TOV2 R/W 0 5 ICF1 R/W 0 4 OCF1A R/W 0 3 OCF1B R/W 0 2 TOV1 R/W 0 1 OCF0 R/W 0 0 TOV0 R/W 0 TIFR Note: T/C T1 * Bit 5 - ICF1: T/C1 ICP1 ICF1 ICR1 TOP TOP ICF1 ICF1 "1" * Bit 4 - OCF1A: T/C1 A TCNT1 OCR1A "1" (FOC1A) OCF1A A OCF1A "1" * Bit 3 - OCF1B: T/C1 B TCNT1 OCR1B "1" (FOC1B) OCF1B B OCF1B "1" * Bit 2 - TOV1: T/C1 T/C1 CTC T/C1 TOV1 TOV1 P101 Table 47 104 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) TOV1 "1" 105 2503F-AVR-12/03 8 PWM / 2 T/C2 8 / * * ( ) * , (PWM) * * 10 * (TOV2 OCF2) * 32 kHz I/O Figure 53 8 T/C P2 "ATmega32 " CPU I/O I/O I/O I/O P116 "8 T/C " Figure 53. 8 T/C TCCRn count clear direction Control Logic TOVn (Int.Req.) clkTn TOSC1 BOTTOM TOP Prescaler T/C Oscillator TOSC2 Timer/Counter TCNTn =0 = 0xFF OCn (Int.Req.) clkI/O DATABUS = Waveform Generation OCn OCRn Synchronized Status flags clkI/O Synchronization Unit clkASY Status flags ASSRn asynchronous mode select (ASn) / TCNT2 OCR2 8 ( Int.Req.) TIFR TIMSK TIFR TIMSK T/C TOSC1/2 ASSR T/C()T/C clkT2 OCR2 TCNT2 PWM OC2 P109 " " OCF2 106 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) "n" / 2 ( TCNT2 T/C2 ) Table 49 Table 49. BOTTOM MAX TOP 0x00 BOTTOM 0xFF ( 255) MAX TOPTOP 0xFF (MAX) OCR2 T/C T/C clkT2 MCU clkI/O ASSR AS2 TOSC1 TOSC2 P119 " -ASSR" P121 " / " 8T/CFigure 54 Figure 54. DATA BUS TOVn (Int.Req.) TOSC1 count TCNTn clear direction Control Logic clk Tn Prescaler T/C Oscillator TOSC2 bottom top clkI/O ( ) count direction clear clkT2 top bottom TCNT2 1 1 TCNT2 ( ) T/C TCNT2 TCNT2 (0) clkT2 clkT2 CS22:0 (CS22:0 = 0) clkT2 CPU TCNT2 CPU ( ) T/C (TCCR2) WGM21 WGM20 OC2 P110 " " T/CTOV2WGM21:0 TOV2CPU 107 2503F-AVR-12/03 8 TCNT2 OCR2 TCNT2 OCR2 OCF2 OCIE2 = 1 OCF2 "1" WGM21:0 COM21:0 max bottom ( P110 " " ) Figure 55 Figure 55. DATA BUS OCRn TCNTn = (8-bit Comparator ) OCFn (Int.Req.) top bottom FOCn Waveform Generator OCxy WGMn1:0 COMn1:0 PWM OCR2 OCR2 top bottom PWM OCR2 CPU OCR2 CPU OCR2 PWM FOC2 "1" OCF2 / OC2 (COM21:0 OC2 ) CPU TCNT2 OCR2 TCNT2 TCNT2 TCNT2 T/C TCNT2 OCR2 TCNT2 BOTTOM OC2 OC2 FOC2 OC2 TCNT2 108 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) COM21:0 COM21:0 COM21:0 COM21:0 (OC2) COM21:0 OC2 Figure 56 COM21:0 I/O I/O I/O COM21:0 I/O (DDR PORT) OC2 OC2 OC2 Figure 56. COMn1 COMn0 FOCn Waveform Generator D Q 1 OCn Pin OCn D Q 0 DATA BUS PORT D Q DDR clk I/O COM21:0 OC2 I/O OC2 (DDR) OC2 DDR_OC2 OC2 COM21:0 P116 "8 T/C " COM21:0 CTC PWM COM21:0 = 0 OC2 PWM P115 Table 51 PWM P116 Table 52 PWM P116 Table 53 COM21:0 PWM FOC2 - T/C - (WGM21:0) (COM21:0) COM21:0 PWM PWM COM21:0 (P110 " " ) P113 "T/C " 109 2503F-AVR-12/03 (WGM21:0 = 0) 8 (TOP = 0xFF) 0x00 TCNT0 T/C TOV2 TOV2 9 TOV2 CPU CTC( ) CTC (WGM21:0 = 2) OCR2 TCNT2 OCR2 OCR2 TOP CTCFigure 57 TCNT2TCNT2OCR2 TCNT2 Figure 57. CTC OCn Interrupt Flag Set TCNTn OCn (Toggle) Period 1 2 3 4 (COMn1:0 = 1) OCF2 TOP TOP CTC TOP BOTTOM OCR2 TCNT2 0xFF 0x00 OCR2 CTC OC2 COM21:0 = 1 OC2 fOC2 = fclk_I/O/2 (OCR2 = 0x00) f clk_I/O f OCn = -----------------------------------------------2 N ( 1 + OCRn ) N (1 8 32 64 128 256 1024) TOV2 MAX 0x00 PWM PWM (WGM21:0 = 3) PWM PWM PWM BOTTOMMAX BOTTOM OC2 TCNT2 OCR2 BOTTOM OC2 PWM PWM 110 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) PWM DAC ( ) PWM MAX Figure 58 TCNT0 PWM PWM TCNT2 OCR2 TCNT2 Figure 58. PWM OCRn Interrupt Flag Set OCRn Update and TOVn Interrupt Flag Set TCNTn OCn OCn (COMn1:0 = 2) (COMn1:0 = 3) Period 1 2 3 4 5 6 7 MAX T/C TOV2 PWM OC2 PWM COM21:0 2 PWM 3 PWM ( P116 Table 52 ) OC2 PWM OC2 OCR2 TCNT2 ( ) ( MAX BOTTOM) ( ) PWM f clk_I/O f OCnPWM = -----------------N 256 N (1 8 32 64 128 256 1024) OCR2 PWM OCR2 BOTTOM MAX+1 OCR2 MAX COM21:0 OC2 (COM21:0 = 1) 50% OCR2 0 foc2 = fclk_I/O/2 CTC OC2 PWM PWM PWM (WGM21:0 = 1) PWM BOTTOM MAX MAX BOTTOM MAX TCNT2 OCR2 OC2 BOTTOM TCNT2 OCR2 OC2 111 2503F-AVR-12/03 PWM PWM 8 MAX TCNT2 MAX Figure 59 TCNT2 PWM PWM TCNT2 OCR2 TCNT2 Figure 59. PWM OCn Interrupt Flag Set OCRn Update TOVn Interrupt Flag Set TCNTn OCn OCn (COMn1:0 = 2) (COMn1:0 = 3) Period 1 2 3 BOTTOM T/C TOV2 PWM OC2 PWM COM21:0 2 PWM COM21:0 3 PWM ( P116 Table 53 ) OC2 OCR2 TCNT2 OC2 PWM PWM f clk_I/O f OCnPCPWM = -----------------N 510 N (1 8 32 64 128 256 1024) OCR2 PWM PWM OCR2 BOTTOM OCR2 MAX PWM Figure 59 2 OCn BOTTOM * Figure 59 OCR2A MAX OCR2A MAX OCn BOTTOM T/C MAX OCn OCn OCR2A OCn * T/C T/C clkT2 clkI/O T/C Figure 60 T/C PWM MAX 112 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 60. T/C clkI/O clkTn (clkI/O /1) TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 TOVn Figure 61 Figure 61. T/C fclk_I/O/8 clkI/O clkTn (clkI/O /8) TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 TOVn Figure 62 ( CTC )OCF2 Figure 62. T/C OCF2 fclk_I/O/8 clkI/O clkTn (clkI/O /8) TCNTn OCRn - 1 OCRn OCRn + 1 OCRn + 2 OCRn OCRn Value OCFn 113 2503F-AVR-12/03 Figure 63 CTC OCF2 TCNT2 Figure 63. T/C CTC fclk_I/O/8 clkI/O clkTn (clkI/O /8) TCNTn (CTC) OCRn TOP - 1 TOP BOTTOM BOTTOM + 1 TOP OCFn 114 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 8 T/C T/C TCCR2 Bit / 7 FOC2 W 0 6 WGM20 R/W 0 5 COM21 R/W 0 4 COM20 R/W 0 3 WGM21 R/W 0 2 CS22 R/W 0 1 CS21 R/W 0 0 CS20 R/W 0 TCCR2 * Bit 7 - FOC2: FOC2 WGM PWM PWM TCCR2 1 OC2 COM21:0 FOC2 COM21:0 FOC2 OCR2 TOP CTC FOC2 0 * Bit 6, 3 - WGM21:0: TOP T/C (CTC) PWM Table 50 P110 " " Table 50. (1) 0 1 2 3 Note: WGM21 (CTC2) 0 0 1 1 WGM20 (PWM2) 0 1 0 1 T/C PWM CTC PWM TOP 0xFF 0xFF OCR2 0xFF OCR2 TOP TOP TOV2 MAX BOTTOM MAX MAX 1. CTC2 PWM2 WGM21:0 * Bit 5:4 - COM21:0: OC0 COM01:0 OC0 1 OC0 COM01:0 WGM01:0 Table 51 WGM01:0 CTC COM01:0 Table 51. PWM COM21 0 0 1 1 COM20 0 1 0 1 OC2 OC2 OC2 OC2 115 2503F-AVR-12/03 Table 52 WGM21:0 PWM COM21:0 Table 52. PWM (1) COM21 0 0 1 1 Note: COM20 0 1 0 1 OC2 OC2 TOP OC0 OC2 TOP OC0 1. OCR2 TOP COM21 TOP P111 " PWM " Table 53 WGM21:0 PWM COM21:0 . Table 53. PWM (1) COM21 0 0 1 1 Note: COM20 0 1 0 1 OC2 OC2 OC2 OC2 OC2 1. OCR2 TOP COM21 TOP P112 " PWM " * Bit 2:0 - CS22:0: T/C Table 54 Table 54. CS22 0 0 0 0 1 1 1 1 CS21 0 0 1 1 0 0 1 1 CS20 0 1 0 1 0 1 0 1 T/C clkT2S/( ) clkT2S/8 ( ) clkT2S/32 ( ) clkT2S/64 ( ) clkT2S/128 ( ) clkT2S/256 ( ) clkT2S/1024 ( ) / TCNT2 Bit / 7 R/W 0 6 R/W 0 5 R/W 0 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 0 TCNT2 R/W 0 TCNT2[7:0] 116 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) T/C 8 TCNT2 TCNT2 TCNT2 OCR2 OCR2 Bit / 7 R/W 0 6 R/W 0 5 R/W 0 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 0 OCR2 R/W 0 OCR2[7:0] 8 TCNT2 OC2 117 2503F-AVR-12/03 / ASSR Bit / 7 - R 0 6 - R 0 5 - R 0 4 - R 0 3 AS2 R/W 0 2 TCN2UB R 0 1 OCR2UB R 0 0 TCR2UB R 0 ASSR * Bit 3 - AS2: T/C2 AS2"0"T/C2I/OclkI/OAS2"1"T/C2TOSC1 AS2 TCNT2 OCR2 TCCR2 * Bit 2 - TCN2UB: T/C2 T/C2 TCNT2TCN2UB TCNT2 TCN2UB TCN2UB 0 TCNT2 * Bit 1 - OCR2UB: 2 T/C2 OCR2OCR2UB OCR2 OCR2UB OCR2UB 0 OCR2 * Bit 0 - TCR2UB: T/C2 T/C2 TCCR2TCR2UB TCCR2 TCR2UB TCR2UB 0 TCCR2 TCNT2 OCR2 TCCR2 TCNT2 OCR2 TCCR2 / 2 T/C2 * TCNT2OCR2 TCCR2 1. OCIE2 TOIE2 T/C2 2. AS2 3. TCNT2 OCR2 TCCR2 4. TCN2UB OCR2UB TCR2UB 5. T/C2 6. * * 32.768 kHz TOSC1 T/C2 4 TCNT2 OCR2 TCCR2 TOSC1 3 TCNT2 OCR2 ASSR T/C2 MCU Standby TCNT2 OCR2ATCCR2A MCUT/C2 T/C2 MCU OCR2 TCNT2 (OCR2UB * 118 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 0)MCU MCU * T/C2Standby TOSC1 TOSC1 1. TCCR2 TCNT2 OCR2 2. ASSR 3. Standby * T/C2 32.768 kHz Standby 1 /Standby 1 T/C2 T/C2 Standby MCU 4 SLEEP TCNT2 TCNT2 TOSC TCNT2 I/O TOSC1 I/O TCNT2 TOSC1 TOSC1 TCNT2 1. OCR2 TCCR2 2. 3. TCNT2 * 3 * * / TIMSK Bit / 7 OCIE2 R/W 0 6 TOIE2 R/W 0 5 TICIE1 R/W 0 4 OCIE1A R/W 0 3 OCIE1B R/W 0 2 TOIE1 R/W 0 1 OCIE0 R/W 0 0 TOIE0 R/W 0 TIMSK * Bit 7 - OCIE2: T/C2 OCIE2 I "1" T/C2 A T/C2 TIFR OCF2 * Bit 6 - TOIE2: T/C2 TOIE2 I "1" T/C2 T/C2 TIFR TOV2 / TIFR Bit / 7 OCF2 R/W 6 TOV2 R/W 5 ICF1 R/W 4 OCF1A R/W 3 OCF1B R/W 2 TOV1 R/W 1 OCF0 R/W 0 TOV0 R/W TIFR 119 2503F-AVR-12/03 0 0 0 0 0 0 0 0 * Bit 7 - OCF2: 2 T/C2 OCR2( 2) OCF2 1 SREG IOCIE2 OCF2 * Bit 6 - TOV2: T/C2 T/C2 TOV2 TOV2 1 SREG I TOIE2 TOV2 PWM T/C2 0x00 TOV2 / Figure 64. T/C2 clkI/O TOSC1 clkT2S Clear 10-BIT T/C PRESCALER clkT2S/32 clkT2S/64 AS2 PSR2 0 CS20 CS21 CS22 TIMER/COUNTER2 CLOCK SOURCE clkT2 T/C2 clkT2S clkT2S clkI/O ASSR AS2 T/C2 TOSC1 T/C2 RTC TOSC1 TOSC2 C ( 32.768 kHz ) TOSC1 T/C2 clkT2S/8 clkT2S/32 clkT2S/64 clkT2S/128 clkT2S/256 clkT2S/1024 clkT2S 0 () SFIORPSR2 IO SFIOR Bit / 7 ADTS2 R/W 0 6 ADTS1 R/W 0 5 ADTS0 R/W 0 4 - R 0 3 ACME R/W 0 2 PUD R/W 0 1 PSR2 R/W 0 0 PSR10 R/W 0 SFIOR * Bit 1 - PSR2: T/C2 1 T/C2 0 CPU T/C2 0 T/C2 1 120 ATmega32(L) 2503F-AVR-12/03 clkT2S/1024 clkT2S/8 clkT2S/128 clkT2S/256 ATmega32(L) SPI SPI ATmega32 AVR ATmega32 SPI * 3 * * LSB MSB * 7 * * * * (CK/2) Figure 65. SPI (1) DIVIDER /2/4/8/16/32/64/128 SPI2X Note: 1. SPI P2 Figure 1 P55 Table 25 SPI Figure 66 SS SCK MOSI MOSI MISO MISO SS SPI SPI SS SPI SPI 8 SPI SPIF SPCR SPI SPIE SPDR SS SPI2X 121 2503F-AVR-12/03 SS SPI MISO SPI SPDR SCK SPDR SS SPIF SPCRSPISPIE SPDR Figure 66. SPI - MSB MASTER LSB MISO MOSI MISO MOSI MSB SLAVE LSB 8 BIT SHIFT REGISTER 8 BIT SHIFT REGISTER SPI CLOCK GENERATOR SCK SS SCK SS SHIFT ENABLE SPI SPI SPI SPI SCK SPI fosc/4 SPI MOSI MISO SCK SS Table 55 P52 " " Table 55. SPI MOSI MISO SCK SS Note: SPI SPI P55 " B " SPI SPI DDR_SPIDD_MOSI DD_MISODD_SCK 122 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) MOSI PB5 DD_MOSI DDB5 DDR_SPI DDRB (1) SPI_MasterInit: ; MOSI SCK ldi out ldi out ret SPI_MasterTransmit: ; (r16) out SPDR,r16 Wait_Transmit: ; sbis SPSR,SPIF rjmp Wait_Transmit ret r17,(1< C (1) void SPI_MasterInit(void) { /* MOSI SCK */ DDR_SPI = (1< 1. 123 2503F-AVR-12/03 SPI (1) SPI_SlaveInit: ; MISO ldi out ldi out ret SPI_SlaveReceive: ; sbis SPSR,SPIF rjmp SPI_SlaveReceive ; in ret r16,SPDR r17,(1< C (1) void SPI_SlaveInit(void) { /* MISO */ DDR_SPI = (1< 1. 124 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) SS SPI SS SS SPI MISO ( ) SS SPI SS / SS SPI SPI (MSTR SPCR ) SS SS I/O SPI SS SS SPI SS SPI SPI 1. SPCR MSTR SPI MOSI SCK 2. SPSR SPIF SPI SPI SS MSTR "1" SPI SPI SPCR Bit / 7 SPIE R/W 0 6 SPE R/W 0 5 DORD R/W 0 4 MSTR R/W 0 3 CPOL R/W 0 2 CPHA R/W 0 1 SPR1 R/W 0 0 SPR0 R/W 0 SPCR * Bit 7 - SPIE: SPI SPSR SPIF SREG SPI * Bit 6 - SPE: SPI SPE SPI SPI SPE * Bit 5 - DORD: DORD LSB MSB * Bit 4 - MSTR: / MSTR MSTR "1" SS MSTR SPSR SPIF MSTR 125 2503F-AVR-12/03 * Bit 3 - CPOL: CPOL SCK SCK Figure 67 Figure 68 CPOL Table 56. CPOL CPOL 0 1 * Bit 2 - CPHA: CPHA SCK SCK Figure 67 Figure 68 Table 57. CPHA CPHA 0 1 * Bits 1, 0 - SPR1, SPR0: SPI 1 0 SCK SPR1 SPR0 SCK fosc Table 58. SCK SPI2X 0 0 0 0 1 1 1 1 SPR1 0 0 1 1 0 0 1 1 SPR0 0 1 0 1 0 1 0 1 SCK fosc/4 fosc/16 fosc/64 fosc/128 fosc/2 fosc/8 fosc/32 fosc/64 126 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) SPI SPSR Bit / 7 SPIF R 0 6 WCOL R 0 5 - R 0 4 - R 0 3 - R 0 2 - R 0 1 - R 0 0 SPI2X R/W 0 SPSR * Bit 7 - SPIF: SPI SPIF SPCR SPIE SPI SPI SS SPIF SPIF SPSR SPDRSPIF * Bit 6 - WCOL: SPI SPDR WCOL WCOL SPSR SPDR * Bit 5..1 - Res: * Bit 0 - SPI2X: SPI SPI ( Table 58) SCK CPU fosc /4 ATmega32 SPI EEPROM P253 SPI SPI SPDR Bit / 7 MSB R/W X R/W X R/W X R/W X R/W X R/W X R/W X 6 5 4 3 2 1 0 LSB R/W X SPDR SPI / SPI 127 2503F-AVR-12/03 SCK 4 CPHA CPOL SPI Figure 67 Figure 68 SCK Table 56 Table 57 Table 59. CPOL CPHA CPOL = 0, CPHA = 0 CPOL = 0, CPHA = 1 CPOL = 1, CPHA = 0 CPOL = 1, CPHA = 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) SPI 0 1 2 3 Figure 67. CPHA = 0 SPI SCK (CPOL = 0) mode 0 SCK (CPOL = 1) mode 2 SAMPLE I MOSI/MISO CHANGE 0 MOSI PIN CHANGE 0 MISO PIN SS MSB first (DORD = 0) MSB LSB first (DORD = 1) LSB Bit 6 Bit 1 Bit 5 Bit 2 Bit 4 Bit 3 Bit 3 Bit 4 Bit 2 Bit 5 Bit 1 Bit 6 LSB MSB Figure 68. CPHA = 1 SPI SCK (CPOL = 0) mode 1 SCK (CPOL = 1) mode 3 SAMPLE I MOSI/MISO CHANGE 0 MOSI PIN CHANGE 0 MISO PIN SS MSB first (DORD = 0) LSB first (DORD = 1) MSB LSB Bit 6 Bit 1 Bit 5 Bit 2 Bit 4 Bit 3 Bit 3 Bit 4 Bit 2 Bit 5 Bit 1 Bit 6 LSB MSB 128 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) USART (USART) * ( ) * * * * 5, 6, 7, 8, 9 1 2 * * * * * , * * Figure 69 USART CPU I/O I/O Figure 69. USART (1) Clock Generator UBRR[H:L] OSC BAUD RATE GENERATOR SYNC LOGIC PIN CONTROL XCK Transmitter UDR (Transmit) PARITY GENERATOR TRANSMIT SHIFT REGISTER PIN CONTROL TxD TX CONTROL DATABUS Receiver CLOCK RECOVERY RX CONTROL RECEIVE SHIFT REGISTER DATA RECOVERY PIN CONTROL RxD UDR (Receive) PARITY CHECKER UCSRA UCSRB UCSRC Note: 1. P2 Figure 1 P61 Table 33 P57 Table 27 USART USART : XCK ( ) 129 2503F-AVR-12/03 USART UDR AVR USART AVR UART USART AVR UART * * * * * * USART FIFO FE DOR 9 RXB8 UDR ( Figure 69) USART (DOR) CHR9 UCSZ2 OR DOR * * * USART 4 : USART UMSEL C (UCSRC) ( ) UCSRA U2X (UMSEL = 1) XCK (DDR_XCK)()() XCK Figure 70 Figure 70. UBRR fosc Prescaling Down-Counter UBRR+1 /2 /4 /2 U2X 0 1 OSC DDR_XCK Sync Register Edge Detector 0 1 txclk xcki XCK Pin xcko 0 1 UMSEL DDR_XCK UCPOL 1 0 rxclk 130 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) txclk rxclk xcki xcko fosc ( ) ( ) XCK ( ) XCK ( ) XTAL ( ) Figure 70 USART UBRR UBRRL UBRR fosc/(UBRR+1) 2 8 16 2 816 UMSEL U2X DDR_XCK Table 60(/)UBRR Table 60. (U2X = 0) (U2X = 1) (1) UBRR f OSC f OSC BAUD = --------------------------------------- UBRR = ----------------------- - 1 16 ( UBRR + 1 ) 16BAUD f OSC BAUD = -----------------------------------8 ( UBRR + 1 ) f OSC BAUD = -----------------------------------2 ( UBRR + 1 ) f OSC UBRR = -------------------- - 1 8BAUD f OSC UBRR = -------------------- - 1 2BAUD Note: 1. (bps) BAUD ( bps) fOSC UBRR UBRRH UBRRL (0-4095) Table 68 UBRR (U2X) UCSRA U2X "0" 16 8 Figure 70 XCK CPU XCK f OSC f XCK < -----------4 131 2503F-AVR-12/03 fosc (UMSEL = 1)XCK ( ) ( ) TxD XCK RxD Figure 71. XCK . UCPOL = 1 XCK RxD / TxD Sample UCPOL = 0 XCK RxD / TxD Sample UCRSC UCPOL XCK Figure 71 UCPOL=0 XCK XCK UCPOL=1 XCK XCK ( ) USART 30 * * * * 1 5 6 7 8 9 1 2 9 Figure 72 Figure 72. FRAME (IDLE) St 0 1 2 3 4 [5] [6] [7] [8] [P] Sp1 [Sp2] (St / IDLE) St (n) P Sp IDLE (0 8) (RxD TxD) 132 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) UCSRB UCSRC UCSZ2:0 UPM1:0 USBS USART UCSZ2:0 UPM1:0 USBS (FE) "0" P even = d n - 1 ... d 3 d 2 d 1 d 0 0 P odd = d n - 1 ... d 3 d 2 d 1 d 0 1 Peven Podd dn n 133 2503F-AVR-12/03 USART USART USART ( ) USART TXC RXC ( UDR )TXC USART ( ) r17:r16 UCSRC UBRRH UCSRC I/O URSEL (MSB) (1) USART_Init: ; out out ldi out ldi out ret UBRRH, r17 UBRRL, r16 r16, (1< ; : 8 , 2 C (1) void USART_Init( unsigned int baud ) { /* */ UBRRH = (unsigned char)(baud>>8); UBRRL = (unsigned char)baud; /* */ UCSRB = (1< 1. I/O 134 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) USART UCSRB TXEN USART TxD I/O USART XCK CPU UDR ( ) UDRE 8 UDR USART R16 (1) USART_Transmit: ; sbis UCSRA,UDRE rjmp USART_Transmit ; out ret UDR,r16 5 8 C (1) void USART_Transmit( unsigned char data ) { /* */ while ( !( UCSRA & (1< 1. UDRE 135 2503F-AVR-12/03 9 9 (UCSZ = 7) 9 UCSRB TXB8 8UDR 9 R17:R16 (1) USART_Transmit: ; sbis UCSRA,UDRE rjmp USART_Transmit ; 9 r17 TXB8 cbi sbi out ret UCSRB,TXB8 UCSRB,TXB8 UDR,r16 sbrc r17,0 ; 8 C (1) void USART_Transmit( unsigned int data ) { /* */ while ( !( UCSRA & (1< 1. UCSRB UCSRB TXB8 9 USART USART UDRE TXC UDRE "1" UCSRA "0" UCSRB UDRIE "1" UDRE ( ) USART UDR UDRE UDR UDRE TXC TXC "1" TXC RS-485 136 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) UCSRB TXCIE "1" TXC USART TXC TXC (UPM1 = 1) TXEN TxD I/O 137 2503F-AVR-12/03 USART UCSRB (RXEN) USART RxD USART XCK 5 8 XCK UDR RXC 8 UDR 0 USART (1) USART_Receive: ; sbis UCSRA, RXC rjmp USART_Receive ; in ret r16, UDR C (1) unsigned char USART_Receive( void ) { /* */ while ( !(UCSRA & (1< 1. RXC 138 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 9 9 (UCSZ=7) UDR 8 UCSRB RXB8 9 FE DOR UPE UCSRA UDR UDR FIFO FIFO TXB8 FE DOR UPE USART 9 (1) USART_Receive: ; sbis UCSRA, RXC rjmp USART_Receive ; 9 in in in r18, UCSRA r17, UCSRB r16, UDR ; -1 andi r18,(1< C (1) unsigned int USART_Receive( void ) { unsigned char status, resh, resl; /* */ while ( !(UCSRA & (1< Note: 1. I/O USART 139 2503F-AVR-12/03 (RXC) 1 0( ) (RXEN = 0) RXC UCSRB (RXCIE) RXC ( ) USART UDR RXC USART (FE) (DOR) (UPE) UCSRA UDR UCSRA (UDR) "0" (FE) ( 1) FE 0 FE 1 UCSRC USBS FE UCSRA 0 (DOR) ( ) DOR UDR UDR UCSRA 0 DOR (PE) UPE UCSRA 0 P134 " " P141 " " UPM1 ( ) UPM0 (UPE) (UPM1 = 1) UPE (UDR) (RXEN ) RxD FIFO 140 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) FIFO UDR RXC (1) USART_Flush: sbis UCSRA, RXC ret in r16, UDR rjmp USART_Flush C (1) void USART_Flush( void ) { unsigned char dummy; while ( UCSRA & (1< 1. USART RxD Figure 73 16 8 (U2X = 1) RxD ( ) 0 Figure 73. RxD IDLE START BIT 0 Sample (U2X = 0) 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 Sample (U2X = 1) 0 1 2 3 4 5 6 7 8 1 2 RxD ( ) ( ) 1 0 8 9 10( ) 4 5 6( ) ( ) 16 8 Figure 74 141 2503F-AVR-12/03 Figure 74. RxD BIT n Sample (U2X = 0) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 Sample (U2X = 1) 1 2 3 4 5 6 7 8 1 2 3 1 2 3 0RxD Figure 75 Figure 75. RxD STOP 1 (A) (B) (C) Sample (U2X = 0) 1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1 Sample (U2X = 1) 1 2 3 4 5 6 0/1 0 FE Figure 75 A B C ( Table 61) ( D + 1 )S R slow = --------------------------------------------S - 1 + D S + SF ( D + 2 )S R fast = ------------------------------------( D + 1 )S + S M D S SF (D = 5 10 ) S = 16 S = 8 SF = 8 SF = 4 142 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) SM SM = 9 SM = 5 Rslow Rfast Table 61 Table 62 Table 61. (U2X = 0) D # ( + ) 5 6 7 8 9 10 Rslow (%) 93.20 94.12 94.81 95.36 95.81 96.17 Rfast(%) 106.67 105.79 105.11 104.58 104.14 103.78 (%) +6.67/-6.8 +5.79/-5.88 +5.11/-5.19 +4.58/-4.54 +4.14/-4.19 +3.78/-3.83 (%) 3.0 2.5 2.0 2.0 1.5 1.5 Table 62. (U2X = 1) D # ( + ) 5 6 7 8 9 10 Rslow (%) 94.12 94.92 95.52 96.00 96.39 96.70 Rfast (%) 105.66 104.92 104.35 103.90 103.53 103.23 (%) +5.66/-5.88 +4.92/-5.08 +4.35/-4.48 +3.90/-4.00 +3.53/-3.61 +3.23/-3.30 (%) 2.5 2.0 1.5 1.5 1.5 1.0 (XTAL) 2% UBRR 143 2503F-AVR-12/03 UCSRA (MPCM) USART CPU MPCM 5 8 9 9 (RXB8) ( 9 ) 1 MPCM 9 (UCSZ = 7) (TXB8 = 1) 9 (TXB8) 1 (TXB = 0) 9 1. (UCSRA MPCM ) 2. UCSRA RXC 3. UDR UCSRA MPCM MPCM 1 4. MPCM 1 5. MPCM 2 5 8 n n+1 5 8 (USBS = 1) - - (SBI CBI) MPCM MPCM TXC I/O SBI CBI 144 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) UBRRH/ UCSRC UBRRH UCSRC I/O USART (URSEL) URSEL 0 UBRRH URSEL 1 UCSRC (1) ... ; UBRRH 2 ldi r16,0x02 out UBRRH,r16 ... ; USBS UCSZ1 1 0 ldi r16,(1< ... /* UBRRH 2*/ UBRRH = 0x02; ... /* USBS UCSZ1 1 0*/ UCSRC = (1< 1. I/O 145 2503F-AVR-12/03 UBRRH UCSRC UBRRH I/O UCSRC UCSRC ( ) UCSRC (1) USART_ReadUCSRC: ; UCSRC in in ret r16,UBRRH r16,UCSRC C (1) unsigned char USART_ReadUCSRC( void ) { unsigned char ucsrc; /* UCSRC */ ucsrc = UBRRH; ucsrc = UCSRC; return ucsrc; } Note: 1. r16 UCSRC UBRRH USART USART I/O UDR Bit 7 6 5 4 RXB[7:0] TXB[7:0] / R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 3 2 1 0 UDR ( ) UDR ( ) USART USART I/O USART UDR UDR (TXB) UDR (RXB) 567 0 UCSRA UDRE UDRE UDR USART TxD FIFO FIFO - - (SBI CBI) (SBIC SBIS) FIFO 146 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) USART A UCSRA Bit / 7 RXC R 0 6 TXC R/W 0 5 UDRE R 1 4 FE R 0 3 DOR R 0 2 PE R 0 1 U2X R/W 0 0 MPCM R/W 0 UCSRA * Bit 7 - RXC: USART RXC RXC RXC ( RXCIE ) * Bit 6 - TXC: USART (UDR) TXC TXC 1 TXC ( TXCIE ) * Bit 5 - UDRE: USART UDRE(UDR) UDRE1 UDRE ( UDRIE ) UDRE * Bit 4 - FE: 0 FE (UDR) 1 FE 0 UCSRA 0 * Bit 3 - DOR: DOR ( ) (UDR) UCSRA 0 * Bit 2 - PE: (UPM1 = 1) UPE (UDR) UCSRA 0 * Bit 1 - U2X: 1 16 8 * Bit 0 - MPCM: MPCM USART MPCM P145 " " USART B UCSRB Bit / 7 RXCIE R/W 6 TXCIE R/W 5 UDRIE R/W 4 RXEN R/W 3 TXEN R/W 2 UCSZ2 R/W 1 RXB8 R 0 TXB8 R/W UCSRB 147 2503F-AVR-12/03 0 0 0 0 0 0 0 0 * Bit 7 - RXCIE: RXC RXCIE 1 SREG UCSRA RXC 1 USART * Bit 6 - TXCIE: TXC TXCIE 1 SREG UCSRA TXC 1 USART * Bit 5 - UDRIE: USART UDRE UDRIE 1 SREG UCSRA UDRE 1 USART * Bit 4 - RXEN: USART RxD USART FE DOR PE * Bit 3 - TXEN: USART TxD USART TXEN TxD I/O * Bit 2 - UCSZ2: UCSZ2UCSRCUCSZ1:0( ) * Bit 1 - RXB8: 8 9 RXB8 9 UDR RXB8 * Bit 0 - TXB8: 8 9 TXB8 9 UDR USART C UCSRC Bit / 7 URSEL R/W 1 6 UMSEL R/W 0 5 UPM1 R/W 0 4 UPM0 R/W 0 3 USBS R/W 0 2 UCSZ1 R/W 1 1 UCSZ0 R/W 1 0 UCPOL R/W 0 UCSRC UBRRH/ UCSRC " UCSRC UBRRH I/O P146 " * Bit 7 - URSEL: UCSRC UBRRH UCSRC 1 UCSRC URSEL 1 148 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) * Bit 6 - UMSEL: USART Table 63. UMSEL Bit Settings UMSEL 0 1 149 2503F-AVR-12/03 * Bit 5:4 - UPM1:0: UPM0 UCSRA PE Table 64. UPM UPM1 0 0 1 1 UPM0 0 1 0 1 * Bit 3 - USBS: Table 65. USBS USBS 0 1 1 2 * Bit 2:1 - UCSZ1:0: UCSZ1:0UCSRB UCSZ2( ) Table 66. UCSZ UCSZ2 0 0 0 0 1 1 1 1 UCSZ1 0 0 1 1 0 0 1 1 UCSZ0 0 1 0 1 0 1 0 1 5 6 7 8 9 * Bit 0 - UCPOL: UCPOL XCK Table 67. UCPOL UCPOL 0 1 (TxD ) XCK XCK (RxD ) XCK XCK 150 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) USART UBRRL UBRRH Bit 15 URSEL 7 14 - 6 R R/W 0 0 13 - 5 R R/W 0 0 12 - 11 10 9 8 UBRRH UBRRL 0 R/W R/W 0 0 UBRR[11:8] 3 R/W R/W 0 0 2 R/W R/W 0 0 1 R/W R/W 0 0 UBRR[7:0] 4 R R/W 0 0 / R/W R/W 0 0 UBRRH/ UCSRC " UCSRC UBRRH I/O P146 " * Bit 15 - URSEL: UCSRC UBRRH UBRRH 0 UBRRH URSEL 0 * Bit 14:12 - UBRRH * Bit 11:0 - UBRR11:0: USART 12 USART UBRRH USART 4 UBRRL 8 UBRRL 151 2503F-AVR-12/03 Table 68 UBRR 0.5% ( P143 " " ) BaudRate Closest Match Error[%] = ------------------------------------------------------- - 1 * 100% BaudRate Table 68. UBRR fosc = 1.0000 MHz (bps) 2400 4800 9600 14.4k 19.2k 28.8k 38.4k 57.6k 76.8k 115.2k 230.4k 250k 1. (1) fosc = 1.8432 MHz U2X = 0 UBRR 47 23 11 7 5 3 2 1 1 0 - - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -25.0% 0.0% - - U2X = 1 UBRR 95 47 23 15 11 7 5 3 2 1 0 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% - 0.2% 0.2% 0.2% -3.5% -7.0% 8.5% 8.5% 8.5% -18.6% 8.5% - - UBRR 51 25 12 8 6 3 2 1 1 0 - - fosc = 2.0000 MHz U2X = 0 0.2% 0.2% 0.2% -3.5% -7.0% 8.5% 8.5% 8.5% -18.6% 8.5% - - U2X = 1 UBRR 103 51 25 16 12 8 6 3 2 1 - 0 0.2% 0.2% 0.2% 2.1% 0.2% -3.5% -7.0% 8.5% 8.5% 8.5% - 0.0% 250 kbps U2X = 0 UBRR 25 12 6 3 2 1 1 0 - - - - 0.2% 0.2% -7.0% 8.5% 8.5% 8.5% -18.6% 8.5% - - - - U2X = 1 UBRR 51 25 12 8 6 3 2 1 1 0 - - 125 kbps 62.5 kbps UBRR = 0, = 0.0% 115.2 kbps 230.4 kbps 125 kbps 152 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 69. UBRR ( ) fosc = 3.6864 MHz (bps) 2400 4800 9600 14.4k 19.2k 28.8k 38.4k 57.6k 76.8k 115.2k 230.4k 250k 0.5M 1M 1. (1) fosc = 4.0000 MHz U2X = 0 UBRR 103 51 25 16 12 8 6 3 2 1 0 0 - - 250 kbps 0.2% 0.2% 0.2% 2.1% 0.2% -3.5% -7.0% 8.5% 8.5% 8.5% 8.5% 0.0% - - U2X = 1 UBRR 207 103 51 34 25 16 12 8 6 3 1 1 0 - 0.2% 0.2% 0.2% -0.8% 0.2% 2.1% 0.2% -3.5% -7.0% 8.5% 8.5% 0.0% 0.0% - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -7.8% -7.8% - UBRR 191 95 47 31 23 15 11 7 5 3 1 1 0 - fosc = 7.3728 MHz U2X = 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -7.8% -7.8% - U2X = 1 UBRR 383 191 95 63 47 31 23 15 11 7 3 3 1 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -7.8% -7.8% -7.8% U2X = 0 UBRR 95 47 23 15 11 7 5 3 2 1 0 0 - - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -7.8% - - U2X = 1 UBRR 191 95 47 31 23 15 11 7 5 3 1 1 0 - 230.4 kbps UBRR = 0, = 0.0% 460.8 kbps 0.5 Mbps 460.8 kbps 921.6 kbps 153 2503F-AVR-12/03 Table 70. UBRR ( ) fosc = 8.0000 MHz (bps) 2400 4800 9600 14.4k 19.2k 28.8k 38.4k 57.6k 76.8k 115.2k 230.4k 250k 0.5M 1M 1. (1) fosc = 11.0592 MHz U2X = 0 UBRR 287 143 71 47 35 23 17 11 8 5 2 2 - - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -7.8% - - U2X = 1 UBRR 575 287 143 95 71 47 35 23 17 11 5 5 2 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -7.8% -7.8% - -0.1% 0.2% 0.2% 0.6% 0.2% -0.8% 0.2% 2.1% 0.2% -3.5% 8.5% 0.0% 0.0% 0.0% UBRR 383 191 95 63 47 31 23 15 11 7 3 3 1 0 fosc = 14.7456 MHz U2X = 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -7.8% -7.8% -7.8% U2X = 1 UBRR 767 383 191 127 95 63 47 31 23 15 7 6 3 1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.3% -7.8% -7.8% U2X = 0 UBRR 207 103 51 34 25 16 12 8 6 3 1 1 0 - 0.2% 0.2% 0.2% -0.8% 0.2% 2.1% 0.2% -3.5% -7.0% 8.5% 8.5% 0.0% 0.0% - U2X = 1 UBRR 416 207 103 68 51 34 25 16 12 8 3 3 1 0 0.5 Mbps UBRR = 0, = 0.0% 1 Mbps 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps 154 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 71. UBRR ( ) fosc = 16.0000 MHz (bps) 2400 4800 9600 14.4k 19.2k 28.8k 38.4k 57.6k 76.8k 115.2k 230.4k 250k 0.5M 1M 1. (1) fosc = 18.4320 MHz U2X = 0 UBRR 479 239 119 79 59 39 29 19 14 9 4 4 - - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -7.8% - - U2X = 1 UBRR 959 479 239 159 119 79 59 39 29 19 9 8 4 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.4% -7.8% - 0.0% -0.1% 0.2% -0.1% 0.2% 0.6% 0.2% -0.8% 0.2% 2.1% -3.5% 0.0% 0.0% 0.0% UBRR 520 259 129 86 64 42 32 21 15 10 4 4 - - fosc = 20.0000 MHz U2X = 0 0.0% 0.2% 0.2% -0.2% 0.2% 0.9% -1.4% -1.4% 1.7% -1.4% 8.5% 0.0% - - U2X = 1 UBRR 1041 520 259 173 129 86 64 42 32 21 10 9 4 - 0.0% 0.0% 0.2% -0.2% 0.2% -0.2% 0.2% 0.9% -1.4% -1.4% -1.4% 0.0% 0.0% - U2X = 0 UBRR 416 207 103 68 51 34 25 16 12 8 3 3 1 0 -0.1% 0.2% 0.2% 0.6% 0.2% -0.8% 0.2% 2.1% 0.2% -3.5% 8.5% 0.0% 0.0% 0.0% 1 Mbps UBRR = 0, = 0.0% U2X = 1 UBRR 832 416 207 138 103 68 51 34 25 16 8 7 3 1 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps 155 2503F-AVR-12/03 TWI * * * * * * * * * * 7 128 400 kHz AVR TWI TWI 128 SCL SDA TWI Figure 76. TWI VCC Device 1 Device 2 Device 3 ........ Device n R1 R2 SDA SCL TWI Table 72. TWI SCL 156 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 76 TWI TWI "0" TWI TWI TWI AVR 400 pF 7 TWI P272 " " 100 kHz 400 kHz ( ) TWI Figure 77. SDA SCL Data Stable Data Stable Data Change START/STOP START STOP START STOP START STOP START REPEATED START REPEATED START STOP START START REPEATED START START START STOP SCL SDA Figure 78. START REPEATED START STOP SDA SCL START STOP START REPEATED START STOP TWI 9 7 1 READ/WRITE 1 READ/WRITE 1 SCL (ACK) SDA ACK SDA STOP REPEATED START SLA+R SLA+W READ WRITE 157 2503F-AVR-12/03 MSB 0000 000 ACK SDA Write ACK SDA Read 1111 xxx Figure 79. Addr MSB SDA Addr LSB R/W ACK SCL 1 START 2 7 8 9 TWI 9 8 1 START STOP 9 SCL SDA SDA NACK NACK MSB Figure 80. Data MSB Aggregate SDA SDA from Transmitter SDA from receiverR SCL from Master 1 SLA+R/W 2 7 Data Byte 8 9 STOP, REPEATED START or Next Data Byte Data LSB ACK START SLA+R/W STOP START STOP SCL SCL SCL SCL SCL SCL SCL TWI Figure 81 SLA+R/W STOP 158 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 81. Addr MSB SDA Addr LSB R/W ACK Data MSB Data LSB ACK SCL 1 START 2 7 SLA+R/W 8 9 1 2 Data Byte 7 8 9 STOP TWI * * SCL SCL / SCL / Figure 82. SCL TA low TA high SCL from Master A SCL from Master B SCL bus Line TBlow Masters Start Counting Low Period TBhigh Masters Start Counting High Period SDA SDA SDA SDA 159 2503F-AVR-12/03 Figure 83. START SDA from Master A Master A Loses Arbitration, SDAA SDA SDA from Master B SDA Line Synchronized SCL Line * * * REPEATED START STOP REPEATED START STOP SLA+R/W 160 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) TWI TWI Figure 84 AVR Figure 84. TWI SCL Slew-rate Control Spike Filter SDA Slew-rate Control Spike Filter Bus Interface Unit START / STOP Control Spike Suppression Bit Rate Generator Prescaler Arbitration detection Address/Data Shift Register (TWDR) Ack Bit Rate Register (TWBR) Address Match Unit Address Register (TWAR) Control Unit Status Register (TWSR) Control Register (TWCR) TWI Unit Address Comparator State Machine and Status control SCL SDA SCL SDAMCU TWI TWI 50 ns SCL SDA I/O TWI SCL TWI TWSR TWBR TWI CPU TWI SCL 16 SCL TWI SCL CPU Clock frequency SCL frequency = -----------------------------------------------------------TWPS 16 + 2(TWBR) 4 * * TWBR = TWI TWPS = TWI TWI TWBR 10 SDA SCL TWI Start + SLA + R/W ( ) Note: TWDRSTART/STOP TWDR 8 TWDR (N)ACK (N)ACK TWI TWCR (N)ACK TWCR 161 2503F-AVR-12/03 START/STOP TWI START REPEATED START STOP MCU START/STOP TWI START/STOP TWI MCU TWI TWI TWAR 7 TWAR TWI TWGCE "1" TWI TWCR MCU MCU TWI TWI TWCR TWI TWI TWINT TWI TWSR TWSR TWINT "1" SCL TWI TWINT * * * * * * * * TWI START/REPEATED START TWI SLA+R/W TWI TWI TWI ( ) TWI TWI STOP REPEATED START START STOP 162 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) TWI TWI TWBR Bit / 7 TWBR7 R/W 0 6 TWBR6 R/W 0 5 TWBR5 R/W 0 4 TWBR4 R/W 0 3 TWBR3 R/W 0 2 TWBR2 R/W 0 1 TWBR1 R/W 0 0 TWBR0 R/W 0 TWBR * Bits 7..0 - TWI TWBR SCL P162 " " TWI TWCR Bit / 7 TWINT R/W 0 6 TWEA R/W 0 5 TWSTA R/W 0 4 TWSTO R/W 0 3 TWWC R 0 2 TWEN R/W 0 1 - R 0 0 TWIE R/W 0 TWCR TWCR TWI TWI START STOP TWDR TWDR TWDR * Bit 7 - TWINT: TWI TWI TWINT SREG I TWCR TWIE MCU TWI TWINT SCL TWINT "1" "0" TWI TWINT TWAR TWSR TWDR * Bit 6 - TWEA: TWI TWEA TWEA ACK 1. 2. TWAR TWGCE 3. / TWEA * Bit 5 - TWSTA: TWI START CPU TWSTA TWI START STOP START START TWSTA * Bit 4 - TWSTO: TWI STOP TWSTOTWI STOP TWSTO TWSTO STOP TWI SCL SDA 163 2503F-AVR-12/03 * Bit 3 - TWWC: TWI TWINT TWDR TWWC TWINT TWDR * Bit 2 - TWEN: TWI TWEN TWITWI TWEN"1" TWII/O SCL SDA TWI TWI * Bit 1 - Res: "0" * Bit 0 - TWIE: TWI SREG I TWIE TWINT "1" TWI TWI TWSR Bit / 7 TWS7 R 1 6 TWS6 R 1 5 TWS5 R 1 4 TWS4 R 1 3 TWS3 R 1 2 - R 0 1 TWPS1 R/W 0 0 TWPS0 R/W 0 TWSR * Bits 7..3 - TWS: TWI 5 TWI TWSR 5 2 "0" * Bit 2 - Res: "0" * Bits 1..0 - TWPS: TWI / Table 73. TWI TWPS1 0 0 1 1 TWPS0 0 1 0 1 1 4 16 64 P162 " " TWPS1..0 TWI TWDR Bit / 7 TWD7 R/W 1 6 TWD6 R/W 1 5 TWD5 R/W 1 4 TWD4 R/W 1 3 TWD3 R/W 1 2 TWD2 R/W 1 1 TWD1 R/W 1 0 TWD0 R/W 1 TWDR 164 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) TWDR TWDR TWI (TWINT ) TWINT TWDR TWDR MCU TWI TWDR ACK TWI CPU ACK * Bits 7..0 - TWD: TWI TWI( ) TWAR Bit / 7 TWA6 R/W 1 6 TWA5 R/W 1 5 TWA4 R/W 1 4 TWA3 R/W 1 3 TWA2 R/W 1 2 TWA1 R/W 1 1 TWA0 R/W 1 0 TWGCE R/W 0 TWAR TWAR 7 TWI TWAR TWAR LSB (0x00) * Bits 7..1 - TWA: TWI * Bit 0 - TWGCE: TWI MCU TWI TWI AVR TWI START TWI TWI TWI TWCR TWI TWIESREGTWINT TWIE TWINT TWI TWINT "1" TWI TWI TWSR TWI TWCR TWCR TWDR TWI TWI Figure 85 TWI 165 2503F-AVR-12/03 Figure 85. TWI 1. Application writes to TWCR to initiate transmission of START 3. Check TWSR to see if START was sendt. Application loads SLA+W into TWDR, and loads appropriate control signals into TWCR, making sure that TWINT is written to one, and TWSTA is written to zero 5. Check TWSR to see if SLA+W was sent and ACK received. Application loads data into TWDR, and loads appropriate control signals into TWCR, making sure that TWINT is written to one 7. Check TWSR to see if data was sent and ACK received. Application loads appropriate control signals to send STOP into TWCR, making sure that TWINT is written to one Application Action TWI bus START SLA+W A Data A STOP TWI Hardware Action 2. TWINT set. Status code indicates START condition sent 4. TWINT set. Status code indicates SLA+W sent, ACK received 6. TWINT set. Status code indicates data sent, ACK received Indicates TWINT set 1. TWI START TWCR TWI START TWINT TWINT "1" TWCR TWINT TWI TWINT TWI START 2. START TWCR TWINT TWCR START 3. TWSR START TWSR SLA+W TWDR TWDR TWDR SLA+W TWCR TWI SLA+W TWINT TWINT "1" TWCR TWINT TWI TWINT TWI 4. TWCR TWINT TWDR 5. TWSRACK TWSR TWDR TWCR TWI TWDR TWINT TWCR TWINT TWI TWINT TWI 6. TWCR TWINT TWSR 7. TWSR ACK TWSR TWCR TWI STOP TWINT TWINT "1" TWCR TWINT TWI TWINT TWI STOP TWINT STOP TWI * TWI TWINT TWINT SCL 166 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) * * TWINT TWI TWI TWDR TWI TWCR TWCR TWINT TWINT "1" TWI TWCR C 1 ldi out r16, (1< TWCR = (1< 2 wait1: in sbrs r16,TWINT rjmp wait1 TWINT TWINT START 3 in cpi ldi out ldi out r16,TWSR r16, START r16, SLA_W TWDR, r16 r16, (1< andi r16, 0xF8 brne ERROR TWI START TWDR = SLA_W; TWCR = (1< 4 wait2: in r16,TWCR sbrs r16,TWINT rjmp wait2 while (!(TWCR & (1< 5 in cpi ldi out ldi out r16,TWSR r16, MT_SLA_ACK r16, DATA TWDR, r16 r16, (1< andi r16, 0xF8 brne ERROR TWDR = DATA; TWCR = (1< 6 wait3: in r16,TWCR sbrs r16,TWINT rjmp wait3 while (!(TWCR & (1< 7 in cpi ldi out r16,TWSR r16, MT_DATA_ACK r16, (1< if ((TWSR & 0xF8) != MT_DATA_ACK) TWI ERROR(); MT_DATA_ACK TWCR = (1< 167 2503F-AVR-12/03 TWI 4 (MT) (MR) (ST) (SR) TWI MT TWI EEPROM MR EEPROM TWI SR S START RsREPEATED START R (SDA ) W (SDA ) A (SDA ) A (SDA ) Data8 P STOP SLA Figure 87 Figure 93 TWINT TWSR 0 / TWI TWI TWINT TWINT TWSR Table 74 Table 77 0 Figure 86 START MT MR SLA+W MT SLA+R MR "0" Figure 86. VCC Device 1 MASTER TRANSMITTER Device 2 SLAVE RECEIVER Device 3 ........ Device n R1 R2 SDA SCL TWCR START TWCR TWINT 1 TWEA X TWSTA 1 TWSTO 0 TWWC X TWEN 1 - 0 TWIE X TWEN TWSTA"1"START TWINT "1" TWINT TWI START TWINT TWSR 0x08 ( Table 74) MT 168 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) SLA+W TWDR SLA+W TWINT TWI TWCR TWCR TWINT 1 TWEA X TWSTA 0 TWSTO 0 TWWC X TWEN 1 - 0 TWIE X SLA+W TWINT TWSR 0x18 0x20 0x38 Table 74 SLA+W TWDR TWDR TWINT TWCR TWWC TWDR TWINT TWCR TWCR TWINT 1 TWEA X TWSTA 0 TWSTO 0 TWWC X TWEN 1 - 0 TWIE X STOP REPEATED START STOP TWCR TWCR TWINT 1 TWEA X TWSTA 0 TWSTO 1 TWWC X TWEN 1 - 0 TWIE X REPEATED START TWCR TWCR TWINT 1 TWEA X TWSTA 1 TWSTO 0 TWWC X TWEN 1 - 0 TWIE X REPEATED START ( 0x10) STOP REPEATED START Table 74. (TWSR) "0" $08 TWCR 2 2 START START / TWDR SLA+W SLA+W SLA+R STA 0 STO 0 TWIN T 1 TWE A X 2 SLA+W ACK NOT ACK SLA+W ACK NOT ACK SLA+R $10 0 0 0 0 1 1 X X $18 SLA+W ACK ( ) TWDR TWDR TWDR 0 1 0 1 0 0 1 1 1 1 1 1 X X X X ACK NOT ACK START STOP TWSTO STOP START TWSTO ACK NOT ACK START STOP TWSTO STOP START TWSTO $20 SLA+W NOT ACK ( ) TWDR TWDR TWDR 0 1 0 1 0 0 1 1 1 1 1 1 X X X X 169 2503F-AVR-12/03 Table 74. $28 ACK ( ) TWDR TWDR TWDR 0 1 0 1 0 0 1 1 1 1 1 1 X X X X ACK NOT ACK START STOP TWSTO STOP START TWSTO ACK NOT ACK START STOP TWSTO STOP START TWSTO $30 NOT ACK ( ) TWDR TWDR TWDR 0 1 0 1 0 0 1 1 1 1 1 1 X X X X $38 SLA+W TWDR TWDR 0 1 0 0 1 1 X X 2 START Figure 87. MT Successfull transmission to a slave receiver S SLA W A DATA A P $08 Next transfer started with a repeated start condition $18 $28 RS SLA W $10 Not acknowledge received after the slave address A P R $20 MR Not acknowledge received after a data byte A P $30 Arbitration lost in slave address or data byte A or A Other master continues A or A Other master continues $38 Arbitration lost and addressed as slave $38 Other master continues A $68 $78 $B0 To corresponding states in slave mode From master to slave DATA A Any number of data bytes and their associated acknowledge bits This number (contained in TWSR) corresponds to a defined state of the Two-wire Serial Bus. The prescaler bits are zero or masked to zero From slave to master n 170 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 88 START MT MR SLA+W MT SLA+R MR "0" Figure 88. VCC Device 1 MASTER RECEIVER Device 2 SLAVE TRANSMITTER Device 3 ........ Device n R1 R2 SDA SCL TWCR START TWCR TWINT 1 TWEA X TWSTA 1 TWSTO 0 TWWC X TWEN 1 - 0 TWIE X TWEN TWSTA"1"START TWINT "1" TWINT TWI START TWINT TWSR 0x08 ( Table 74) MR SLA+R TWDR SLA+R TWINT TWI TWCR TWCR TWINT 1 TWEA X TWSTA 0 TWSTO 0 TWWC X TWEN 1 - 0 TWIE X SLA+R TWINT TWSR 0x380x40 0x48 Table 75 TWDR TWINT MR NACK STOP REPEATED START STOP TWCR TWCR TWINT 1 TWEA X TWSTA 0 TWSTO 1 TWWC X TWEN 1 - 0 TWIE X REPEATED START TWCR TWCR TWINT 1 TWEA X TWSTA 1 TWSTO 0 TWWC X TWEN 1 - 0 TWIE X REPEATED START ( 0x10) STOP REPEATED START Table 75. (TWSR) "0" TWCR 2 2 / TWDR STA STO TWIN T TWE A 2 171 2503F-AVR-12/03 Table 75. (Continued) $08 START START SLA+R SLA+R SLA+W 0 0 1 X SLA+R ACK NOT ACK SLA+R ACK NOT ACK SLA+W $10 0 0 0 0 1 1 X X $38 SLA+R NOT ACK SLA+R ACK SLA+R NOT ACK TWDR TWDR 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 X X 0 1 2 START NOT ACK ACK $40 TWDR TWDR 0 0 $48 TWDR TWDR TWDR 1 0 1 X X X START STOP TWSTO STOP START TWSTO $50 ACK NOT ACK 0 0 0 0 0 1 1 1 1 1 1 1 0 1 NOT ACK ACK $58 1 0 1 X X X START STOP TWSTO STOP START TWSTO 172 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 89. MR Successfull reception from a slave receiver S SLA R A DATA A DATA A P $08 Next transfer started with a repeated start condition $40 $50 $58 RS SLA R $10 Not acknowledge received after the slave address A P W $48 MT Arbitration lost in slave address or data byte A or A Other master continues A Other master continues $38 Arbitration lost and addressed as slave $38 Other master continues A $68 $78 $B0 To corresponding states in slave mode From master to slave DATA A Any number of data bytes and their associated acknowledge bits This number (contained in TWSR) corresponds to a defined state of the Two-wire Serial Bus. The prescaler bits are zero or masked to zero From slave to master n Figure 90 "0" Figure 90. VCC Device 1 SLAVE RECEIVER Device 2 MASTER TRANSMITTER Device 3 ........ Device n R1 R2 SDA SCL TWAR TWCR TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 173 2503F-AVR-12/03 7 TWI LSB TWI 0x00 TWCR TWINT 0 TWEA 1 TWSTA 0 TWSTO 0 TWWC 0 TWEN 1 - 0 TWIE X TWENTWI TWEA() ACK TWSTA TWSTO TWAR TWCR TWI ( TWAR TWGCE ) 0 ( ) TWINT TWSR Table 76 TWI ( 0x68 0x78) CPU TWEA TWI SDA " " TWEA TWI TWEA TWEA TWI TWI / CPU TWISCL TWCINT AVRTWI AVR SCL MCU TWDR 174 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 76. (TWSR) "0" $60 TWCR 22 SLA+W ACK SLA+R/W SLA+W ACK ACK SLA+R/W ACK SLA+W ACK SLA+W NOT ACK / TWDR TWDR TWDR STA X X STO 0 0 0 0 TWIN T 1 1 1 1 TWE A 0 1 2 NOT ACK ACK $68 TWDR TWDR TWDR TWDR X X 0 1 NOT ACK ACK $70 X X 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 NOT ACK ACK $78 TWDR TWDR TWDR TWDR X X X X 0 0 1 0 1 NOT ACK ACK $80 0 1 0 1 0 NOT ACK ACK SLA GCA SLA TWGCE = "1" GCA SLA GCA START SLA TWGCE = "1" GCA START $88 1 0 1 1 175 2503F-AVR-12/03 Table 76. (Continued) $90 ACK NOT ACK r X X 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 NOT ACK ACK $98 0 1 0 SLA GCA SLA TWGCE = "1" GCA SLA GCA START SLA TWGCE = "1" GCA START 1 0 1 1 $A0 STOP START 0 0 1 0 0 0 1 1 1 0 1 0 SLA GCA SLA TWGCE = "1" GCA SLA GCA START SLA TWGCE = "1" GCA START 1 0 1 1 176 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 91. Reception of the own slave address and one or more data bytes. All are acknowledged S SLA W A DATA A DATA A P or S $60 Last data byte received is not acknowledged $80 $80 $A0 A P or S $88 Arbitration lost as master and addressed as slave A $68 Reception of the general call address and one or more data bytes General Call A DATA A DATA A P or S $70 Last data byte received is not acknowledged $90 $90 $A0 A P or S $98 Arbitration lost as master and addressed as slave by general call A $78 From master to slave DATA A Any number of data bytes and their associated acknowledge bits This number (contained in TWSR) corresponds to a defined state of the Two-wire Serial Bus. The prescaler bits are zero or masked to zero From slave to master n Figure 92 "0" Figure 92. VCC Device 1 SLAVE TRANSMITTER Device 2 MASTER RECEIVER Device 3 ........ Device n R1 R2 SDA SCL TWAR TWCR TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 177 2503F-AVR-12/03 7 TWI LSB TWI 0x00 TWCR TWINT 0 TWEA 1 TWSTA 0 TWSTO 0 TWWC 0 TWEN 1 - 0 TWIE X TWENTWI TWEA() ACK TWSTA TWSTO TWAR TWCR TWI ( TWAR TWGCE ) "1" ( ) TWI TWSR Table 77 TWI ( 0xB0) CPU TWEA TWI 0xC0 0xC8 "1" ( ACK) 0xC8 TWEA TWI TWEA TWEA TWI TWI / CPU TWISCL TWCINT AVR AVR SCL MCU TWDR 178 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 77. (TWSR) "0" $A8 TWCR 22 SLA+R ACK / TWDR STA X X STO 0 0 TWIN T 1 1 TWE A 0 1 2 NOT ACK ACK $B0 SLA+R/W SLA+R ACK TWDR ACK X X 0 0 1 1 0 1 NOT ACK ACK $B8 X X 0 0 1 1 0 1 NOT ACK ACK $C0 TWDR NOT ACK TWDR TWDR 0 0 1 0 0 0 1 1 1 0 1 0 SLA GCA SLA TWGCE = "1" GCA SLA GCA START SLA TWGCE = "1" GCA START TWDR 1 0 1 1 TWDR $C8 TWDR (TWAE = "0"); ACK TWDR TWDR 0 0 1 0 0 0 1 1 1 0 1 0 SLA GCA SLA TWGCE = "1" GCA SLA GCA START SLA TWGCE = "1" GCA START TWDR 1 0 1 1 TWDR 179 2503F-AVR-12/03 Figure 93. Reception of the own slave address and one or more data bytes S SLA R A DATA A DATA A P or S $A8 Arbitration lost as master and addressed as slave $B8 $C0 A $B0 Last data byte transmitted. Switched to not addressed slave (TWEA = '0') A All 1's P or S $C8 From master to slave DATA A Any number of data bytes and their associated acknowledge bits This number (contained in TWSR) corresponds to a defined state of the Two-wire Serial Bus. The prescaler bits are zero or masked to zero From slave to master n TWI Table 78 0xF8 TWINT "0" TWI 0x00 START STOP ACKSTARTSTOP TWINT TWSTO "1" TWINT TWI TWSTO (TWCR ) SDA SCL STOP Table 78. (TWSR) "0" $F8 TWCR 2 2 TWINT = "0" START STOP / TWDR TWDR TWDR 0 STA STO TWIN T TWE A 2 No TWCR action $00 1 1 X STOP TWSTO 180 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) TWI TWI EEPROM 1. 2. EEPROM 3. 4. MT MR EEPROM REPEATED START REPEATED START Figure 94. TWI EEPROM Master Transmitter Master Receiver S SLA+W A ADDRESS A Rs SLA+R A DATA A P S = START Transmitted from Master to Slave Rs = REPEATED START Transmitted from Slave to Master P = STOP TWI Figure 95. VCC Device 1 MASTER TRANSMITTER Device 2 MASTER TRANSMITTER Device 3 SLAVE RECEIVER ........ Device n R1 R2 SDA SCL * * READ/WRITE SDA "0" START 181 2503F-AVR-12/03 * SLA SDA "0" SLA SR ST SLA READ/WRITE START Figure 96 TWI Figure 96. START SLA Data STOP Arbitration lost in SLA Arbitration lost in Data Own Address / General Call received No 38 TWI bus will be released and not addressed slave mode will be entered A START condition will be transmitted when the bus becomes free Yes Write 68/78 Data byte will be received and NOT ACK will be returned Data byte will be received and ACK will be returned Direction Read B0 Last data byte will be transmitted and NOT ACK should be received Data byte will be transmitted and ACK should be received 182 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) AIN0 AIN1 AIN0 AIN1 ACO / 1 Figure 97 Figure 97. (2) BANDGAP REFERENCE ACBG ACME ADEN ADC MULTIPLEXER OUTPUT (1) Notes: 1. P185 Table 80 2. P2 Figure 1 P55 Table 25 IO SFIOR Bit / 7 ADTS2 R/W 0 6 ADTS1 R/W 0 5 ADTS0 R/W 0 4 - R 0 3 ACME R/W 0 2 PUD R/W 0 1 PSR2 R/W 0 0 PSR10 R/W 0 SFIOR * Bit 3 - ACME: "1" ADC (ADCSRA ADEN "0") ADC "0" AIN1 P186 " " 183 2503F-AVR-12/03 ACSR Bit / 7 ACD R/W 0 6 ACBG R/W 0 5 ACO R N/A 4 ACI R/W 0 3 ACIE R/W 0 2 ACIC R/W 0 1 ACIS1 R/W 0 0 ACIS0 R/W 0 ACSR * Bit 7 - ACD: ACD ACD ACSR ACIE ACD * Bit 6 - ACBG: ACBG AIN0 P39 " " * Bit 5 - ACO: ACO 1-2 * Bit 4 - ACI: ACIS1 ACIS0 ACI ACIE SREG I ACI ACI "1" * Bit 3 - ACIE: ACIE "1" I * Bit 2 - ACIC: ACIC T/C1 T/C1 ACIC "0" T/C1 TIMSK TICIE1 184 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) * Bits 1, 0 - ACIS1, ACIS0: Table 79 Table 79. ACIS1/ACIS0 ACIS1 0 0 1 1 ACIS0 0 1 0 1 ACIS1/ACIS0 ACSR ADC7..0 ADC ADC (SFIOR ACME) ADC (ADCSRA ADEN 0) ADMUX MUX2..0 Table 80 ACME ADEN AIN1 Table 80. ACME 0 1 1 1 1 1 1 1 1 1 ADEN x 1 0 0 0 0 0 0 0 0 MUX2..0 xxx xxx 000 001 010 011 100 101 110 111 AIN1 AIN1 ADC0 ADC1 ADC2 ADC3 ADC4 ADC5 ADC6 ADC7 185 2503F-AVR-12/03 * * * * * * * * * * * * * * * 10 0.5 LSB 2 LSB 65 - 260 s 15 kSPS 8 7 2 10x 200x (1) ADC 0 - VCC ADC 2.56V ADC ADC ADC 1. PDIP TQFP MLF Note: ATmega3210ADC ADC8 A 8 0V (GND) 16 (ADC1 ADC0 ADC3 ADC2) A/D 0 dB (1x) 20 dB (10x) 46 dB (200x) (ADC1) ADC 1x 10x 8 200x 7 ADC ADC ADC Figure 98 ADCAVCC AVCCVCC 0.3V P193 "ADC " 2.56V AVCC AREF 186 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 98. ADC CONVERSION COMPLETE IRQ INTERRUPT FLAGS ADTS[2:0] 8-BIT DATA BUS ADIF ADIE 15 ADC DATA REGISTER (ADCH/ADCL) ADPS0 ADC[9:0] 0 ADC MULTIPLEXER SELECT (ADMUX) MUX3 MUX1 REFS1 ADLAR REFS0 MUX4 MUX2 MUX0 ADC CTRL. & STATUS REGISTER (ADCSRA) ADATE ADPS2 ADPS1 ADEN ADSC ADIF TRIGGER SELECT MUX DECODER CHANNEL SELECTION PRESCALER GAIN SELECTION START CONVERSION LOGIC AVCC INTERNAL 2.56V REFERENCE AREF 10-BIT DAC SAMPLE & HOLD COMPARATOR + GND BANDGAP REFERENCE ADC7 SINGLE ENDED / DIFFERENTIAL SELECTION ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 + POS. INPUT MUX ADC MULTIPLEXER OUTPUT GAIN AMPLIFIER NEG. INPUT MUX ADC 10 GND AREF 1 LSB ADMUX REFSn AVCC 2.56V AREF AREF ADMUX MUX ADC GND ADC ADC ADC ADCSRA ADEN ADC ADEN ADEN ADC ADC 187 2503F-AVR-12/03 ADC10 ADCADCHADCL ADMUX ADLAR 8 ADCH ADCL ADCH ADCL ADC ADCL ADCH ADC ADCH ADC ADCH ADCL ADC ADCHADCLADC ADC ADSC "1" ADC ADC ADCSRAADCADATE ADCSRB ADC ADTS ( ADTS ) ADC 0 Figure 99. ADC ADTS[2:0] PRESCALER START ADIF SOURCE 1 . . . . SOURCE n ADSC ADATE CLKADC CONVERSION LOGIC EDGE DETECTOR ADC ADC ADC ADC ADCSRA ADSC 1 ADC ADC ADIF ADCSRA ADSC ADSC ADSC 1 188 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) ADC Figure 100. ADC ADEN START CK Reset 7-BIT ADC PRESCALER ADPS0 ADPS1 ADPS2 ADC CLOCK SOURCE 50 kHz 200 kHz 10 200 kHz ADC 100 kHz CPU ADC ADCSRA ADPS ADCSRA ADEN ADC ADEN 1 ADEN ADCSRAADSC ADC P192 " " 13 ADC ADC (ADCSRA ADEN ) 25 ADC ADC 1.5 ADC ADC 13.5 ADC ADC ADC ADIF ADSC ( ) ADSC ADC 2 ADC 3 CPU ADC 25 ADC ADC ADSC 1 Table 81 CK/128 CK/16 CK/32 CK/64 CK/2 CK/4 CK/8 189 2503F-AVR-12/03 Figure 101. ADC ( ) First Conversion Next Conversion Cycle Number ADC Clock ADEN ADSC ADIF ADCH ADCL 1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 MSB of Result LSB of Result MUX and REFS Update Sample & Hold Conversion Complete MUX and REFS Update Figure 102. ADC One Conversion 1 2 3 4 5 6 7 8 9 10 11 12 13 Next Conversion 1 2 3 Cycle Number ADC Clock ADSC ADIF ADCH ADCL MSB of Result LSB of Result Sample & Hold MUX and REFS Update Conversion Complete MUX and REFS Update Figure 103. ADC One Conversion 1 2 3 4 5 6 7 8 9 10 11 12 13 Next Conversion 1 2 Cycle Number ADC Clock Trigger Source ADATE ADIF ADCH ADCL MSB of Result LSB of Result Sample & Hold MUX and REFS Update Conversion Complete Prescaler Reset Prescaler Reset 190 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 104. ADC One Conversion 11 12 13 Next Conversion 1 2 3 4 Cycle Number ADC Clock ADSC ADIF ADCH ADCL MSB of Result LSB of Result Conversion Complete Sample & Hold MUX and REFS Update Table 81. ADC & ( ) 14.5 1.5 2 1.5/2.5 ( ) 25 13 13.5 13/14 CKADC2 ADC ADC CKADC2 CKADC2 ( ) ( 13 ADC ) CKADC2 14 ADC CKADC2 ( ) 14 ADC 4 kHz ADC ADC 6 s 12 kSPS ADC ADC ADC ( ADCSRA ADEN "0" "1") ADC P190 " ADC " ADMUXMUXnREFS1:0 CPU ADC (ADCSRA ADIF ) ADSC 191 2503F-AVR-12/03 ADSC ADC ADMUX ADMUX ADATE ADEN ADMUX ADMUX 1. ADATE ADEN 0 2. ADC 3. ADMUX ADC 125 s 125 s ADC ( ADMUX REFS1:0 ) ADC ADSC ADC ADSC ADC ADC ADC(VREF)ADC VREF 0x3FF VREF AVCC 2.56V AREF AVCCADC 2.56V(VBG) AREF ADC AREF VREF AREF VREF AREF AREF AVCC 2.56V ADC P273 Table 122 AVCC ADC ADC CPUI/O ADC 1. ADC ADC 2. ADC ( ) CPU ADC 192 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 3. ADC ADCCPU ADC ADC CPU ADC ADC CPU ADC ADC ADEN ADC ADC Figure 105. ADC ADCn ADC ( ) (S/H) ADC10 k S/H S/H k (fADC/2) ADC Figure 105. IIH ADCn 1..100 k CS/H= 14 pF IIL VCC/2 (EMI) 1. 2. Figure 106 AVCC LC VCC 3. ADC CPU 4. ADC 193 2503F-AVR-12/03 Figure 106. ADC Analog Ground Plane PA4 (ADC4) PA5 (ADC5) PA6 (ADC6) PA7 (ADC7) AREF GND AVCC PC7 PA0 (ADC0) PA1 (ADC1) PA2 (ADC2) GND PA3 (ADC3) VCC 1LSB n ADC GND VREF 2n (LSBs) 0 2n-1 * (0x000 0x001) (0.5 LSB) 0 LSB ADC 194 ATmega32(L) 2503F-AVR-12/03 100nF 10H ATmega32(L) Figure 107. Output Code Ideal ADC Actual ADC Offset Error VREF Input Voltage * (0x3FE 0x3FF) ( 1.5 LSB) 0 LSB Figure 108. Output Code Gain Error Ideal ADC Actual ADC VREF Input Voltage * (INL) INL0 LSB 195 2503F-AVR-12/03 Figure 109. (INL) Output Code * (DNL) ( ) (1 LSB) 0 LSB INL Ideal ADC Actual ADC VREF Input Voltage Figure 110. (DNL) Output Code 0x3FF 1 LSB DNL 0x000 0 VREF Input Voltage * * (1 LSB) 0.5 LSB ( ) 0.5 LSB 196 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) ADC (ADIF ) ADC (ADCL, ADCH) V IN 1024 ADC = -------------------------V REF VIN VREF ( P198 Table 83 P199 Table 84 ) 0x000 0x3FF 1LSB ( V POS - V NEG ) GAIN 512 ADC = --------------------------------------------------------------------------V REF VPOS VNEG GAIN VREF 2 0x200 (-512d) 0x1FF (+511d) MSB( ADCH ADC9 ) 1 0 Figure 111 Table 82 GAIN VREF (ADCn - ADCm) Figure 111. Output Code 0x1FF 0x000 - V REF/GAIN 0x3FF 0 VREF/GAIN Differential Input Voltage (Volts) 0x200 197 2503F-AVR-12/03 Table 82. VADCn VADCm + VREF/GAIN VADCm + 0.999 VREF/GAIN VADCm + 0.998 VREF/GAIN ... VADCm + 0.001 VREF/GAIN VADCm VADCm - 0.001 VREF/GAIN ... VADCm - 0.999 VREF/GAIN VADCm - VREF/GAIN 0x1FF 0x1FF 0x1FE ... 0x001 0x000 0x3FF ... 0x201 0x200 511 511 510 ... 1 0 -1 ... -511 -512 ADMUX = 0xED (ADC3 - ADC2 10x 2.56V ) ADC3 300 mV ADC2 500 mV ADCR = 512 * 10 * (300 - 500) / 2560 = -400 = 0x270 ADCL 0x00 ADCH 0x9C ADLAR 0 ADCL = 0x70ADCH = 0x02 ADC ADMUX Bit / 7 REFS1 R/W 0 6 REFS0 R/W 0 5 ADLAR R/W 0 4 MUX4 R/W 0 3 MUX3 R/W 0 2 MUX2 R/W 0 1 MUX1 R/W 0 0 MUX0 R/W 0 ADMUX * Bit 7:6 - REFS1:0: Table 83 (ADCSRA ADIF ) AREF Table 83. ADC REFS1 0 0 1 1 REFS0 0 1 0 1 AREF Vref AVCC AREF 2.56V AREF * Bit 5 - ADLAR: ADC ADLARADCADC ADLAR ADLAR ADC P202 "ADC -ADCL ADCH" 198 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) * Bits 4:0 - MUX4:0: ADC Table 84 (ADCSRA ADIF ) Table 84. MUX4..0 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010(1) 01011 (1) ADC0 ADC1 ADC2 ADC3 ADC4 ADC5 ADC6 ADC7 N/A ADC0 ADC1 ADC0 ADC1 ADC2 ADC3 ADC2 ADC3 ADC0 ADC1 N/A ADC2 ADC3 ADC4 ADC5 ADC6 ADC7 ADC0 ADC1 ADC2 ADC3 ADC4 ADC5 1.22 V (VBG) 0 V (GND) N/A ADC0 ADC0 ADC0 ADC0 ADC2 ADC2 ADC2 ADC2 ADC1 ADC1 ADC1 ADC1 ADC1 ADC1 ADC1 ADC1 ADC2 ADC2 ADC2 ADC2 ADC2 ADC2 10x 10x 200x 200x 10x 10x 200x 200x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 01100 01101 01110(1) 01111 (1) 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 199 2503F-AVR-12/03 Note: 1. PDIP TQFP MLF ADC A ADCSRA Bit / 7 ADEN R/W 0 6 ADSC R/W 0 5 ADATE R/W 0 4 ADIF R/W 0 3 ADIE R/W 0 2 ADPS2 R/W 0 1 ADPS1 R/W 0 0 ADPS0 R/W 0 ADCSRA * Bit 7 - ADEN: ADC ADENADC ADC ADC * Bit 6 - ADSC: ADC ADSC ADC ADSC ( ADC ADSC ADC ADSC) 25 ADC 13 ADC ADSC "1"ADSC * Bit 5 - ADATE: ADC ADATE ADC ADC SFIOR ADC ADTS * Bit 4 - ADIF: ADC ADC ADIF ADIE SREG I ADC ADIF 1 ADIF ADCSRA SBI CBI * Bit 3 - ADIE: ADC ADIE SREG I ADC * Bits 2:0 - ADPS2:0: ADC XTAL ADC Table 85. ADC ADPS2 0 0 0 0 1 1 1 1 ADPS1 0 0 1 1 0 0 1 1 ADPS0 0 1 0 1 0 1 0 1 2 2 4 8 16 32 64 128 200 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) ADC ADCL ADCH ADLAR = 0 Bit 15 - ADC7 7 R R 0 0 14 - ADC6 6 R R 0 0 13 - ADC5 5 R R 0 0 12 - ADC4 4 R R 0 0 11 - ADC3 3 R R 0 0 10 - ADC2 2 R R 0 0 9 ADC9 ADC1 1 R R 0 0 8 ADC8 ADC0 0 R R 0 0 ADCH ADCL ADLAR = 1 Bit 15 ADC9 ADC1 7 R R 0 0 14 ADC8 ADC0 6 R R 0 0 13 ADC7 - 5 R R 0 0 12 ADC6 - 4 R R 0 0 11 ADC5 - 3 R R 0 0 10 ADC4 - 2 R R 0 0 9 ADC3 - 1 R R 0 0 8 ADC2 - 0 R R 0 0 ADCH ADCL ADC 2 ADCL ADC ADCH 8 ADCH ADCL ADCH ADMUX ADLAR MUXn ADLAR 1 ( ) * ADC9:0: ADC ADC P198 "ADC " IO SFIOR Bit / 7 ADTS2 R/W 0 6 ADTS1 R/W 0 5 ADTS0 R/W 0 4 - R 0 3 ACME R/W 0 2 PUD R/W 0 1 PSR2 R/W 0 0 PSR10 R/W 0 SFIOR * Bit 7:5 - ADTS2:0: ADC ADCSRA ADATE ADTS ADC ADTS ADC 201 2503F-AVR-12/03 ADCSRA ADEN 1 ADC (ADTS[2:0]=0) ADC Table 86. ADC ADTS2 0 0 0 0 1 1 1 1 ADTS1 0 0 1 1 0 0 1 1 ADTS0 0 1 0 1 0 1 0 1 0 / 0 / 0 / B / 1 / 1 * Bit 4 - Res: 0 202 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) JTAG OCD(On-chip Debug) * IEEE 1149.1 JTAG * IEEE 1149.1 (JTAG) * - - SRAM - - - EEPROM Flash - OCD - AVR Break - - - - * JTAG Flash EEPROM * AVR Studio(R) OCD IEEE 1149.1 AVR JTAG * * * JTAG PCB OCD JTAG JTAG P256 " JTAG " P210 "IEEE 1149.1 (JTAG) " OCD JTAG ATMEL ATMEL JTAGICE Figure 112JTAGOCDTAPTCKTMS TAP JTAG TDI( ) TDO( ) ( ) JTAG ID (Bypass) JTAG ( ) OCD TAP JTAG JTAG TAP * * * * TMS TAP TCK JTAG TCK TDI -- ( ) TDO -- ATmega32 IEEE 1149.1 TAP TRST - Test ReSeT JTAGEN TAP TAP JTAGEN MCUCSR JTD TAP JTAG TAP (TDO) JTAG TAP ( TDI ) 203 2503F-AVR-12/03 JTAG RESET ( ) RESET Figure 112. I/O PORT 0 DEVICE BOUNDARY BOUNDARY SCAN CHAIN TDI TDO TCK TMS TAP CONTROLLER JTAG PROGRAMMING INTERFACE AVR CPU INSTRUCTION REGISTER ID REGISTER M U X BYPASS REGISTER FLASH MEMORY Address Data INTERNAL SCAN CHAIN PC Instruction BREAKPOINT UNIT ANALOG PERIPHERIAL UNITS DIGITAL PERIPHERAL UNITS BREAKPOINT SCAN CHAIN ADDRESS DECODER JTAG / AVR CORE COMMUNICATION INTERFACE OCD STATUS AND CONTROL I/O PORT n 204 ATmega32(L) 2503F-AVR-12/03 Control & Clock lines Analog inputs FLOW CONTROL UNIT ATmega32(L) Figure 113. TAP 1 Test-Logic-Reset 0 0 Run-Test/Idle 1 Select-DR Scan 0 1 Capture-DR 0 Shift-DR 1 Exit1-DR 0 Pause-DR 1 0 Exit2-DR 1 Update-DR 1 0 0 0 1 0 1 1 Select-IR Scan 0 Capture-IR 0 Shift-IR 1 Exit1-IR 0 Pause-IR 1 Exit2-IR 1 Update-IR 1 0 0 1 0 1 TAP TAP 16 JTAG Figure 113 TCK TMS( ) Test-Logic-Reset LSB Run-Test/Idle( - / ) JTAG * TCK TMS 1, 1, 0, 0 - ShiftIR TCK TDI 4 JTAG JTAG 3 LSB TMS Shift-IR MSBTMSShift-IRJTAG TDI IR 0x01 TDO JTAG TDI TDO 205 2503F-AVR-12/03 * TMS 1, 1, 0Run-Test/IdleUpdate-IR Exit-IR, Pause-IR, Exit2-IR TCK TMS 1, 0, 0 - Shift-DR TDI TCK ( JTAG JTAG ) Shift-DR TMS MSB TMS Shift-IR MSB TDI Capture-DR TDO TMS 1, 1, 0 Run-Test/Idle Update-DR Exit-IR, Pause-IR, Exit2-IR * * JTAG Run-Test/Idle JTAG Run-Test/Idle Note: TMS TCK TAP Test-Logic-Reset TAP JTAG P209 " " P210 "IEEE 1149.1 (JTAG) " Figure 112 * * * AVR CPU CPU JTAG / AVR CPU AVR CPU I/O CPU JTAG * * * * * ( ) ( ) AVR Studio JTAG P208 " JTAG " JTAGEN JTAG OCDEN AtmelAVR JTAG ICEIEEE 1149.1 JTAGAVR8 JTAG ICE AVR Studio 206 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) JTAG ICE AVR JTEG ICE www.atmel.com AVR Support Tools Software AVR Studio AVR Studio BREAK ( ) JTAG PRIVATE0; $8 PRIVATE1; $9 PRIVATE2; $A PRIVATE3; $B JTAG ATMEL ATMEL JTAG JTAG JTAG JTAG 207 2503F-AVR-12/03 I/O OCDR Bit / 7 MSB/IDRD R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 6 5 4 3 2 1 0 LSB R/W 0 OCDR OCDR CPU I/O - IDRD - CPU OCDR 7 LSB OCDR MSB IDRD IDRD AVR I/O OCDEN OCDR MCU OCDR MCU I/O JTAG JTAG AVR JTAG --TCK, TMS, TDI TDO() 12V JTAG JTAGEN MCUCR JTD JTAG * * * * Flash EEPROM LB1 LB2 OCDEN JTAGJTAGP256 "JTAG" * * IEEE: IEEE Std 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan Architecture, IEEE, 1993 Colin Maunder: The Board Designers Guide to Testable Logic Circuits, AddisonWesley, 1992 208 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) IEEE 1149.1 (JTAG) * * * * * JTAG ( IEEE std. 1149.1 ) JTAG IDCODE AVR AVR_RESET I/O JTAG IC TDI/TDO TAP IEEE 1149.1 JTAG IDCODE BYPASS SAMPLE/PRELOAD EXTEST AVR JTAG AVR_RESET IDCODE JTAG ID AVR HIGHZ BYPASS RESET AVR_RESET EXTEST EXTEST JTAG IR SAMPLE/PRELOAD EXTEST SAMPLE/PRELOAD TAGEN I/O MCUCR JTD JTAG JTAG JTAG TCK * * * * (Bypass) TDI TDO Capture-DR 0 Figure 114 Figure 114. MSB Bit ID 31 4 bits 28 27 16 bits 12 11 ID 11 bits 1 LSB 0 1 1 bit 209 2503F-AVR-12/03 * Table 87 Table 87. JTAG ATmega32 A 0x0 JTAG (Hex) * 16 Table 88 ATmega32 JTAG Table 88. AVR JTAG ATmega32 0x9502 JTAG (Hex) * ID ID 11 Table 89 ATMEL JTAG ID Table 89. ID ATMEL 0x01F JTAG ID (Hex) AVR JTAG HIGHZ ( P23 " " ) Figure 115 Figure 115. To TDO From other Internal and External Reset Sources From TDI Internal Reset D Q ClockDR * AVR_RESET I/O P214 " " 210 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) JTAG 4 16 JTAG AVR HIGHZ AVR_RESET LSB OPCODE hex TDI TDO EXTEST; $0 EXTEST JTAG AVR JTAG IR EXTEST * * * IDCODE; $1 Capture-DR Shift-DR TCK Update-DR IDCODEJTAG 32ID ID JEDEC IDCODE * * Capture-DR IDCODE Shift-DR TCK IDCODE SAMPLE_PRELOAD; $2 SAMPLE_PRELOADJTAG / * * * Capture-DR Shift-DR TCK Update-DR AVR_RESET; $C AVR_RESETAVRJTAG AVRJTAG TAP 1 * Shift-DR TCK BYPASS; $F BYPASS JTAG * * Capture-DR 0 Shift-DRTDI TDO 211 2503F-AVR-12/03 I/O MCU MCUCSR MCU MCU MCU Bit / 7 JTD R/W 0 6 ISC2 R/W 0 5 - R 0 4 JTRF R/W 3 WDRF R/W 2 BORF R/W 1 EXTRF R/W 0 PORF R/W MCUCSR * Bit 7 - JTD: JTAG 0 JTAGEN JTAG 1 JTAG JTAG JTD JTD JTAG JTAG JTD JTAG TDO * Bit 4 - JTRF: JTAG JTAG AVR_RESET JTAG 1 JTRF 0 JTRF 212 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) I/O Figure 116 - PUExn - - OCxn - ODxn - IDxn Figure 117 P47 "I/O " Figure 117 Figure 116 - ID - PINxn ( ID ) PORT - DD - PUExn - PUD * DDxn * PORTxn Figure 117 Figure 116. . ShiftDR To Next Cell EXTEST Vcc Pullup Enable (PUE) FF2 0 D 1 G Q D Q LD2 0 1 Output Control (OC) FF1 0 D 1 G Q D Q LD1 0 1 Output Data (OD) 0 1 0 FF0 D 1 Q LD0 D G Q 0 Port Pin (PXn) 1 Input Data (ID) From Last Cell ClockDR UpdateDR 213 2503F-AVR-12/03 Figure 117. (1) PUExn PUD Q D DDxn Q CLR OCxn RESET WDx RDx Pxn Q D ODxn IDxn SLEEP PORTxn Q CLR WPx RESET RRx SYNCHRONIZER D Q D Q RPx PINxn L Q Q CLK I/O PUD: PUExn: OCxn: ODxn: IDxn: SLEEP: PULLUP DISABLE PULLUP ENABLE for pin Pxn OUTPUT CONTROL for pin Pxn OUTPUT DATA to pin Pxn INPUT DATA from pin Pxn SLEEP CONTROL WDx: RDx: WPx: RRx: RPx: CLK I/O : WRITE DDRx READ DDRx WRITE PORTx READ PORTx REGISTER READ PORTx PIN I/O CLOCK Note: 1. TWI SCL SDA - TWIEN Figure 118 TWIEN Figure 122 Notes: 1. 50ns TWIEN 2. OC TWIEN 214 ATmega32(L) 2503F-AVR-12/03 DATA BUS ATmega32(L) Figure 118. PUExn OCxn ODxn Pxn TWIEN SRC Slew-rate Limited IDxn RESET RESET5V12V Figure 119 5V RSTT 12V RSTHV Figure 119. To Next Cell ShiftDR From System Pin To System Logic FF1 0 D 1 Q From Previous Cell ClockDR AVR RC RC ( ) Figure 120 / RC 215 2503F-AVR-12/03 Figure 120. XTAL1/TOSC1 XTAL2/TOSC2 From Digital Logic ShiftDR To Next Cell EXTEST Oscillator ENABLE OUTPUT 0 1 0 D 1 G Q D Q 0 D 1 Q FF1 From Previous Cell ClockDR UpdateDR From Previous Cell ClockDR Table 90 XTAL1 XTAL1/XTAL2 32 kHz Table 90. (1)(2)(3) EXTCLKEN OSCON RCOSCEN OSC32EN TOSKON Notes: EXTCLK (XTAL1) OSCCK RCCK OSC32CK TOSCK RC 32 kHz 0 0 1 0 0 1. 2. JTAG TCK 3. INTCAP XTAL Figure 121 Figure 122 Table 91 216 ATmega32(L) 2503F-AVR-12/03 To System Logic ShiftDR To Next Cell ATmega32(L) Figure 121. BANDGAP REFERENCE ACBG ACO AC_IDLE ACME ADCEN ADC MULTIPLEXER OUTPUT Figure 122. ADC To Next Cell ShiftDR EXTEST From Digital Logic/ From Analog Ciruitry 0 D 1 G Q D Q 0 1 To Analog Circuitry/ To Digital Logic From Previous Cell ClockDR UpdateDR 217 2503F-AVR-12/03 Table 91. AC_IDLE ACO ACME ACBG '1' '1' ADC 1 C 0 0 C 0 C C ADC Figure 123 ADC Figure 122 ADC Figure 123. VCCREN AREF IREFEN To Comparator 2.56V ref MUXEN_7 ADC_7 MUXEN_6 ADC_6 MUXEN_5 ADC_5 MUXEN_4 ADC_4 PASSEN SCTEST ADCBGEN EXTCH MUXEN_3 ADC_3 MUXEN_2 ADC_2 MUXEN_1 ADC_1 MUXEN_0 ADC_0 NEGSEL_2 ADC_2 1.22V ref PRECH PRECH AREF AREF DACOUT DAC_9..0 10-bit DAC + COMP G10 + G20 ACTEN + - ADCEN 10x - 20x - HOLD GNDEN NEGSEL_1 ADC_1 NEGSEL_0 ADC_0 ST ACLK AMPEN Table 92 218 ATmega32(L) 2503F-AVR-12/03 COMP ATmega32(L) Table 92. ADC COMP ACLK ACTEN ADCBGEN ADCEN AMPEN DAC_9 DAC_8 DAC_7 DAC_6 DAC_5 DAC_4 DAC_3 DAC_2 DAC_1 DAC_0 EXTCH G10 G20 GNDEN HOLD ADC ADC DAC 9 DAC 8 DAC 7 DAC 6 DAC 5 DAC 4 DAC 3 DAC 2 DAC 1 DAC 0 ADC 0 - 3 10x 20x '1' & '0' '1' ACLK DAC AREF 7 6 5 4 3 2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 CPU ADC 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 IREFEN MUXEN_7 MUXEN_6 MUXEN_5 MUXEN_4 MUXEN_3 MUXEN_2 MUXEN_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 219 2503F-AVR-12/03 Table 92. ADC (Continued) MUXEN_0 NEGSEL_2 NEGSEL_1 NEGSEL_0 PASSEN PRECH SCTEST ST ADC 0 2 1 0 ( ) TEST 10x ADC_4 AMPEN ACLK Vcc ADC 1 0 0 0 1 1 0 0 CPU ADC 1 0 0 0 1 1 0 0 VCCREN Note: 0 0 Figure 123 Figure 123 S&H ADC ADC Table 92 AVR ADC Figure 123 : DAC[9:0] DAC[9:0] ADC ADC * * * ADC ADC""(10) ADC 200ns " " HOLD ( ) DAC 0x200 5.0V AREF VCC ADC 3 1.5V 5% The lower limit is: The upper limit is: 1024 1,5V 0,95 5V = 291 = 0x123 1024 1,5V 1,05 5V = 323 = 0x143 Table 93 Table 92 Table 93 DAC " " JTAG 220 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 93. ADC ADCEN DAC MUXEN HOLD PRECH PA3. PA3. PA3. 1 SAMPLE _PRELO AD EXTEST 1 0x200 0x08 1 1 0 0 0 2 3 4 5 6 1 1 1 1 0x200 0x200 0x123 0x123 0x200 0x08 0x08 0x08 0x08 0x08 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 COMP 0 1 7 8 9 10 11 COMP 1 1 1 1 1 1 0x200 0x200 0x143 0x143 0x200 0x08 0x08 0x08 0x08 0x08 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HOLD TCK 5 HOLD TCK 5 thold,max 221 2503F-AVR-12/03 ATmega32 TDI TDO Table 94 Bit 0 LSB ( / ) A Figure 116 PXn.Data FF0 PXn.Control FF1 PXn. Pullup_enable FF2 C 2 4 3 5 JTAG TAP Table 94. ATmega32 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 AC_IDLE ACO ACME ACBG COMP PRIVATE_SIGNAL1 ACLK ACTEN PRIVATE_SIGNAL2(2) ADCBGEN ADCEN AMPEN DAC_9 DAC_8 DAC_7 DAC_6 DAC_5 DAC_4 DAC_3 DAC_2 DAC_1 DAC_0 EXTCH G10 G20 GNDEN HOLD IREFEN (1) ADC 222 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 94. ATmega32 (Continued) 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 MUXEN_7 MUXEN_6 MUXEN_5 MUXEN_4 MUXEN_3 MUXEN_2 MUXEN_1 MUXEN_0 NEGSEL_2 NEGSEL_1 NEGSEL_0 PASSEN PRECH SCTEST ST VCCREN PB0.Data PB0.Control PB0.Pullup_Enable PB1.Data PB1.Control PB1.Pullup_Enable PB2.Data PB2.Control PB2.Pullup_Enable PB3.Data PB3.Control PB3.Pullup_Enable PB4.Data PB4.Control PB4.Pullup_Enable B ADC 223 2503F-AVR-12/03 Table 94. ATmega32 (Continued) 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 PB5.Data PB5.Control PB5.Pullup_Enable PB6.Data PB6.Control PB6.Pullup_Enable PB7.Data PB7.Control PB7.Pullup_Enable RSTT RSTHV EXTCLKEN OSCON RCOSCEN OSC32EN EXTCLK (XTAL1) OSCCK RCCK OSC32CK TWIEN PD0.Data PD0.Control PD0.Pullup_Enable PD1.Data PD1.Control PD1.Pullup_Enable PD2.Data PD2.Control PD2.Pullup_Enable PD3.Data PD3.Control PD3.Pullup_Enable PD4.Data PD4.Control PD4.Pullup_Enable TWI D ( ) ( ) / B 224 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 94. ATmega32 (Continued) 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 PD5.Data PD5.Control PD5.Pullup_Enable PD6.Data PD6.Control PD6.Pullup_Enable PD7.Data PD7.Control PD7.Pullup_Enable PC0.Data PC0.Control PC0.Pullup_Enable PC1.Data PC1.Control PC1.Pullup_Enable PC6.Data PC6.Control PC6.Pullup_Enable PC7.Data PC7.Control PC7.Pullup_Enable TOSC TOSCON PA7.Data PA7.Control PA7.Pullup_Enable PA6.Data PA6.Control PA6.Pullup_Enable PA5.Data PA5.Control PA5.Pullup_Enable PA4.Data PA4.Control PA4.Pullup_Enable A 32 kHz C D 225 2503F-AVR-12/03 Table 94. ATmega32 (Continued) 11 10 9 8 7 6 5 4 3 2 1 0 Notes: PA3.Data PA3.Control PA3.Pullup_Enable PA2.Data PA2.Control PA2.Pullup_Enable PA1.Data PA1.Control PA1.Pullup_Enable PA0.Data PA0.Control PA0.Pullup_Enable 1. PRIVATE_SIGNAL1 0 2. PRIVATE_SIGNAL2 0 A (BSDL) BSDL ATmega32 226 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) (RWW, Read-WhileWrite) Boot Loader MCU - (ReadWhile-Write RWW) MCU Flash Boot Loader Boot Loader ( ) Flash Boot Loader Flash Boot Loader Boot Loader Boot Loader Boot Loader * * * * * * * RWW Boot Loader ( Boot ) (1) RWW 1. Flash ( P243 Table 111 ) Note: Flash Flash Boot Loader ( Figure 125) BOOTSZ P237 Table 100 Figure 125 Flash Flash Boot (Boot 0) P230 Table 96 SPM Boot Loader Boot Loader BLS BLS SPM SPM Flash BLS Boot Loader Boot Loader (Boot 1) P230 Table 97 CPU RWW CPU Boot Loader BOOTSZ Flash ---- - (RWW) - (NRWW) RWW NRWW P237 Table 101 P229 Figure 125 * RWW NRWW NRWW CPU Boot Loader RWW "RWW " ( ) Boot Loader RWW Boot Loader RWW Flash NRWW Flash RWW RWW ( call/jmp/lpm ) Boot Loader Boot Loader NRWW RWW (SPMCSR) RWW RWWSB RWW RWWSB RWWSB P232 " -SPMCR" (Boot Loader Section) BLS RWW Flash RWW Flash 227 2503F-AVR-12/03 RWW NRWW Boot Loader RWW NRWW Boot Loader NRWW CPU Table 95. RWW Z ? RWW NRWW ? NRWW CPU ? RWW ? Figure 124. RWW NRWW Read-While-Write (RWW) Section Z-pointer Addresses RWW Section Z-pointer Addresses NRWW Section No Read-While-Write (NRWW) Section CPU is Halted during the Operation Code Located in NRWW Section Can be Read during the Operation 228 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 125. (1) Program Memory BOOTSZ = '11' $0000 Read-While-Write Section Read-While-Write Section Program Memory BOOTSZ = '10' $0000 Application Flash Section Application Flash Section No Read-While-Write Section End RWW Start NRWW Application Flash Section No Read-While-Write Section End RWW Start NRWW Application Flash Section End Application Start Boot Loader Boot Loader Flash Section Flashend Program Memory BOOTSZ = '00' Boot Loader Flash Section End Application Start Boot Loader Flashend Program Memory BOOTSZ = '01' $0000 Read-While-Write Section Read-While-Write Section $0000 Application Flash Section Application flash Section No Read-While-Write Section End RWW Start NRWW Application Flash Section End Application Start Boot Loader Boot Loader Flash Section Flashend No Read-While-Write Section End RWW, End Application Start NRWW, Start Boot Loader Boot Loader Flash Section Flashend Note: 1. P237 Table 100 Boot Loader Flash Boot Loader Boot * * * * Flash MCU MCU Boot Loader Flash MCU Flash MCU Flash Table 96 Table 97Boot ( 2) SPM Flash / ( 1) LPM/SPM Flash / 229 2503F-AVR-12/03 Table 96. Boot 0 ( )(1) BLB0 Mode 1 2 BLB02 1 1 BLB01 1 0 SPM/LPM SPM SPM Boot Loader LPM Boot Loader Boot Loader LPM Boot Loader 3 0 0 4 Note: 0 1 1. "1" "0" Table 97. Boot 1 (Boot Loader )(1) BLB1 mode 1 2 BLB12 1 1 BLB11 1 0 SPM/LPM Boot Loader SPM Boot Loader SPM Boot Loader LPM Boot Loader Boot Loader LPM Boot Loader Boot Loader 3 0 0 4 Note: 0 1 1. "1" "0" Boot Loader USART SPI Boot Boot Boot Loader MCU Boot Boot 230 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 98. Boot (1) BOOTRST 1 0 Note: = ( 0x0000) =Boot Loader ( P237 Table 100 ) 1. "1" , "0" SPMCR SPMCR Boot Loader Bit / 7 SPMIE 6 RWWSB 5 - 4 RWWSRE 3 BLBSET 2 PGWRT 1 PGERS 0 SPMEN SPMCR R/W 0 R 0 R 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 * Bit 7 - SPMIE: SPM SPMIE I SPM SPMCSR SPMEN SPM * Bit 6 - RWWSB: RWW RWW ( ) RWWSB 1 RWWSB RWW RWWSRE 1 RWWSB RWWSB * Bit 5 - Res: ATmega32 "0" * Bit 4 - RWWSRE: RWW RWW() RWW(RWWSB"1") (SPMEN)RWW RWWSRE SPMEN"1" SPMRWW Flash (SPMEN ),RWW Flash RWWSRE Flash * Bit 3 - BLBSET: Boot SPMEN SPM R0 Boot R1 Z SPM BLBSET SPMCSR BLBSET SPMEN LPM ( Z Z0) P236 " " * Bit 2 - PGWRT: SPMEN SPM Flash Z R1 R0 SPM PGWRT NRWW CPU 231 2503F-AVR-12/03 * Bit 1 - PGERS: SPMEN SPM Z R1 R0 SPM PGERS NRWW CPU * Bit 0 - SPMEN: SPM RWWSRE BLBSET PGWRT PGERS SPM SPMEN SPM R1:R0 Z LSB Z SPM SPM SPMEN SPMEN 1 "10001" "01001" "00101" "00011" "00001" Flash Z SPM Bit ZH (R31) ZL (R30) 15 Z15 Z7 7 14 Z14 Z6 6 13 Z13 Z5 5 12 Z12 Z4 4 11 Z11 Z3 3 10 Z10 Z2 2 9 Z9 Z1 1 8 Z8 Z0 0 Flash (see P243 Table 111 ) Figure 126 Boot Loader Z Z SPM Boot Loader Z LPM Z Z LSB ( Z0) 232 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 126. SPM (1) BIT Z - REGISTER PCMSB PROGRAM COUNTER PCPAGE 15 ZPCMSB ZPAGEMSB 10 0 PAGEMSB PCWORD PAGE ADDRESS WITHIN THE FLASH PROGRAM MEMORY PAGE WORD ADDRESS WITHIN A PAGE PAGE INSTRUCTION WORD PCWORD[PAGEMSB:0]: 00 01 02 PAGEEND Note: 1. Figure 126 P238 Table 102 Flash SPM 1 * * * * * * 2 ( ) Flash 1 Boot Loader - Flash 2 P237 " " SPM Z RAMPZ "X0000011" SPMCSR SPMR1 R0 Z PCPAGE Z * * RWW NRWW NRWW CPU 233 2503F-AVR-12/03 ( ) Z R1:R0 "00000001" SPMCSR SPM Z PCWORD SPMCSR RWWSRE Note: EEPROM SPM Z RAMPZ "X0000101" SPMCSR SPMR1 R0 Z PCPAGE Z * * RWW NRWW NRWW CPU SPM SPM SPMCSR SPMEN SPMCSR SPM BLS RWW P42 " " Boot 11 Boot Loader Boot Loader Boot Loader Boot Loader Boot 11 Boot Loader ( ) RWW RWW SPMCSR RWWSB P42 " " BLS RWW RWWSRE 1 RWWSB P237 " " Boot Loader R0 "X0001001"SPMCSR SPM Boot Loader MCU Boot Loader BLS RWW SPM 234 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Bit R0 7 1 6 1 5 BLB12 4 BLB11 3 BLB02 2 BLB01 1 1 0 1 Boot Loader Flash Table 96 Table 97 R0 5..2 0 SPMCSR BLBSET SPMEN SPM Boot Z Z 0x0001( lOck ) R0 7 6 1 0 "1" Flash EEPROM SPMCR EEPROM Flash SPMCR EECR EEWE 0x0001 Z SPMCSRBLBSET SPMEN SPMCSRCPU LPM CPU LPM CPU SPM BLBSET SPMEN BLBSET SPMEN LPM Bit Rd 7 - 6 - 5 BLB12 4 BLB11 3 BLB02 2 BLB01 1 LB2 0 LB1 0x0000ZSPMCRBLBSET SPMEN SPMCSR CPU LPM (FLB) P240 Table 106 Bit Rd 7 FLB7 6 FLB6 5 FLB5 4 FLB4 3 FLB3 2 FLB2 1 FLB1 0 FLB0 0x0003 Z SPMCR BLBSET SPMEN SPMCSR CPU LPM (FHB) P240 Table 105 Bit Rd 7 FHB7 6 FHB6 5 FHB5 4 FHB4 3 FHB3 2 FHB2 1 FHB1 0 FHB0 "0" "1" Flash VCC CPU Flash Flash Flash Flash Flash CPU Flash ( ) 1. Boot Loader Boot Loader Boot Loader 2. AVR RESET BOD 3. AVR CPU SPMCR Flash 235 2503F-AVR-12/03 SPM Flash RC Flash Table 99 CPU Flash Table 99. SPM Flash ( SPM ) 3.7 ms 4.5 ms ;- RAM Flash ; Y RAM ;Z Flash ;- ;- Boot ( Do_spm ) ; ( ) NRWW ;- r0 r1 temp1 (r16) temp2 (r17) looplo (r24) ; loophi (r25) spmcrval (r20) ; ; ;- Boot loader , .equ PAGESIZEB = PAGESIZE*2 ; PAGESIZEB .org SMALLBOOTSTART Write_page: ; ldi spmcrval, (1< ;PAGESIZEB<=256 subi ; subi ZL, low(PAGESIZEB) ; sbci ZH, high(PAGESIZEB) ;PAGESIZEB<=256 ldi spmcrval, (1< 236 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) jmp Error sbiw loophi:looplo, 1 brne Rdloop ;PAGESIZEB<=256 subi ; RWW ; RWW Return: in temp1, SPMCR sbrs temp1, RWWSB ; RWWSB "1" RWW ret ; RWW ldi spmcrval, (1< Table 100 Table 102 Table 100. Boot (1) Boot 256 512 1024 2048 Boot Loader Flash $3F00 $3FFF $3E00 $3FFF $3C00 $3FFF $3800 $3FFF Boot ( Boot Loader ) $3F00 $3E00 $3C00 $3800 BOOTSZ1 1 1 0 0 BOOTSZ0 1 0 1 0 4 8 16 32 Flash $0000 $3EFF $0000 $3DFF $0000 $3BFF $0000 $37FF $3EFF $3DFF $3BFF $37FF Note: 1. BOOTSZ Figure 125 Table 101. RWW (1) Flash - (RWW) - (NRWW) 224 32 $0000 - $37FF $3800 - $3FFF 237 2503F-AVR-12/03 Note: 1. P229 " RWW -NRWW" P228 "RWW " Table 102. Figure 126 Z PCMSB PAGEMSB ZPCMSB ZPAGEMSB PCPAGE PCWORD Note: PC[13:6] PC[5:0] 13 5 Z14 Z6 Z14:Z7 Z6:Z1 Z (1) ( 14 PC[13:0]) ( 64 6 PC [5:0]) Z PCMSB Z0 ZPCMSB PCMSB + 1 Z PAGEMSB Z0 ZPAGEMSB PAGEMSB + 1 ( 0) 1. Z15: Z0 SPM "0" LPM Z P233 " Flash" 238 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) ATmega32 6 ("0") ("1") Table 104 "1" Table 103. (1) 7 6 BLB12 BLB11 BLB02 BLB01 LB2 LB1 Note: 5 4 3 2 1 0 - - Boot Boot Boot Boot 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1. "1" "0" Table 104. (2) LB 1 2 3 BLB0 1 2 LB2 1 1 0 BLB02 1 1 LB1 1 0 0 BLB01 1 0 SPM LPM SPM SPM Boot Loader LPM Boot Loader Boot Loader LPM Boot Loader SPM/LPM Boot Loader SPI/JTAGFlashEEPROM (1) SPI/JTAGFlashEEPROM (1) 3 0 0 4 BLB1 1 0 BLB12 1 1 BLB11 1 239 2503F-AVR-12/03 Table 104. (Continued) (2) 2 1 0 SPM Boot Loader SPM Boot Loader LPM Boot Loader Boot Loader LPM Boot Loader Boot Loader 3 0 0 4 Notes: 0 1 1. 2. "1" , "0" ATmega32 Table 105 - Table 106 "0" Table 105. OCDEN (4) (5) 7 6 5 4 3 2 1 0 OCD JTAG EEPROM Boot ( Table 100 ) Boot ( Table 100 ) 1 ( OCD ) 0 ( JTAG ) 0 ( SPI ) 1 ( ) 1 ( )EEPROM 0 ( )(3) 0 ( )(3) 1 ( ) JTAGEN SPIEN(1) CKOPT (2) EESAVE BOOTSZ1 BOOTSZ0 BOOTRST Notes: 1. 2. 3. 4. SPI SPIEN CKOPT CKSEL P23 " " BOOTSZ1..0 Boot P237 Table 100 JTAGEN OCDEN OCDEN 5. JTAG JTAGEN JTAG TDO Table 106. BODLEVEL BODEN SUT1 SUT0 CKSEL3 7 6 5 4 3 BOD BOD 1 ( ) 1 ( BOD ) 1 ( )(1) 0 ( )(1) 0 ( )(2) 240 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 106. CKSEL2 CKSEL1 CKSEL0 Notes: 2 1 0 0 ( )(2) 0 ( )(2) 1 ( )(2) 1. SUT1..0 P28 Table 10 2. CKSEL3..0RC1 MHz P23 Table 2 1(LB1) EESAVE Atmel ATmega32 1. 0x000: 0x1E ( Atmel ) 2. 0x001: 0x95 ( 32 KB Flash ) 3. 0x002: 0x02 ( 0x001 0x95 ATmega32) ATmega32 RC 0x000 0x0001 0x0002 0x0003 1 2 4 8 MHz 1 MHz OSCCAL P28 " -OSCCAL" 241 2503F-AVR-12/03 ATmega32 Flash EEPROM 250 ns ATmega32 Figure 127 Table 107 XA1/XA0 XTAL1 Table 109 WR OE Table 110 Figure 127. +5V RDY/BSY OE WR BS1 XA0 XA1 PAGEL +12 V BS2 PD1 PD2 PD3 PD4 PD5 PD6 PD7 RESET PA0 XTAL1 GND AVCC PB7 - PB0 VCC +5V DATA Table 107. RDY/BSY OE WR BS1 XA0 XA1 PAGEL BS2 DATA PAGEL XA1 XA0 BS1 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PA0 PB7-0 I/O O I I I I I I I I/O 0: , 1: ( ). ( ). 1("0" , "1" ). XTAL 0 XTAL 1 EEPROM 2("0" , "1" ) (OE ) Prog_enable[3] Prog_enable[2] Prog_enable[1] Prog_enable[0] 0 0 0 0 Table 108. 242 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 109. XA1 XA0 XA1 0 0 1 1 XA0 0 1 0 1 XTAL1 Flash EEPROM ( BS1 ) ( BS1 ) Table 110. 1000 0000 0100 0000 0010 0000 0001 0000 0001 0001 0000 1000 0000 0100 0000 0010 0000 0011 Flash EEPROM Flash EEPROM Table 111. Flash Flash 16K (32K ) 64 PCWORD PC[5:0] 256 PCPAGE PC[13:6] PCMSB 13 Table 112. EEPROM EEPROM 1024 4 PCWORD EEA[1:0] 256 PCPAGE EEA[9:2] EEAMSB 9 243 2503F-AVR-12/03 1. VCC GND 4.5 - 5.5V 2. RESET XTAL1 6 3. P242 Table 108 Prog_enable "0000" 100 ns 4. RESET 11.5 - 12.5V RESET +12V 100 ns Prog_enable RC XTAL1 1. P242 Table 108 Prog_enable "0000" 2. VCC GND 4.5 - 5.5V RESET 11.5 - 12.5V 3. 100 ns 4. (CKSEL3:0 = 0b0000) 5. RESET 0b0 6. * * * 0xFF Flash EEPROM( EESAVE ) Flash EEPROM 256 Flash EEPROM(1) Flash / EEPROM Note: 1. EESAVE EEPRPOM " " 1. XA1 XA0 "10" 2. BS1 "0" 3. DATA "1000 0000" 4. XTAL1 5. WR RDY/BSY 6. RDY/BSY Flash Flash P243 Table 111 Flash Flash A. " Flash" 1. XA1 XA0 "10" 2. BS1 "0" 3. DATA "0001 0000" Flash 4. XTAL1 B. 244 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 1. XA1 XA0 "00" 2. BS1 "0" 3. DATA (0x00 - 0xFF) 4. XTAL1 C. 1. XA1 XA0 "01" 2. DATA (0x00 - 0xFF) 3. XTAL1 D. 1. BS1 "1" 2. XA1 XA0 "01" 3. DATA (0x00 - 0xFF) 4. XTAL1 E. 1. BS1 "1" 2. PAGEL ( Figure 129 ) F. B E FLASH P246 Figure 128 8 ( < 256) G. 1. XA1 XA0 "00" 2. BS1 "1" 3. DATA (0x00 - 0xFF) 4. XTAL1 H. 1. BS1 = "0" 2. WR RDY/BSY 3. RDY/BSY ( Figure 129 ) I. B H Flash J. 1. 1. XA1 XA0 "10" 2. DATA "0000 0000" 3. XTAL1 245 2503F-AVR-12/03 Figure 128. Flash PCMSB PROGRAM COUNTER PCPAGE PAGEMSB PCWORD PAGE ADDRESS WITHIN THE FLASH PROGRAM MEMORY PAGE WORD ADDRESS WITHIN A PAGE PAGE INSTRUCTION WORD PCWORD[PAGEMSB:0]: 00 01 02 PAGEEND Note: 1. PCPAGE PCWORD P243 Table 111 Figure 129. Flash (1) F A DATA $10 B C D DATA HIGH E XX B ADDR. LOW C DATA LOW D DATA HIGH E XX G ADDR. HIGH H XX ADDR. LOW DATA LOW XA1 XA0 BS1 XTAL1 WR RDY/BSY RESET +12V OE PAGEL BS2 Note: 1. "XX" Flash 246 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) EEPROM P243 Table 112 EEPROM EEPROM EEPROM ( P245 " Flash " ) 1. A "0001 0001" 2. G (0x00 - 0xFF) 3. B (0x00 - 0xFF) 4. C (0x00 - 0xFF) 5. E ( PAGEL ) K 3 5 L EEPROM 1. BS1 "0" 2. WR EEPROM RDY/BSY 3. RDY/BSY ( Figure 130 ) Figure 130. EEPROM K A DATA 0x11 G B C DATA E XX B ADDR. LOW C DATA E XX L ADDR. HIGH ADDR. LOW XA1 XA0 BS1 XTAL1 WR RDY/BSY RESET +12V OE PAGEL BS2 Flash Flash ( P245 " Flash " ) 1. A "0000 0010" 2. G (0x00 - 0xFF) 3. B (0x00 - 0xFF) 4. OE "0" BS1 "0" DATA Flash 5. BS1 "1" DATA Flash 6. OE "1" EEPROM ( P245 " Flash " ) 247 2503F-AVR-12/03 1. A "0000 0011" 2. G (0x00 - 0xFF) 3. B (0x00 - 0xFF) 4. OE "0" BS1 "0" DATA EEPROM 5. OE "1" ( P245 " Flash " ) 1. A "0100 0000" 2. C "0" 3. BS1 "0" BS2 "0" 4. WR RDY/BSY ( P245 " Flash " ) 1. A "0100 0000" 2. C "0" 3. BS1 "1" BS2 "0" 4. WR RDY/BSY 5. BS1 "0" Figure 131. Write Fuse Low byte A DATA $40 Write Fuse high byte A C DATA XX C DATA XX $40 XA1 XA0 BS1 BS2 XTAL1 WR RDY/BSY RESET +12V OE PAGEL ( P245 " Flash " ) 1. A "0010 0000" 2. C n "0" 3. WR RDY/BSY 248 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) ( P245 " Flash " ) 1. A "0000 0100" 2. OE BS2 BS1 "0" DATA ("0" ) 3. OE"0" BS2BS1"1" DATA("0") 4. OE "0" BS2 "0" BS1 "1" DATA ("0" ) 5. OE "1" Figure 132. BS1 BS2 Fuse Low Byte 0 DATA Lock Bits 0 1 BS1 Fuse High Byte BS2 ( P245 " Flash " ) 1. A "0000 1000" 2. B 0x00 - 0x02 3. OE BS1 "0" DATA 4. OE "1" ( P245 " Flash " ) 1. A "0000 1000" 2. B 3. OE "0" BS1 "1" DATA 4. OE "1" Figure 133. t XLWL XTAL1 t DVXH Data & Contol (DATA, XA0/1, BS1, BS2) t BVPH PAGEL WR RDY/BSY t WLRH t PHPL t WL t PLWL WLRL WH 1 t XHXL t XLDX t PLBX t BVWL t WLBX 249 2503F-AVR-12/03 Figure 134. (1) LOAD ADDRESS (LOW BYTE) LOAD DATA (LOW BYTE) t XLXH LOAD DATA LOAD DATA (HIGH BYTE) tXLPH tPLXH LOAD ADDRESS (LOW BYTE) XTAL1 BS1 PAGEL DATA ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte) XA0 XA1 Note: 1. Figure 133 (tDVXH tXHXL tXLDX) Figure 135. ( )(1) LOAD ADDRESS (LOW BYTE) tXLOL READ DATA (LOW BYTE) READ DATA (HIGH BYTE) LOAD ADDRESS (LOW BYTE) XTAL1 tBVDV BS1 tOLDV OE tOHDZ DATA ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte) XA0 XA1 Note: 1. Figure 133 ( tDVXH tXHXL tXLDX) Table 113. VCC = 5 V 10% VPP IPP tDVXH tXLXH tXHXL tXLDX tXLWL tXLPH tPLXH XTAL1 XTAL1 XTAL1 XTAL1 XTAL1 XTAL1 WR XTAL1 PAGEL XTAL1 PAGEL 67 200 150 67 0 0 150 11.5 12.5 250 V A ns ns ns ns ns ns ns 250 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 113. VCC = 5 V 10% (Continued) tBVPH tPHPL tPLBX tWLBX tPLWL tBVWL tWLWH tWLRL tWLRH tWLRH_CE tXLOL tBVDV tOLDV tOHDZ Notes: PAGEL XTAL1 PAGEL BS1 PAGEL PAGEL BS1 WR BS2/1 PAGEL WR BS1 WR WR RDY/BSY WR RDY/BSY (1) WR RDY/BSY (2) XTAL1 OE BS1 DATA OE DATA OE DATA 1. Flash EEPROM tWLRH 2. tWLRH_CE 67 150 67 67 67 67 150 0 3.7 7.5 0 0 250 250 250 1 4.5 9 ns ns ns ns ns ns ns s ms ms ns ns ns ns SPI RESET SPI Flash EEPROM SCK MOSI( ) MISO( ) RESET P251 Table 114 SPI SPI SPI SPI Table 114. MOSI MISO SCK PB5 PB6 PB7 I/O I O I 251 2503F-AVR-12/03 Figure 136. SPI (1) +2.7 - 5.5V VCC +2.7 - 5.5V(2) MOSI MISO SCK PB5 PB6 PB7 XTAL1 AVCC RESET GND Notes: 1. XTAL1 2. VCC -0.3V < AVCC < VCC +0.3V AVCC 2.7 - 5.5V EEPROM MCU EEPROM 0xFF CKSEL (SCK) fck < 12 MHz 2 CPU fck 12 MHz 3 CPU > fck < 12 MHz 2 CPU fck 12 MHz 3 CPU > SPI ATmega32 SCK ATmega32 SCK Figure 137 ATmega32 ( Table 116 4 ) 1. RESET SCK "0" VCC GND SCK SCK RESET 2 CPU 2. 20 ms MOSI 3. (0x53) 4 0x53 RESET 4. Flash 6 LSB 7 tWD_FLASH ( Table 115) Flash 252 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 5. EEPROM EEPROM tWD_EEPROM ( Table 115) 0xFF 6. MISO 7. RESET 8. ( ) RESET "1" VCC Flash Flash 0xFF Flash 0xFF 0xFF tWD_FLASH 0xFF 0xFF tWD_FLASH Table 115 EEPROM 0xFF 0xFF 0xFF 0xFF EEPROM 0xFF tWD_EEPROM tWD_EEPROM Table 115 Table 115. Flash EEPROM tWD_FLASH tWD_EEPROM tWD_ERASE 4.5 ms 9.0 ms 9.0 ms EEPROM Figure 137. SPI SERIAL DATA INPUT (MOSI) SERIAL DATA OUTPUT (MISO) SERIAL CLOCK INPUT (SCK) SAMPLE MSB LSB MSB LSB 253 2503F-AVR-12/03 Table 116. SPI 1 1010 1100 1010 1100 0010 H000 0100 H000 2 0101 0011 100x xxxx 00aa aaaa 00xx xxxx 3 xxxx xxxx xxxx xxxx bbbb bbbb xxbb bbbb 4 xxxx xxxx xxxx xxxx oooo oooo iiii iiii RESET EEPROM Flash a:b H( ) o b H( ) i a:b EEPROM a:b o EEPROM a:b i "0" "1" P239 Table 103 "0" P239 Table 103 b o. "0" "1" P240 Table 106 "0" "1" P240 Table 105 "0" "1" P240 Table 106 "0" "1" P240 Table 105 EEPROM EEPROM Note: 0100 1100 1010 0000 1100 0000 0101 1000 1010 1100 0011 0000 1010 1100 1010 1100 0101 0000 0101 1000 0011 1000 00aa aaaa 00xx xxaa 00xx xxaa 0000 0000 111x xxxx 00xx xxxx 1010 0000 1010 1000 0000 0000 0000 1000 00xx xxxx bbxx xxxx bbbb bbbb bbbb bbbb xxxx xxxx xxxx xxxx xxxx xxbb xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 0000 0000 xxxx xxxx oooo oooo iiii iiii xxoo oooo 11ii iiii oooo oooo iiii iiii iiii iiii oooo oooo oooo oooo oooo oooo a = b = H =0 - 1 - o = i = x = SPI SPI P273 "SPI " JTAG 4 JTAG :TCKTMSTDI TDOreset JTAG JTAGEN MCUCSR JTD JTD 1 reset JTD JTAG JTAG I/O ISP JTAG JTAG LSB / JTAG JTAG 4 16 JTAG OPCODE 16 TDI TDO 254 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) TAPRun-Test/Idle JTAG Figure 138 Figure 138. 1 Test-Logic-Reset 0 0 Run-Test/Idle 1 Select-DR Scan 0 1 Capture-DR 0 Shift-DR 1 Exit1-DR 0 Pause-DR 1 0 Exit2-DR 1 Update-DR 1 0 0 0 1 0 1 1 Select-IR Scan 0 Capture-IR 0 Shift-IR 1 Exit1-IR 0 Pause-IR 1 Exit2-IR 1 Update-IR 1 0 0 1 0 1 AVR_RESET ($C) AVR_RESETAVRJTAG AVR TAP 1 1 * Shift-DR TCK PROG_ENABLE ($4) PROG_ENABLEAVRJTAG JTAG 16 * * Shift-DR Update-DR 255 2503F-AVR-12/03 PROG_COMMANDS ($5) AVR JTAG JTAG 15 * * * * Capture-DR Shift-DR TCK Update-DR Flash Run-Test/Idle ( Table 117 ) PROG_PAGELOAD ($6) AVRJTAG JTAGFlash1024 Flash 8 JTAG Update-DR Shift-DR Flash * Shift-DR Flash TCK TDI , 1 JTAG PROG_PAGELOAD AVR JTAG Note: PROG_PAGEREAD ($7) AVRJTAG JTAGFlash 1032 Flash Flash 8 8 JTAG Capture-DR Shift-DR Flash * Shift-DR Flash 1 TCK TDO TDI JTAG PROG_PAGEREAD AVRJTAG Note: JTAG P256 " JTAG " * * * * * Flash Flash 256 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 0 0 ( P23 " " ) P210 Figure 115 16 ( 1010_0011_0111_0000) JTAG Figure 139. TDI D A T A $A370 = D Q Programming Enable ClockDR & PROG_ENABLE TDO 15 JTAG Table 117 Figure 141 257 2503F-AVR-12/03 Figure 140. TDI S T R O B E S A D D R E S S / D A T A Flash EEPROM Fuses Lock Bits TDO 258 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 117. JTAG 1a. a = , b = , H = 0 - , 1 - , o = , i = , x = TDI 0100011_10000000 0110001_10000000 0110011_10000000 0110011_10000000 0110011_10000000 0100011_00010000 0000111_aaaaaaaa 0000011_bbbbbbbb 0010011_iiiiiiii 0010111_iiiiiiii 0110111_00000000 1110111_00000000 0110111_00000000 0110111_00000000 0110101_00000000 0110111_00000000 0110111_00000000 0110111_00000000 0100011_00000010 0000111_aaaaaaaa 0000011_bbbbbbbb 0110010_00000000 0110110_00000000 0110111_00000000 0100011_00010001 0000111_aaaaaaaa 0000011_bbbbbbbb 0010011_iiiiiiii 0110111_00000000 1110111_00000000 0110111_00000000 0110011_00000000 0110001_00000000 0110011_00000000 0110011_00000000 0110011_00000000 0100011_00000011 0000111_aaaaaaaa TDO xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxox_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxox_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_oooooooo xxxxxxx_oooooooo xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxox_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (9) (1) (9) (9) (1) (9) (2) 1b. 2a. Flash 2b. 2c. 2d. 2e. 2f. 2g. Flash (1) 2h. 3a. Flash 3b. 3c. 3d. (2) 4a. EEPROM 4b. 4c. 4d. 4e. 4f. EEPROM (1) 4g. 5a. EEPROM 5b. (2) 259 2503F-AVR-12/03 Table 117. JTAG (Continued) 5c. 5d. a = , b = , H = 0 - , 1 - , o = , i = , x = TDI 0000011_bbbbbbbb 0110011_bbbbbbbb 0110010_00000000 0110011_00000000 0100011_01000000 0010011_iiiiiiii 0110111_00000000 0110101_00000000 0110111_00000000 0110111_00000000 0110111_00000000 0010011_iiiiiiii 0110011_00000000 0110001_00000000 0110011_00000000 0110011_00000000 0110011_00000000 0100011_00100000 0010011_11iiiiii 0110011_00000000 0110001_00000000 0110011_00000000 0110011_00000000 0110011_00000000 0100011_00000100 0111110_00000000 0111111_00000000 0110010_00000000 0110011_00000000 0110110_00000000 0110111_00000000 0111110_00000000 0110010_00000000 0110110_00000000 0110111_00000000 0100011_00001000 0000011_bbbbbbbb 0110010_00000000 0110011_00000000 TDO xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_oooooooo xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxox_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxox_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxox_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_oooooooo xxxxxxx_xxxxxxxx xxxxxxx_oooooooo xxxxxxx_xxxxxxxx xxxxxxx_xxoooooo xxxxxxx_xxxxxxxx xxxxxxx_oooooooo xxxxxxx_oooooooo xxxxxxx_oooooooo xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_oooooooo (5) (5) (4) (1) (3) (1) 6a. 6b. (6) 6c. 6d. 6e. (7) 6f. (2) (3) (1) 6g. 7a. 7b. 7c. (9) (2) 7d. 8a. / 8b. (6) (2) 8c. (7) 8d. (8) 8e. 9a. 9b. 9c. 260 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 117. JTAG (Continued) 10a. 10b. 10c. 11a. Notes: 1. 2. 3. 4. 5. 6. 7. 8. 9. a = , b = , H = 0 - , 1 - , o = , i = , x = TDI 0100011_00001000 0000011_bbbbbbbb 0110110_00000000 0110111_00000000 0100011_00000000 0110011_00000000 TDO xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_oooooooo xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx ( ) 7 MSB o = "1". "0" = "1" = "0" = "1" = "0" = "1" = P240 Table 105 P240 Table 106 P239 Table 103 PCMSB EEAMSB(Table 111 Table 112) 261 2503F-AVR-12/03 Figure 141. / 1 Test-Logic-Reset 0 0 Run-Test/Idle 1 Select-DR Scan 0 1 Capture-DR 0 Shift-DR 1 Exit1-DR 0 Pause-DR 1 0 Exit2-DR 1 Update-DR 1 0 0 0 1 0 1 1 Select-IR Scan 0 Capture-IR 0 Shift-IR 1 Exit1-IR 0 Pause-IR 1 Exit2-IR 1 Update-IR 1 0 0 1 0 1 Flash Flash Flash 8 Flash LSB MSB Flash 262 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 142. Flash STROBES TDI State Machine ADDRESS Flash EEPROM Fuses Lock Bits D A T A TDO Flash Flash Flash 8 8 Flash 8 LSB MSB Flash Figure 143. Flash STROBES TDI State Machine ADDRESS Flash EEPROM Fuses Lock Bits D A T A TDO 263 2503F-AVR-12/03 "1a" "1b" Table 117 1. JTAG AVR_RESET 1 Reset 2. PROG_ENABLE 1010_0011_0111_0000 1. JTAG PROG_COMMANDS 2. 11a 3. PROG_ENABLE 0000_0000_0000_0000 4. JTAG AVR_RESET 0 Reset 1. JTAG PROG_COMMANDS 2. 1a 3. 1b tWLRH_CE( P250 Table 113 ) Flash Flash P266 " " 1. JTAG PROG_COMMANDS 2. 2a Flash 3. 2b 4. 2c 5. 2d 2e 2f 6. 4 5 7. 2g 8. 2h Flash tWLRH( P250 Table 113 ) 9. 3 7 PROG_PAGELOAD 1. JTAG PROG_COMMANDS 2. 2a Flash 3. 2b 2c PCWORD( P243 Table 111 ) 0 4. JTAG PROG_PAGELOAD 5. LSB MSB 6. JTAG PROG_COMMANDS 7. 2g 8. 2h Flash tWLRH ( P250 Table 113 ). 9. 3 8 264 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Flash 1. JTAG PROG_COMMANDS 2. 3a Flash 3. 3b 3c 4. 3d 5. 3 4 PROG_PAGEREAD 1. JTAG PROG_COMMANDS 2. 3a Flash 3. 3b3cPCWORD ( P243 Table 111 ) 0 4. JTAG PROG_PAGEREAD 5. LSB MSB 6. JTAG PROG_COMMANDS 7. 3 6 EEPROM EEPROM P266 " " 1. JTAG PROG_COMMANDS 2. 4a EEPROM 3. 4b 4. 4c 5. 4d 4e 6. 4 5 7. 4f 8. 4gEEPROM tWLRH(P250 Table 113 ) 9. 3 8 EEPROM PROG_PAGELOAD EEPROM 1. JTAG PROG_COMMANDS 2. 5a EEPROM 3. 5b 5c 4. 5d 5. 3 4 EEPROM PROG_PAGEREAD 265 2503F-AVR-12/03 1. JTAG PROG_COMMANDS 2. 6a 3. 6b 0 4. 6c 5. 6d tWLRH( P250 Table 113 ) 6. 6e 0 1 7. 6f 8. 6g tWLRH( P250 Table 113 ) 1. JTAG PROG_COMMANDS 2. 7a 3. 7b 0 4. 7c 5. 7d tWLRH( P250 Table 113 ) 1. JTAG PROG_COMMANDS 2. 8a / 3. 8e 8b 8c 8d 1. JTAG PROG_COMMANDS 2. 9a 3. 9b 0x00 4. 9c 5. 0x01 0x02 3 4 1. JTAG PROG_COMMANDS 2. 10a 3. 10b 0x00 4. 10c 266 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) * ........................................................ -55C +125C ........................................................ -65C +150C RESET............ -0.5V VCC+0.5V RESET .................................. -0.5V +13.0V .................................................................... 6.0V I/O ......................................... 40.0 mA *NOTICE: " " VCC GND ................................ 200.0 mA TA = -40C 85C, VCC = 2.7V 5.5V ( ) VIL VIL1 VIH VIH1 VIH2 VOL VOH IIL IIH RRST Rpu ( A,B,C,D) (3) XTAL1 XTAL1 XTAL1 RESET XTAL1 RESET IOL = 20 mA, VCC = 5V IOL = 10 mA, VCC = 3V IOH = -20 mA, VCC = 5V IOH = -10 mA, VCC = 3V VCC = 5.5V, ( ) VCC = 5.5V, ( ) -0.5 -0.5 0.6 VCC(2) 0.7 VCC(2) 0.9 VCC (2) 0.2 VCC 0.1 VCC (1) (1) V V V V V V V V V VCC + 0.5 VCC + 0.5 VCC + 0.5 0.7 0.5 (4) ( A,B,C,D) I/O I/O Reset I/O 4.0 2.2 1 1 30 20 60 50 A A k k 267 2503F-AVR-12/03 TA = -40C 85C, VCC = 2.7V 5.5V ( ) 1 MHz, VCC = 3V (ATmega32L) 4 MHz, VCC = 3V (ATmega32L) 8 MHz, VCC = 5V (ATmega32) 1 MHz, VCC = 3V (ATmega32L) 4 MHz, VCC = 3V (ATmega32L) 8 MHz, VCC = 5V (ATmega32) (5) VACIO IACLK tACID Notes: 1. 2. 3. WDT , VCC = 3V WDT , VCC = 3V VCC = 5V Vin = VCC/2 VCC = 5V Vin = VCC/2 -50 1.1 3.8 12 0.35 1.2 5.5 < 25 <1 2.5 8 20 10 40 50 5 15 mA mA mA mA mA mA A A mV nA ICC 4. 750 VCC = 2.7V ns 500 VCC = 4.0V " " " " ()I/O(20 mA CC = 5V 10 mAVCC = 3V) V PDIP 1] IOL 400 mA 2] A0 - A7 IOL 200 mA 3] B0 - B7,C0 - C7, D0 - D7 XTAL2 IOL 300 mA TQFP MLF 1] IOL 400 mA 2] A0 - A7 IOL 200 mA 3] B0 - B4 IOL 200 mA 4] B3 - B7, XTAL2, D0 - D2 IOL 200 mA 5] D3 - D7 IOL 200 mA 6] C0 - C7 IOL 200 mA IOL VOL ()I/O(20 mA CC = 5V 10 mAVCC = 3V) V PDIP 1] IOH 400 mA 2] A0 - A7 IOH 200 mA 3] B0 - B7,C0 - C7, D0 - D7 XTAL2 IOH 300 mA TQFP MLF 1] IOH 400 mA 2] A0 - A7 IOH 200 mA 3] B0 - B4 IOH 200 mA 4] B3 - B7, XTAL2, D0 - D2 IOH 200 mA 5] D3 - D7 IOH 200 mA 268 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 6] C0 - C7 IOH 200 mA IOH VOH 5. VCC 2.5V Figure 144. V IH1 V IL1 Table 118. VCC = 2.7V - 5.5V 1/tCLCL tCLCL tCHCX tCLCX tCLCH tCHCL 0 125 50 50 1.6 1.6 2 8 VCC = 4.5V - 5.5V 0 62.5 25 25 0.5 0.5 2 16 MHz ns ns ns s s % tCLCL Table 119. RC (VCC = 5V) R [k](1) 100 33 10 Notes: C [pF] 47 22 22 f(2) 87 kHz 650 kHz 2.0 MHz 1. R 3 k - 100 k 20 pF C C C 2. 269 2503F-AVR-12/03 Table 120 ATmega32 Figure 145 Table 120. VIL VIH Vhys(1) VOL tr(1) tof(1) tSP(1) Ii Ci(1) fSCL (1) SDA SCL VIHmin VILmax I/O I/O SCL -0.5 0.7 VCC 0.05 VCC(2) 3 mA sink current 0 20 + 0.1Cb (3)(2) (3)(2) 0.3 VCC VCC + 0.5 - 0.4 300 250 50(2) 10 10 400 1000ns -----------------Cb 300ns --------------Cb - - - - - - - - 3.45 0.9 - - - - - - V V V V ns ns ns A pF kHz s s s s s s s s s s ns ns s s s s 10 pF < Cb < 400 pF (3) 20 + 0.1Cb 0 -10 - 0.1VCC < Vi < 0.9VCC fCK(4) > max(16fSCL, 250kHz) fSCL 100 kHz (5) 0 V CC - 0,4V ----------------------------3mA V CC - 0,4V ----------------------------3mA 4.0 0.6 4.7 1.3 4.0 0.6 4.7 0.6 0 0 250 100 4.0 0.6 4.7 1.3 Rp fSCL > 100 kHz fSCL 100 kHz fSCL > 100 kHz fSCL 100 kHz (6) (7) tHD;STA tLOW tHIGH tSU;STA tHD;DAT tSU;DAT tSU;STO tBUF Notes: 1. 2. 3. 4. START ( ) SCL SCL STARTS STOP fSCL > 100 kHz fSCL 100 kHz fSCL > 100 kHz fSCL 100 kHz fSCL > 100 kHz fSCL 100 kHz fSCL > 100 kHz fSCL 100 kHz fSCL > 100 kHz fSCL 100 kHz fSCL > 100 kHz fSCL 100 kHz fSCL > 100 kHz STOP START ATmega32 100% fSCL > 100 kHz Cb = fCK = CPU 270 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 5. ATmega32 fSCL 6. ATmega32 (1/fSCL - 2/fCK) fSCL = 100 kHz fCK 6 MHz 7. ATmega32 (1/fSCL - 2/fCK) fCK = 8 MHz fSCL > 308 kHz ATmega32 ATmega32 (400 kHz) tLOW Figure 145. tof tLOW SCL tSU;STA SDA tHD;STA tHD;DAT tSU;DAT tSU;STO tHIGH tLOW tr tBUF SPI Figure 146 Figure 147 Table 121. SPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 SCK SCK / / SCK SCK SCK SS SCK SCK / / SCK SCK SS SS SS SCK 2 * tck 20 10 10 tck 15 ns 4 * tck 2 * tck 1.6 s Table 58 50% 3.6 10 10 0.5 * tSCK 10 10 15 ns 271 2503F-AVR-12/03 Figure 146. SPI ( ) SS 6 1 SCK (CPOL = 0) 2 2 SCK (CPOL = 1) 4 5 3 MISO (Data Input) MSB 7 ... LSB 8 MOSI (Data Output) MSB ... LSB Figure 147. SPI ( ) 18 SS 9 10 16 SCK (CPOL = 0) 11 11 SCK (CPOL = 1) 13 14 12 MOSI (Data Input) MSB 15 ... LSB 17 MISO (Data Output) MSB ... LSB X 272 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 122. ADC TA = -40C 85C VREF = 4V, VCC = 4V ADC = 200 kHz VREF = 4V, VCC = 4V ADC = 1 MHz ( INL, DNL, , Gain, ) VREF = 4V, VCC = 4V ADC = 200 kHz VREF = 4V, VCC = 4V ADC = 1 MHz VREF = 4V, VCC = 4V ADC = 200 kHz VREF = 4V, VCC = 4V ADC = 200 kHz VREF = 4V, VCC = 4V ADC = 200 kHz VREF = 4V, VCC = 4V ADC = 200 kHz 50 13 VCC - 0.3 2.0 GND 0 38.5 2.3 2.56 32 100 2.7 (1) 10 1.5 Bits LSB 3 LSB 1.5 LSB 3 LSB 0.75 LSB 0.25 LSB 0.75 LSB AVCC VREF VIN ADC VINT RREF RAIN Notes: 1. AVCC 2.7V. 2. AVCC 5.5V. 0.75 1000 260 VCC + 0.3 AVCC VREF 1023 (2) LSB kHz s V V V LSB kHz V k M 273 2503F-AVR-12/03 Table 123. ADC TA = -40C 85C Gain = 1x Gain = 10x Gain = 200x Gain = 1x VREF = 4V, VCC = 5V ADC = 50 - 200 kHz Gain = 10x VREF = 4V, VCC = 5V ADC = 50 - 200 kHz Gain = 200x VREF = 4V, VCC = 5V ADC = 50 - 200 kHz Gain = 1x VREF = 4V, VCC = 5V ADC = 50 - 200 kHz INL( ) Gain = 10x VREF = 4V, VCC = 5V ADC = 50 - 200 kHz Gain = 200x VREF = 4V, VCC = 5V ADC = 50 - 200 kHz Gain = 1x Gain = 10x Gain = 200x Gain = 1x VREF = 4V, VCC = 5V ADC = 50 - 200 kHz Gain = 10x VREF = 4V, VCC = 5V ADC = 50 - 200 kHz Gain = 200x VREF = 4V, VCC = 5V ADC = 50 - 200 kHz AVCC VREF VIN VDIFF ADC 50 65 VCC - 0.3(1) 2.0 GND -VREF/Gain -511 4 17 10 10 10 Bits Bits Bits LSB 16 LSB 7 LSB 0.75 LSB 0.75 LSB 2 1.6 1.5 0.2 1 LSB % % % LSB 1.5 LSB 4.5 200 260 VCC + 0.3(2) AVCC - 0.5 VCC VREF/Gain/ 511 LSB kHz s V V V V LSB kHz 274 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Table 123. ADC TA = -40C 85C (Continued) VINT RREF RAIN Notes: 1. AVCC 2.7V. 2. AVCC 5.5V. 2.3 2.56 32 100 2.7 V k M 5. 275 2503F-AVR-12/03 ATmega32 I/O I/O CL*VCC*f CL VCC f Figure 148. RC (Vcc = 5V T=25c 1 MHz) CALIBRATED 1MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE 1.03 1.02 1.01 1 0.99 FRc (MHz) Vcc = 5.5V Vcc = 5.0V Vcc = 4.5V Vcc = 4.0V Vcc = 3.6V Vcc = 3.3V Vcc = 3.0V Vcc = 2.7V 0.98 0.97 0.96 0.95 0.94 0.93 0.92 -40 -20 0 20 Ta(C) 40 60 80 276 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 149. RC (Vcc = 5V T=25c 1 MHz ) CALIBRATED 1MHz RC OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE 1.03 1.02 1.01 1 0.99 FRc (MHz) TA = 85C TA = -40C TA = -10C TA = 25C TA = 45C TA = 70C 0.98 0.97 0.96 0.95 0.94 0.93 0.92 2.5 3 3.5 4 Vcc(V) 4.5 5 5.5 Figure 150. RC (Vcc = 5V T=25c 2 MHz) CALIBRATED 2MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE 2.1 2.05 2 Vcc = 5.5V FRc (MHz) Vcc = 5.0V Vcc = 4.5V 1.95 1.9 Vcc = 4.0V Vcc = 3.6V Vcc = 3.3V Vcc = 3.0V Vcc = 2.7V 1.85 1.8 -40 -20 0 20 Ta(C) 40 60 80 277 2503F-AVR-12/03 Figure 151. RC (Vcc = 5V T=25c 2 MHz ) CALIBRATED 2MHz RC OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE 2.1 2.05 TA = -40C TA = -10C TA = 25C TA = 45C TA = 70C TA = 85C 2 FRc (MHz) 1.95 1.9 1.85 1.8 2.5 3 3.5 4 Vcc(V) 4.5 5 5.5 Figure 152. RC (Vcc = 5V T=25c 4 MHz) CALIBRATED 4MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE 4.1 4.05 4 3.95 3.9 FRc (MHz) Vcc = 5.5V Vcc = 5.0V Vcc = 4.5V Vcc = 4.0V Vcc = 3.6V Vcc = 3.3V Vcc = 3.0V Vcc = 2.7V 3.85 3.8 3.75 3.7 3.65 3.6 -40 -20 0 20 Ta(C) 40 60 80 278 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) Figure 153. RC (Vcc = 5V T=25c 4 MHz) CALIBRATED 4MHz RC OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE 4.1 4.05 4 3.95 3.9 FRc (MHz) TA = 85C TA = -40C TA = -10C TA = 25C TA = 45C TA = 70C 3.85 3.8 3.75 3.7 3.65 3.6 2.5 3 3.5 4 Vcc(V) 4.5 5 5.5 Figure 154. RC (Vcc = 5V T=25c 8 MHz) CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE 8.5 8.3 8.1 7.9 FRc (MHz) Vcc = 5.5V Vcc = 5.0V Vcc = 4.5V Vcc = 4.0V Vcc = 3.6V Vcc = 3.3V Vcc = 3.0V Vcc = 2.7V 7.7 7.5 7.3 7.1 6.9 6.7 -40 -20 0 20 Ta(C) 40 60 80 279 2503F-AVR-12/03 Figure 155. RC (Vcc = 5V T=25c 8 MHz ) CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE 8.5 8.3 8.1 7.9 FRc (MHz) TA = -40C TA = -10C TA = 25C TA = 45C TA = 70C TA = 85C 7.7 7.5 7.3 7.1 6.9 6.7 2.5 3 3.5 4 Vcc(V) 4.5 5 5.5 280 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) $3F ($5F) $3E ($5E) $3D ($5D) $3C ($5C) $3B ($5B) $3A ($5A) $39 ($59) $38 ($58) $37 ($57) $36 ($56) $35 ($55) $34 ($54) $33 ($53) $32 ($52) $31(1) ($51)(1) $30 ($50) $2F ($4F) $2E ($4E) $2D ($4D) $2C ($4C) $2B ($4B) $2A ($4A) $29 ($49) $28 ($48) $27 ($47) $26 ($46) $25 ($45) $24 ($44) $23 ($43) $22 ($42) $21 ($41) $20(2) ($40)(2) $1F ($3F) $1E ($3E) $1D ($3D) $1C ($3C) $1B ($3B) $1A ($3A) $19 ($39) $18 ($38) $17 ($37) $16 ($36) $15 ($35) $14 ($34) $13 ($33) $12 ($32) $11 ($31) $10 ($30) $0F ($2F) $0E ($2E) $0D ($2D) $0C ($2C) $0B ($2B) $0A ($2A) $09 ($29) $08 ($28) $07 ($27) $06 ($26) $05 ($25) $04 ($24) $03 ($23) $02 ($22) SREG SPH SPL OCR0 GICR GIFR TIMSK TIFR SPMCR TWCR MCUCR MCUCSR TCCR0 TCNT0 OSCCAL OCDR SFIOR TCCR1A TCCR1B TCNT1H TCNT1L OCR1AH OCR1AL OCR1BH OCR1BL ICR1H ICR1L TCCR2 TCNT2 OCR2 ASSR WDTCR UBRRH UCSRC EEARH EEARL EEDR EECR PORTA DDRA PINA PORTB DDRB PINB PORTC DDRC PINC PORTD DDRD PIND SPDR SPSR SPCR UDR UCSRA UCSRB UBRRL ACSR ADMUX ADCSRA ADCH ADCL TWDR TWAR Bit 7 I - Bit 6 T - Bit 5 H - SP5 INT2 INTF2 TICIE1 ICF1 - TWSTA SM1 - COM01 Bit 4 S - SP4 - - OCIE1A OCF1A RWWSRE TWSTO SM0 JTRF COM00 Bit 3 V SP11 SP3 - - OCIE1B OCF1B BLBSET TWWC ISC11 WDRF WGM01 Bit 2 N SP10 SP2 - - TOIE1 TOV1 PGWRT TWEN ISC10 BORF CS02 Bit 1 Z SP9 SP1 IVSEL - OCIE0 OCF0 PGERS - ISC01 EXTRF CS01 Bit 0 C SP8 SP0 IVCE - TOIE0 TOV0 SPMEN TWIE ISC00 PORF CS00 8 10 10 78 45, 65 66 78, 104, 120 78, 105, 120 232 164 30, 64 38, 65, 213 76 77 28 209 SP7 SP6 T/C0 INT1 INTF1 OCIE2 OCF2 SPMIE TWINT SE JTD FOC0 T/C0 (8 ) ADTS2 COM1A1 ICNC1 ADTS1 COM1A0 ICES1 INT0 INTF0 TOIE2 TOV2 RWWSB TWEA SM2 ISC2 WGM00 ADTS0 COM1B1 - - COM1B0 WGM13 ACME FOC1A WGM12 PUD FOC1B CS12 PSR2 WGM11 CS11 PSR10 WGM10 CS10 54,80,121,184,202 100 103 103 103 104 104 104 104 104 104 T/C1 - T/C1 - T/C1 - A T/C1 - A T/C1 - B T/C1 - B T/C1 - T/C1 - FOC2 T/C2 (8 ) T/C2 - - URSEL URSEL - EEPROM - PORTA7 DDA7 PINA7 PORTB7 DDB7 PINB7 PORTC7 DDC7 PINC7 PORTD7 DDD7 PIND7 SPI SPIF SPIE RXC RXCIE ACD REFS1 ADEN WCOL SPE TXC TXCIE ACBG REFS0 ADSC - DORD UDRE UDRIE ACO ADLAR ADATE - MSTR FE RXEN ACI MUX4 ADIF - CPOL DOR TXEN ACIE MUX3 ADIE - CPHA PE UCSZ2 ACIC MUX2 ADPS2 - SPR1 U2X RXB8 ACIS1 MUX1 ADPS1 SPI2X SPR0 MPCM TXB8 ACIS0 MUX0 ADPS0 - PORTA6 DDA6 PINA6 PORTB6 DDB6 PINB6 PORTC6 DDC6 PINC6 PORTD6 DDD6 PIND6 - PORTA5 DDA5 PINA5 PORTB5 DDB5 PINB5 PORTC5 DDC5 PINC5 PORTD5 DDD5 PIND5 - PORTA4 DDA4 PINA4 PORTB4 DDB4 PINB4 PORTC4 DDC4 PINC4 PORTD4 DDD4 PIND4 EERIE PORTA3 DDA3 PINA3 PORTB3 DDB3 PINB3 PORTC3 DDC3 PINC3 PORTD3 DDD3 PIND3 EEMWE PORTA2 DDA2 PINA2 PORTB2 DDB2 PINB2 PORTC2 DDC2 PINC2 PORTD2 DDD2 PIND2 EEWE PORTA1 DDA1 PINA1 PORTB1 DDB1 PINB1 PORTC1 DDC1 PINC1 PORTD1 DDD1 PIND1 EERE PORTA0 DDA0 PINA0 PORTB0 DDB0 PINB0 PORTC0 DDC0 PINC0 PORTD0 DDD0 PIND0 - - - UMSEL - - - - UPM1 - - WDTOE - UPM0 - USBS - - AS2 WDE TCN2UB WDP2 UCSZ1 OCR2UB WDP1 UBRR[11:8] UCSZ0 EEAR9 UCPOL EEAR8 TCR2UB WDP0 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20 116 117 118 119 39 152 149 17 17 17 17 61 61 62 62 62 62 62 62 62 62 62 63 128 128 126 147 148 148 152 185 199 201 202 202 165 EEPROM USART I/O USART ADC ADC TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 166 281 2503F-AVR-12/03 $01 ($21) $00 ($20) TWSR TWBR Bit 7 TWS7 Bit 6 TWS6 Bit 5 TWS5 Bit 4 TWS4 Bit 3 TWS3 Bit 2 - Bit 1 TWPS1 Bit 0 TWPS0 165 164 r Notes: 1. 2. 3. 4. OCDEN OSCCAL OCDR UBRRH UCSRC USART 0 I/O 1 AVR CBI SBI CBI SBI 0x00 - 0x1F 282 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) ADD ADC ADIW SUB SUBI SBC SBCI SBIW AND ANDI OR ORI EOR COM NEG SBR CBR INC DEC TST CLR SER MUL MULS MULSU FMUL FMULS FMULSU Rd, Rr Rd, Rr Rdl,K Rd, Rr Rd, K Rd, Rr Rd, K Rdl,K Rd, Rr Rd, K Rd, Rr Rd, K Rd, Rr Rd Rd Rd,K Rd,K Rd Rd Rd Rd Rd Rd, Rr Rd, Rr Rd, Rr Rd, Rr Rd, Rr Rd, Rr k k k k 1 2 (Z) (Z) Rd,Rr Rd,Rr Rd,Rr Rd,K Rr, b Rr, b P, b P, b s, k s, k k k k k k k k k k k k k k k k k "0" "1" I/O "0" I/O "1" "1" "0" "1" "0" "1" "0" T "1" T "0" "1" "0" Rd Rd + Rr Rd Rd + Rr + C Rdh:Rdl Rdh:Rdl + K Rd Rd - Rr Rd Rd - K Rd Rd - Rr - C Rd Rd - K - C Rdh:Rdl Rdh:Rdl - K Rd Rd * Rr Rd Rd * K Rd Rd v Rr Rd Rd v K Rd Rd Rr Rd $FF - Rd Rd $00 - Rd Rd Rd v K Rd Rd * ($FF - K) Rd Rd + 1 Rd Rd - 1 Rd Rd * Rd Rd Rd Rd Rd $FF R1:R0 Rd x Rr R1:R0 Rd x Rr R1:R0 Rd x Rr Z,C,N,V,H Z,C,N,V,H Z,C,N,V,S Z,C,N,V,H Z,C,N,V,H Z,C,N,V,H Z,C,N,V,H Z,C,N,V,S Z,N,V Z,N,V Z,N,V Z,N,V Z,N,V Z,C,N,V Z,C,N,V,H Z,N,V Z,N,V Z,N,V Z,N,V Z,N,V Z,N,V None Z,C Z,C Z,C Z,C Z,C Z,C None None None None None None None I None Z, N,V,C,H Z, N,V,C,H Z, N,V,C,H None None None None None None None None None None None None None None None None None None None None None None 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 1/2/3 1 1 1 1/2/3 1/2/3 1/2/3 1/2/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 # 1 R1:R0 (Rd x Rr) << 1 R1:R0 (Rd x Rr) << 1 PC PC + k + 1 PC Z PC k PC PC + k + 1 PC Z PC k PC Stack PC Stack if (Rd = Rr) PC PC + 2 or 3 Rd - Rr Rd - Rr - C Rd - K if (Rr(b)=0) PC PC + 2 or 3 if (Rr(b)=1) PC PC + 2 or 3 if (P(b)=0) PC PC + 2 or 3 if (P(b)=1) PC PC + 2 or 3 if (SREG(s) = 1) then PCPC+k + 1 if (SREG(s) = 0) then PCPC+k + 1 if (Z = 1) then PC PC + k + 1 if (Z = 0) then PC PC + k + 1 if (C = 1) then PC PC + k + 1 if (C = 0) then PC PC + k + 1 if (C = 0) then PC PC + k + 1 if (C = 1) then PC PC + k + 1 if (N = 1) then PC PC + k + 1 if (N = 0) then PC PC + k + 1 if (N V= 0) then PC PC + k + 1 if (N V= 1) then PC PC + k + 1 if (H = 1) then PC PC + k + 1 if (H = 0) then PC PC + k + 1 if (T = 1) then PC PC + k + 1 if (T = 0) then PC PC + k + 1 if (V = 1) then PC PC + k + 1 if (V = 0) then PC PC + k + 1 R1:R0 (Rd x Rr) << RJMP IJMP JMP RCALL ICALL CALL RET RETI CPSE CP CPC CPI SBRC SBRS SBIC SBIS BRBS BRBC BREQ BRNE BRCS BRCC BRSH BRLO BRMI BRPL BRGE BRLT BRHS BRHC BRTS BRTC BRVS BRVC 283 2503F-AVR-12/03 BRIE BRID k k Rd, Rr Rd, Rr Rd, K Rd, X Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd,Y+q Rd, Z Rd, Z+ Rd, -Z Rd, Z+q Rd, k X, Rr X+, Rr - X, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr Z, Rr Z+, Rr -Z, Rr Z+q,Rr k, Rr Rd, Z Rd, Z+ Rd, P P, Rr Rr Rd P,b P,b Rd Rd Rd Rd Rd Rd s s Rr, b Rd, b SRAM SRAM I/O I/O I/O T T 2 2 SREG T SREG T if ( I = 1) then PC PC + k + 1 if ( I = 0) then PC PC + k + 1 Rd Rr Rd+1:Rd Rr+1:Rr Rd K Rd (X) Rd (X), X X + 1 X X - 1, Rd (X) Rd (Y) Rd (Y), Y Y + 1 Y Y - 1, Rd (Y) Rd (Y + q) Rd (Z) Rd (Z), Z Z+1 Z Z - 1, Rd (Z) Rd (Z + q) Rd (k) (X) Rr (X) Rr, X X + 1 X X - 1, (X) Rr (Y) Rr (Y) Rr, Y Y + 1 Y Y - 1, (Y) Rr (Y + q) Rr (Z) Rr (Z) Rr, Z Z + 1 Z Z - 1, (Z) Rr (Z + q) Rr (k) Rr R0 (Z) Rd (Z) Rd (Z), Z Z+1 (Z) R1:R0 Rd P P Rr Stack Rr Rd Stack I/O(P,b) 1 I/O(P,b) 0 Rd(n+1) Rd(n), Rd(0) 0 Rd(n) Rd(n+1), Rd(7) 0 Rd(0)C,Rd(n+1) Rd(n),CRd(7) Rd(7)C,Rd(n) Rd(n+1),CRd(0) Rd(n) Rd(n+1), n=0..6 Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0) SREG(s) 1 SREG(s) 0 T Rr(b) Rd(b) T C1 C0 N1 N0 Z1 Z0 I1 I0 S1 S0 V1 None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None Z,C,N,V Z,C,N,V Z,C,N,V Z,C,N,V Z,C,N,V None SREG(s) SREG(s) T None C C N N Z Z I I S S V # 1/2 1/2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 MOV MOVW LDI LD LD LD LD LD LD LDD LD LD LD LDD LDS ST ST ST ST ST ST STD ST ST ST STD STS LPM LPM LPM SPM IN OUT PUSH POP SBI CBI LSL LSR ROL ROR ASR SWAP BSET BCLR BST BLD SEC CLC SEN CLN SEZ CLZ SEI CLI SES CLS SEV CLV SET CLT SEH SREG V0 T1 T0 H1 V T T H 1 1 1 1 284 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) CLH MCU NOP SLEEP WDR BREAK SREG H0 H # 1 1 1 1 N/A ( specific descr.) ( WDR/timer specific descr.) None None None None 285 2503F-AVR-12/03 Speed (MHz) 8 Power Supply 2.7 - 5.5V Ordering Code ATmega32L-8AC ATmega32L-8PC ATmega32L-8MC ATmega32L-8AI ATmega32L-8PI ATmega32L-8MI 16 4.5 - 5.5V ATmega32-16AC ATmega32-16PC ATmega32-16MI ATmega32-16AI ATmega32-16PI ATmega32-16MC Package 44A 40P6 44M1 44A 40P6 44M1 44A 40P6 44M1 44A 40P6 44M1 Operation Range (0oC 70oC) (-40oC 85oC) (0oC 70oC) (-40oC 85oC) 44A 40P6 44M1 44- (1.0 mm)TQFP 40- 0.600" PDIP 44- 7 x 7 x 1.0 mm 0.50 mm MLF 286 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 44A 44-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP), 10x10mm body, 2.0mm footprint, 0.8mm pitch. Dimension in Millimeters and (Inches)* JEDEC STANDARD MS-026 ACB PIN 1 ID 12.25(0.482) SQ 11.75(0.462) PIN 1 0.80(0.0315) BSC 0.45(0.018) 0.30(0.012) 10.10(0.394) SQ 9.90(0.386) 1.20(0.047) MAX 0.20(0.008) 0.09(0.004) 0~7 0.75(0.030) 0.45(0.018) 0.15(0.006) 0.05(0.002) *Controlling dimension: millimeter REV. A 04/11/2001 287 2503F-AVR-12/03 40P6 40-lead, Plastic Dual Inline Package (PDIP), 0.600" wide Dimension in Millimeters and (Inches)* JEDEC STANDARD MS-011 AC 52.71(2.075) 51.94(2.045) PIN 1 13.97(0.550) 13.46(0.530) 48.26(1.900) REF 4.83(0.190)MAX SEATING PLANE 3.56(0.140) 3.05(0.120) 2.54(0.100)BSC 1.65(0.065) 1.27(0.050) 15.88(0.625) 15.24(0.600) 0.38(0.015) 0.20(0.008) 17.78(0.700)MAX 0.38(0.015)MIN 0.56(0.022) 0.38(0.015) 0 ~ 15 REF *Controlling dimension: Inches REV. A 04/11/2001 288 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) 44M1 D Marked pin#1 identifier SEATING PLANE A1 TOP VIEW A3 A L D2 PIN #1 CORNER SIDE VIEW COMMON DIMENSIONS (*Unit of Measure = mm) SYMBOL A A1 A3 E2 b D D2 E E2 5.00 E MIN 0.80 0.00 0.18 NOM 0.90 0.02 0.25 REF 0.23 7.00 BSC MAX 1.00 0.05 0.30 NOTE 5.00 5.20 7.00 BSC 5.20 5.40 5.40 e b e L 0.35 0.50 BSC 0.55 0.75 BOTTOM VIEW NOTE 1. JEDEC STANDARD MO-220, Fig 1 (Saw Singulation), VKKD-1 08/29/01 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 44M1, 44-pad ,7 x 7 x 1.0 mm body, lead pitch 0.50mm Micro lead frame package (MLF) DRAWING NO. REV 44M1 B 289 2503F-AVR-12/03 ATmega32 Rev. A ATmega32 JTAG IDCODEH IDCODE TDI IEEE1149.1 JTAG IDCODE ID TDI "1" "1" Update-DR "1" ATmega32 IDCODE TAP Test-Logic-Reset ID ATmega32 ID ATmega32 BYPASS ID ATmega32 TAP Test-LogicReset IDCODE ID ATmega32 IDCODE JTAG Update-DR ID 290 ATmega32(L) 2503F-AVR-12/03 ATmega32(L) ATmega32 Rev. 2503E-09/03 Rev. 2503F-12/03 Rev. 2503D-02/03 Rev. 2503E-09/03 1. P27 " RC " 1. P33 "JTAG " " " 2. P35 Table 15 3. P204 " -TAP" JTAGEN 4. Bit 7 - JTD: JTAG 5. P240 Table 105 JTAGEN 6. P269 " " * , 7. P292 " " JTAG IDCODE Rev. 2503C-10/02 Rev. 2503D-02/03 1. P283 " " EEARH EEAR9 2. P266 "Flash" P267 "EEPROM" 3. " " "32 kHz " 4. Timer 0 Timer 2 PWM 5. P235 " ( )" SPM EEPROM 6. P1 " " 7. P20 " EEPROM " 8. P190 " ADC " 9. P216 Table 90 10. P289 " " Rev. 2503B-10/02 Rev. 2503C-10/02 Rev. 2503A-03/02 Rev. 2503B-10/02 1. P269 " " 1. Flash 10,000 / 2. SFIOR Bit nr.4 - ADHSM 3. P23 " " 291 2503F-AVR-12/03 4. P29 " " P269 Table 118 5. P32 " " OCD 6. (WGM ): - - - - P71 " PWM " (T/C0) P72 " PWM " (T/C0) P111 " PWM " (T/C2) P112 " PWM " (T/C2) 7. P150 Table 67 (USART) 8. P269 " " VIL, IIL IIH 9. OSCCAL 2 4 8 MHz P28 " -OSCCAL" P242 " " 10. Table 42 11. Table 45 Table 46 12. Table 119, Table 121 Table 122 13. P292 " " 292 ATmega32(L) 2503F-AVR-12/03 |
Price & Availability of CNMEGA32-32L
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |