![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PD - 95524 l l l l l l l l Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175C Operating Temperature Fast Switching Fully Avalanche Rated Optimized for SMPS Applications Lead-Free HEXFET(R) Power MOSFET D IRFZ24VSPbF IRFZ24VLPBF VDSS = 60V RDS(on) = 60m G S ID = 17A Advanced HEXFET(R) Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The D2Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D2Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application. The through-hole version (IRFZ24VL) is available for low-profile applications. Description D2 Pak IRFZ24VS TO-262 IRFZ24VL Absolute Maximum Ratings Parameter ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Max. 17 12 68 44 0.29 20 17 4.4 4.2 -55 to + 175 300 (1.6mm from case ) Units A W W/C V A mJ V/ns C Thermal Resistance Parameter RJC RJA Junction-to-Case Junction-to-Ambient (PCB Mounted)** Typ. --- --- Max. 3.4 40 Units C/W www.irf.com 1 7/16/04 IRFZ24VS/LPbF Electrical Characteristics @ TJ = 25C (unless otherwise specified) V(BR)DSS V(BR)DSS/TJ RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss EAS Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Single Pulse Avalanche Energy Min. 60 --- --- 2.0 7.8 --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.06 --- --- --- --- --- --- --- --- --- --- 7.6 46 21 24 4.5 7.5 --- 590 --- 140 --- 23 --- 140 Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 60 m VGS = 10V, ID = 10A 4.0 V VDS = VGS, ID = 250A --- S VDS = 25V, ID = 10A 25 VDS = 60V, VGS = 0V A 250 VDS = 48V, VGS = 0V, TJ = 150C 100 VGS = 20V nA -100 VGS = -20V 23 ID = 17A 7.7 nC VDS = 48V 6.2 VGS = 10V, See Fig. 6 and 13 --- VDD = 30V --- ID = 17A ns --- RG = 18 --- VGS = 10V, See Fig. 10 Between lead, --- 6mm (0.25in.) nH G from package --- and center of die contact --- VGS = 0V --- VDS = 25V --- pF = 1.0MHz, See Fig. 5 43 mJ IAS = 17A, L = 300H D S Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Notes: Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol 17 --- --- showing the A G integral reverse 68 --- --- S p-n junction diode. --- --- 1.3 V TJ = 25C, IS = 17A, VGS = 0V --- 53 79 ns TJ = 25C, IF = 17A --- 90 130 nC di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25C, L = 300H RG = 25, IAS = 17A, VGS=10V (See Figure 12) ISD 17A, di/dt 240A/s, VDD V(BR)DSS, TJ 175C Pulse width 400s; duty cycle 2%. This is a typical value at device destruction and represents operation outside rated limits. This is a calculated value limited to TJ = 175C . Uses IRFZ24V data and test conditions. ** When mounted on 1" square PCB (FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. 2 www.irf.com IRFZ24VS/LPbF 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 100 I D , Drain-to-Source Current (A) 10 I D , Drain-to-Source Current (A) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 10 4.5V 1 4.5V 0.1 0.1 20s PULSE WIDTH TJ = 25 C 1 10 100 1 0.1 20s PULSE WIDTH TJ = 175 C 1 10 100 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 3.0 I D , Drain-to-Source Current (A) TJ = 25 C TJ = 175 C RDS(on) , Drain-to-Source On Resistance (Normalized) ID = 17A 2.5 2.0 10 1.5 1.0 0.5 1 V DS = 25V 20s PULSE WIDTH 4 6 8 10 12 0.0 -60 -40 -20 0 VGS = 10V 20 40 60 80 100 120 140 160 180 VGS , Gate-to-Source Voltage (V) TJ , Junction Temperature ( C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com 3 IRFZ24VS/LPbF 1000 20 VGS , Gate-to-Source Voltage (V) 800 VGS = 0V, f = 1 MHZ Ciss = C + Cgd, C gs ds SHORTED Crss = C gd ID = 17A VDS = 48V VDS = 30V VDS = 12V C, Capacitance(pF) Ciss 600 Coss = C + Cgd ds 16 12 Coss 400 8 200 Crss 4 0 1 10 100 0 FOR TEST CIRCUIT SEE FIGURE 13 0 4 8 12 16 20 24 VDS, Drain-to-Source Voltage (V) QG , Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 100 1000 ISD , Reverse Drain Current (A) 10 ID, Drain-to-Source Current (A) TJ = 175 C OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 100sec 1msec 1 TJ = 25 C V GS = 0 V 0.6 1.0 1.4 1.8 1 Tc = 25C Tj = 175C Single Pulse 1 10 10msec 0.1 0.2 0.1 VSD ,Source-to-Drain Voltage (V) 100 1000 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRFZ24VS/LPbF 20 VDS VGS RD ID , Drain Current (A) 15 RG V GS Pulse Width 1 s Duty Factor 0.1 % D.U.T. + -VDD 10 5 Fig 10a. Switching Time Test Circuit VDS 90% 0 25 50 TC , Case Temperature ( C) 75 100 125 150 175 Fig 9. Maximum Drain Current Vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms 10 Thermal Response (Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1 0.1 0.01 0.00001 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFZ24VS/LPbF 15V EAS , Single Pulse Avalanche Energy (mJ) 80 TOP 60 VDS L DRIVER BOTTOM ID 6.9A 12A 17A RG VGS 20V D.U.T IAS tp + V - DD A 40 0.01 Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 20 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current I AS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50K QG 12V .2F .3F VGS QGS VG QGD VGS 3mA D.U.T. + V - DS Charge IG ID Current Sampling Resistors Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit 6 www.irf.com IRFZ24VS/LPbF Peak Diode Recovery dv/dt Test Circuit D.U.T* + + Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer - + RG VGS * dv/dt controlled by RG * ISD controlled by Duty Factor "D" * D.U.T. - Device Under Test + VDD * Reverse Polarity of D.U.T for P-Channel Driver Gate Drive P.W. Period D= P.W. Period [VGS=10V ] *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt [VDD] Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% [ISD ] *** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 14. For N-channel HEXFET(R) power MOSFETs www.irf.com 7 IRFZ24VS/LPbF D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information (Lead-Free) T H IS IS AN IR F 5 3 0 S W IT H L OT COD E 80 2 4 AS S E M B L E D ON W W 0 2, 20 00 IN T H E AS S E M B L Y L IN E "L " N ote: "P " in as s em bly lin e po s itio n in dicates "L ead-F r ee" IN T E R N AT IO N AL R E C T IF IE R L OGO AS S E M B L Y L O T CO D E P AR T N U M B E R F 5 30 S D AT E C O D E Y E AR 0 = 2 0 0 0 W E E K 02 L IN E L OR IN T E R N AT IO N AL R E C T IF IE R L O GO AS S E M B L Y L OT COD E P AR T N U M B E R F 530S D AT E CO D E P = D E S IG N AT E S L E AD -F R E E P R O D U C T (O P T IO N AL ) Y E AR 0 = 2 0 0 0 W E E K 02 A = AS S E M B L Y S IT E CO D E 8 www.irf.com IRFZ24VS/LPbF TO-262 Package Outline IGBT 1- GATE 2- COLLECTOR 3- EMITTER TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 AS SEMBLED ON WW 19, 1997 IN T HE ASS EMBLY LINE "C" Note: "P" in as s embly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C OR INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) YEAR 7 = 1997 WEEK 19 A = AS S EMBLY S ITE CODE www.irf.com 9 IRFZ24VS/LPbF D2Pak Tape & Reel Infomation TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/04 10 www.irf.com |
Price & Availability of IRFZ24VLPBF
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |