![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
MUN2111T1 Series Preferred Devices Bias Resistor Transistors PNP Silicon Surface Mount Transistors with Monolithic Bias Resistor Network This new series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. The device is housed in the SC-59 package which is designed for low power surface mount applications. Features http://onsemi.com PIN 3 COLLECTOR (OUTPUT) R1 PIN 2 BASE (INPUT) R2 * * * * * * * * Simplifies Circuit Design Reduces Board Space Reduces Component Count Moisture Sensitivity Level: 1 ESD Rating - Human Body Model: Class 1 - Machine Model: Class B The SC-59 Package Can be Soldered Using Wave or Reflow The Modified Gull-Winged Leads Absorb Thermal Stress During Soldering Eliminating the Possibility of Damage to the Die Pb-Free Packages are Available PIN 1 EMITTER (GROUND) 3 2 1 SC-59 CASE 318D PLASTIC MAXIMUM RATINGS (TA = 25C unless otherwise noted) Rating Collector - Base Voltage Collector - Emitter Voltage Collector Current Symbol VCBO VCEO IC Value 50 50 100 Unit Vdc Vdc mAdc MARKING DIAGRAM 6x M G G 1 THERMAL CHARACTERISTICS Characteristic Total Device Dissipation TA = 25C Derate above 25C Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Lead Junction and Storage Temperature Range Symbol PD Max 230 (Note 1) 338 (Note 2) 1.8 (Note 1) 2.7 (Note 2) 540 (Note 1) 370 (Note 2) 264 (Note 1) 287 (Note 2) -55 to +150 Unit mW C/W C/W C/W RqJA RqJL TJ, Tstg 6x = Specific Device Code M = Date Code* G = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location. ORDERING INFORMATION C See detailed ordering and shipping information on page 2 of this data sheet. Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. FR-4 @ Minimum Pad. 2. FR-4 @ 1.0 x 1.0 inch Pad. DEVICE MARKING INFORMATION See device marking table on page 2 of this data sheet. Preferred devices are recommended choices for future use and best overall value. (c) Semiconductor Components Industries, LLC, 2006 September, 2006 - Rev. 17 1 Publication Order Number: MUN2111T1/D MUN2111T1 Series DEVICE MARKING AND RESISTOR VALUES Device MUN2111T1 MUN2111T1G MUN2111T3G MUN2112T1 MUN2112T1G MUN2113T1 MUN2113T1G MUN2114T1 MUN2114T1G MUN2115T1 (Note 3) MUN2115T1G (Note 3) MUN2116T1 (Note 3) MUN2116T1G (Note 3) MUN2130T1 (Note 3) MUN2130T1G (Note 3) MUN2131T1 (Note 3) MUN2131T1G (Note 3) MUN2132T1 (Note 3) MUN2132T1G (Note 3) MUN2133T1 (Note 3) MUN2133T1G (Note 3) MUN2134T1 (Note 3) MUN2134T1G (Note 3) MUN2136T1 MUN2136T1G MUN2137T1 MUN2137T1G MUN2140T1 (Note 3) MUN2140T1G (Note 3) Package SC-59 SC-59 (Pb-Free) SC-59 (Pb-Free) SC-59 SC-59 (Pb-Free) SC-59 SC-59 (Pb-Free) SC-59 SC-59 (Pb-Free) SC-59 SC-59 (Pb-Free) SC-59 SC-59 (Pb-Free) SC-59 SC-59 (Pb-Free) SC-59 SC-59 (Pb-Free) SC-59 SC-59 (Pb-Free) SC-59 SC-59 (Pb-Free) SC-59 SC-59 (Pb-Free) SC-59 SC-59 (Pb-Free) SC-59 SC-59 (Pb-Free) SC-59 SC-59 (Pb-Free) Marking 6A 6A 6A 6B 6B 6C 6C 6D 6D 6E 6E 6F 6F 6G 6G 6H 6H 6J 6J 6K 6K 6L 6L 6N 6N 6P 6P 6T 6T R1 (K) 10 10 10 22 22 47 47 10 10 10 10 4.7 4.7 1.0 1.0 2.2 2.2 4.7 4.7 4.7 4.7 22 22 100 100 47 47 47 47 R2 (K) 10 10 10 22 22 47 47 47 47 1.0 1.0 2.2 2.2 4.7 4.7 47 47 47 47 100 100 22 22 3000 / Tape & Reel 3000 / Tape & Reel Shipping 10,000 / Tape & Reel For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 3. New resistor combinations. Updated curves to follow in subsequent data sheets. http://onsemi.com 2 MUN2111T1 Series ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) Characteristic OFF CHARACTERISTICS Collector-Base Cutoff Current (VCB = 50 V, IE = 0) Collector-Emitter Cutoff Current (VCE = 50 V, IB = 0) Emitter-Base Cutoff Current (VEB = 6.0 V, IC = 0) MUN2111T1 MUN2112T1 MUN2113T1 MUN2114T1 MUN2115T1 MUN2116T1 MUN2130T1 MUN2131T1 MUN2132T1 MUN2133T1 MUN2134T1 MUN2136T1 MUN2137T1 MUN2140T1 ICBO ICEO IEBO - - - - - - - - - - - - - - - - 50 50 - - - - - - - - - - - - - - - - - - 100 500 0.5 0.2 0.1 0.2 0.9 1.9 4.3 2.3 1.5 0.18 0.13 0.05 0.13 0.20 - - nAdc nAdc mAdc Symbol Min Typ Max Unit Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0) Collector-Emitter Breakdown Voltage (Note 4) (IC = 2.0 mA, IB = 0) ON CHARACTERISTICS (Note 4) DC Current Gain (VCE = 10 V, IC = 5.0 mA) MUN2111T1 MUN2112T1 MUN2113T1 MUN2114T1 MUN2115T1 MUN2116T1 MUN2130T1 MUN2131T1 MUN2132T1 MUN2133T1 MUN2134T1 MUN2136T1 MUN2137T1 MUN2140T1 MUN2111T1 MUN2112T1 MUN2113T1 MUN2114T1 MUN2115T1 MUN2130T1 MUN2133T1 MUN2136T1 MUN2137T1 MUN2131T1 MUN2116T1 MUN2132T1 MUN2134T1 MUN2140T1 V(BR)CBO V(BR)CEO Vdc Vdc hFE 35 60 80 80 160 160 3.0 8.0 15 80 80 80 80 120 - - - - - - - - - - - - - - 60 100 140 140 250 250 5.0 15 27 140 130 150 140 250 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Vdc 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 Vdc 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Collector-Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA) VCE(sat) (IC = 10 mA, IB = 5.0 mA) (IC = 10 mA, IB = 1.0 mA) Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW) VOL MUN2111T1 MUN2112T1 MUN2114T1 MUN2115T1 MUN2116T1 MUN2130T1 MUN2131T1 MUN2132T1 MUN2133T1 MUN2134T1 MUN2113T1 MUN2140T1 MUN2136T1 MUN2137T1 - - - - - - - - - - - - - - (VCC = 5.0 V, VB = 3.5 V, RL = 1.0 kW) (VCC = 5.0 V, VB = 5.5 V, RL = 1.0 kW) (VCC = 5.0 V, VB = 4.0 V, RL = 1.0 kW) 4. Pulse Test: Pulse Width < 300 ms, Duty Cycle < 2.0%. http://onsemi.com 3 MUN2111T1 Series ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) Characteristic ON CHARACTERISTICS (Note 4) Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW) VOH MUN2111T1 MUN2112T1 MUN2113T1 MUN2114T1 MUN2133T1 MUN2134T1 MUN2136T1 MUN2137T1 MUN2130T1 MUN2115T1 MUN2116T1 MUN2131T1 MUN2132T1 MUN2140T1 MUN2111T1 MUN2112T1 MUN2113T1 MUN2114T1 MUN2115T1 MUN2116T1 MUN2130T1 MUN2131T1 MUN2132T1 MUN2133T1 MUN2134T1 MUN2136T1 MUN2137T1 MUN2140T1 MUN2111T1/MUN2112T1/MUN2113T1/ MUN2136T1 MUN2114T1 MUN2115T1/MUN2116T1/MUN2140T1 MUN2130T1/MUN2131T1/MUN2132T1 MUN2133T1 MUN2134T1 MUN2137T1 R1 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 7.0 15.4 32.9 7.0 7.0 3.3 0.7 1.5 3.3 3.3 15.4 70 32.9 32.9 0.8 0.17 - 0.8 0.055 0.38 1.7 - - - - - - - - - - - - - - 10 22 47 10 10 4.7 1.0 2.2 4.7 4.7 22 100 47 47 1.0 0.21 - 1.0 0.1 0.47 2.1 - - - - - - - - - - - - - - 13 28.6 61.1 13 13 6.1 1.3 2.9 6.1 6.1 28.6 130 61.1 61.1 1.2 0.25 - 1.2 0.185 0.56 2.6 kW Vdc Symbol Min Typ Max Unit (VCC = 5.0 V, VB = 0.050 V, RL = 1.0 kW) (VCC = 5.0 V, VB = 0.25 V, RL = 1.0 kW) Input Resistor Resistor Ratio R1/R2 4. Pulse Test: Pulse Width < 300 ms, Duty Cycle < 2.0%. 350 PD, POWER DISSIPATION (mW) 300 250 200 150 RqJA= 370C/W 100 50 0 -50 0 50 100 150 +12 V Typical Application for PNP BRTs LOAD TA, AMBIENT TEMPERATURE (5C) Figure 1. Derating Curve Figure 2. Inexpensive, Unregulated Current Source http://onsemi.com 4 MUN2111T1 Series TYPICAL ELECTRICAL CHARACTERISTICS - MUN2111T1 VCE(sat), MAXIMUM COLLECTOR VOLTAGE (VOLTS) 1 IC/IB = 10 TA = -25C 75C 0.1 hFE, DC CURRENT GAIN 1000 VCE = 10 V 25C TA = 75C 100 -25C 25C 0.01 0 40 60 IC, COLLECTOR CURRENT (mA) 20 80 10 1 10 IC, COLLECTOR CURRENT (mA) 100 Figure 3. VCE(sat) vs. IC Figure 4. DC Current Gain 4 IC, COLLECTOR CURRENT (mA) f = 1 MHz lE = 0 V TA = 25C 100 75C 10 25C TA = -25C Cob, CAPACITANCE (pF) 3 1 2 0.1 VO = 5 V 1 0.01 0.001 0 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) 50 0 1 6 7 8 2 3 4 5 Vin, INPUT VOLTAGE (VOLTS) 9 10 Figure 5. Output Capacitance Figure 6. Output Current vs. Input Voltage 100 VO = 0.2 V Vin, INPUT VOLTAGE (VOLTS) 10 TA = -25C 25C 75C 1 0.1 0 10 20 30 40 50 IC, COLLECTOR CURRENT (mA) Figure 7. Input Voltage vs. Output Current http://onsemi.com 5 MUN2111T1 Series TYPICAL ELECTRICAL CHARACTERISTICS - MUN2112T1 VCE(sat), MAXIMUM COLLECTOR VOLTAGE (VOLTS) 10 IC/IB = 10 25C 1 75C TA = -25C 1000 VCE = 10 V hFE, DC CURRENT GAIN TA = 75C 100 -25C 25C 0.1 0.01 10 0 20 40 60 IC, COLLECTOR CURRENT (mA) 80 1 10 IC, COLLECTOR CURRENT (mA) 10 0 Figure 8. VCE(sat) vs. IC Figure 9. DC Current Gain 4 f = 1 MHz lE = 0 V TA = 25C IC, COLLECTOR CURRENT (mA) 100 75C 10 25C TA = -25C Cob, CAPACITANCE (pF) 3 1 2 0.1 1 0.01 VO = 5 V 0 1 2 3 4 5 6 7 8 Vin, INPUT VOLTAGE (VOLTS) 9 10 0 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) 50 0.001 Figure 10. Output Capacitance Figure 11. Output Current vs. Input Voltage 100 VO = 0.2 V Vin, INPUT VOLTAGE (VOLTS) TA = -25C 10 75C 25C 1 0.1 0 10 20 30 40 50 IC, COLLECTOR CURRENT (mA) Figure 12. Input Voltage vs. Output Current http://onsemi.com 6 MUN2111T1 Series TYPICAL ELECTRICAL CHARACTERISTICS - MUN2113T1 VCE(sat), MAXIMUM COLLECTOR VOLTAGE (VOLTS) 1 IC/IB = 10 hFE, DC CURRENT GAIN TA = 75C 25C 100 -25C 1000 TA = -25C 75C 25C 0.1 0.01 0 10 20 30 IC, COLLECTOR CURRENT (mA) 40 10 1 10 IC, COLLECTOR CURRENT (mA) 100 Figure 13. VCE(sat) vs. IC Figure 14. DC Current Gain 1 f = 1 MHz lE = 0 V TA = 25C IC, COLLECTOR CURRENT (mA) 100 TA = 75C 25C -25C Cob, CAPACITANCE (pF) 0.8 10 1 0.6 0.4 0.1 0.2 0.01 VO = 5 V 1 2 3 4 5 6 7 8 Vin, INPUT VOLTAGE (VOLTS) 9 10 0 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) 50 0.001 0 Figure 15. Output Capacitance Figure 16. Output Current vs. Input Voltage 100 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V TA = -25C 10 25C 75C 1 0.1 0 10 20 30 40 IC, COLLECTOR CURRENT (mA) 50 Figure 17. Input Voltage vs. Output Current http://onsemi.com 7 MUN2111T1 Series TYPICAL ELECTRICAL CHARACTERISTICS - MUN2114T1 VCE(sat), MAXIMUM COLLECTOR VOLTAGE (VOLTS) 1 IC/IB = 10 TA = -25C 25C 75C 180 160 hFE, DC CURRENT GAIN 140 120 100 80 60 40 20 20 40 60 IC, COLLECTOR CURRENT (mA) 80 0 1 2 4 6 8 10 15 20 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (mA) VCE = 10 V 25C -25C TA = 75C 0.1 0.01 0.00 0 1 Figure 18. VCE(sat) vs. IC Figure 19. DC Current Gain 4.5 4 Cob, CAPACITANCE (pF) 3.5 3 2.5 2 1.5 1 0.5 0 0 2 4 6 8 10 15 20 25 30 35 40 45 50 f = 1 MHz lE = 0 V TA = 25C 100 IC, COLLECTOR CURRENT (mA) TA = 75C 25C -25C 10 VO = 5 V 1 0 2 4 6 8 10 VR, REVERSE BIAS VOLTAGE (VOLTS) Vin, INPUT VOLTAGE (VOLTS) Figure 20. Output Capacitance 10 Vin, INPUT VOLTAGE (VOLTS) TA = -25C Figure 21. Output Current vs. Input Voltage 25C 75C 1 VO = 0.2 V 0.1 0 10 20 30 40 IC, COLLECTOR CURRENT (mA) 50 Figure 22. Input Voltage vs. Output Current http://onsemi.com 8 MUN2111T1 Series TYPICAL ELECTRICAL CHARACTERISTICS - MUN2131T1 VCE(sat), MAXIMUM COLLECTOR VOLTAGE (V) 1 IC/IB =10 hFE, DC CURRENT GAIN 1000 IC/IB = 10 100 25C 0.1 75C 25C 75C 10 -25C -25C 0.01 0 5 10 15 20 25 30 35 IC, COLLECTOR CURRENT (mA) 1 1 10 IC, COLLECTOR CURRENT (mA) 100 Figure 23. VCE(sat) vs. IC 12 IC, COLLECTOR CURRENT (mA) 10 8 6 4 2 0 0 5 10 15 20 25 30 35 40 45 50 55 VR, REVERSE BIAS VOLTAGE (V) 100 75C 10 Figure 24. DC Current Gain Cob, CAPACITANCE (pF) f = 1 MHz IE = 0 A TA = 25C -25C 1 TA = 25C 0.01 VO = 5 V 0.01 0 1 2 3 4 5 6 7 8 Vin, INPUT VOLTAGE (V) Figure 25. Output Capacitance 10 Vin, INPUT VOLTAGE (VOLTS) Figure 26. Output Current vs. Input Voltage TA = -25C 75C 1 25C VO = 0.2 V 0.1 0 5 10 15 20 IC, COLLECTOR CURRENT (mA) 25 Figure 27. Input Voltage vs. Output Current http://onsemi.com 9 MUN2111T1 Series TYPICAL ELECTRICAL CHARACTERISTICS -- MUN2133T1 VCE(sat), COLLECTOR VOLTAGE (VOLTS) 1 IC/IB = 10 75C 0.1 -25C 25C hFE, DC CURRENT GAIN 1000 VCE = 10 V 75C 100 TA = -25C 25C 0.01 10 0.001 0 30 20 40 10 IC, COLLECTOR CURRENT (mA) 50 1 1 10 IC, COLLECTOR CURRENT (mA) 100 Figure 28. VCE(sat) versus IC Figure 29. DC Current Gain 8 7 Cob, CAPACITANCE (pF) 6 5 4 3 2 1 0 0 5 10 15 20 25 30 35 40 45 VR, REVERSE BIAS VOLTAGE (VOLTS) 50 IC, COLLECTOR CURRENT (mA) f = 1 MHz lE = 0 V TA = 25C 100 75C 10 25C 1 0.1 TA = -25C 0.01 VO = 5 V 0 1 2 3 4 5 6 7 8 Vin, INPUT VOLTAGE (VOLTS) 9 10 0.001 Figure 30. Output Capacitance Figure 31. Output Current versus Input Voltage 10 Vin, INPUT VOLTAGE (VOLTS) TA = -25C 1 75C 25C VO = 0.2 V 0.1 0 10 20 30 40 IC, COLLECTOR CURRENT (mA) 50 Figure 32. Input Voltage versus Output Current http://onsemi.com 10 MUN2111T1 Series TYPICAL ELECTRICAL CHARACTERISTICS -- MUN2136T1 1 VCE(sat), MAXIMUM COLLECTOR VOLTAGE (VOLTS) 1000 75C hFE, DC CURRENT GAIN TA = -25C 25C 100 0.1 -25C 25C 75C 10 IC/IB = 10 0 1 2 3 4 5 IC, COLLECTOR CURRENT (mA) 6 7 1 1 VCE = 10 V 10 IC, COLLECTOR CURRENT (mA) 100 0.01 Figure 33. Maximum Collector Voltage vs. Collector Current Figure 34. DC Current Gain 1.2 IC, COLLECTOR CURRENT (mA) Cob, CAPACITANCE (pF) 1.0 0.8 0.6 0.4 0.2 0 f = 1 MHz IE = 0 V TA = 25C 100 25C 10 TA = -25C 75C 1 VO = 5 V 0.1 0 1 2 3 4 5 6 7 8 9 10 0 10 20 30 40 50 VR, REVERSE BIAS VOLTAGE (VOLTS) 60 Vin, INPUT VOLTAGE (VOLTS) Figure 35. Output Capacitance Figure 36. Output Current vs. Input Voltage 100 Vin, INPUT VOLTAGE (VOLTS) 25C 10 TA = -25C 1 75C 0 2 VO = 0.2 V 4 6 8 10 12 14 16 IC, COLLECTOR CURRENT (mA) 18 20 Figure 37. Input Voltage vs. Output Current http://onsemi.com 11 MUN2111T1 Series TYPICAL ELECTRICAL CHARACTERISTICS -- MUN2137T1 1 VCE(sat), MAXIMUM COLLECTOR VOLTAGE (VOLTS) 1000 hFE, DC CURRENT GAIN 75C TA = -25C 25C TA = -25C 75C 0.1 100 25C IC/IB = 10 0 5 10 15 20 25 30 35 40 IC, COLLECTOR CURRENT (mA) 45 50 VCE = 10 V 10 1 10 IC, COLLECTOR CURRENT (mA) 100 0.01 Figure 38. Maximum Collector Voltage vs. Collector Current Figure 39. DC Current Gain 1.4 Cob, CAPACITANCE (pF) 1.2 1.0 0.8 0.6 0.4 0.2 0 0 10 20 30 40 50 VR, REVERSE BIAS VOLTAGE (VOLTS) 60 IC, COLLECTOR CURRENT (mA) f = 1 MHz IE = 0 V TA = 25C 100 75C 10 25C TA = -25C 1 0.1 0.01 VO = 5 V 0.001 0 1 2 3 4 5 6 7 8 9 10 11 Vin, INPUT VOLTAGE (VOLTS) Figure 40. Output Capacitance Figure 41. Output Current vs. Input Voltage 100 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V 10 TA = -25C 75C 1 25C 0 5 10 15 20 IC, COLLECTOR CURRENT (mA) 25 Figure 42. Input Voltage vs. Output Current http://onsemi.com 12 MUN2111T1 Series PACKAGE DIMENSIONS SC-59 CASE 318D-04 ISSUE G D NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3 HE 2 1 E b e DIM A A1 b c D E e L HE MIN 1.00 0.01 0.35 0.09 2.70 1.30 1.70 0.20 2.50 MILLIMETERS NOM MAX 1.15 1.30 0.06 0.10 0.43 0.50 0.14 0.18 2.90 3.10 1.50 1.70 1.90 2.10 0.40 0.60 2.80 3.00 MIN 0.039 0.001 0.014 0.003 0.106 0.051 0.067 0.008 0.099 INCHES NOM 0.045 0.002 0.017 0.005 0.114 0.059 0.075 0.016 0.110 MAX 0.051 0.004 0.020 0.007 0.122 0.067 0.083 0.024 0.118 A A1 L C STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR SOLDERING FOOTPRINT* 0.95 0.037 0.95 0.037 2.4 0.094 1.0 0.039 0.8 0.031 mm inches SCALE 10:1 *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative http://onsemi.com 13 MUN2111T1/D |
Price & Availability of MUN2111T3G
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |