![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
LT6014 Dual 145A, 9.5nV/Hz, AV 5, Rail-to-Rail Output Precision Op Amp FEATURES s s DESCRIPTIO s s s s s s s s s s s s 60V Maximum Offset Voltage Low 1/f Noise: 200nVP-P (0.1Hz to 10Hz) 40nVRMS (0.1Hz to 10Hz) Low White Noise: 9.5nV/Hz (1kHz) Rail-to-Rail Output Swing 145A Supply Current per Amplifier 400pA Maximum Input Bias Current AV 5 Stable; Up to 500pF CLOAD 0.2V/s Slew Rate 1.4MHz Gain Bandwidth Product 120dB Minimum Voltage Gain, VS = 15V 0.8V/C Maximum VOS Drift 2.7V to 18V Supply Voltage Operation Operating Temperature Range: - 40C to 85C Available in SO-8 and Space Saving 3mm x 3mm DFN Packages The LT(R)6014 dual op amp combines low noise and high precision input performance with low power consumption and rail-to-rail output swing. The amplifier is stable in a gain of 5 or more and features greatly improved CMRR and PSRR versus frequency compared to other precision op amps. Input offset voltage is factory-trimmed to less than 60V. The low drift and excellent long-term stability ensure a high accuracy over temperature and time. The 400pA maximum input bias current and 120dB minimum voltage gain further maintain this precision over operating conditions. The LT6014 operates from any supply voltage from 2.7V to 36V and draws only 145A of supply current per amplifier on a 5V supply. The output swings to within 40mV of either supply rail, making the amplifier very useful for low voltage single supply operation. The LT6014 is fully specified at 5V and 15V supplies and from -40C to 85C. The device is available in SO-8 and space saving 3mm x 3mm DFN packages. For a unity gain stable version, refer to the LT6011 data sheet. , LTC and LT are registered trademarks of Linear Technology Corporation. APPLICATIO S s s s s s s Thermocouple Amplifiers Precision Photodiode Amplifiers Instrumentation Amplifiers Battery-Powered Precision Systems Low-Voltage Precision Systems Micro-Power Sensor Interface TYPICAL APPLICATIO V+ VIN 5 8 Gain of 5 Single Ended to Differential Converter + 1/2 LT6014 6 2k 7 5 * VIN LT6014 0.1Hz to 10Hz Voltage Noise INPUT VOLTAGE NOISE (0.1V/DIV) VS = 5V, 0V TA = 25C EQUIVALENT RMS VOLTAGE = 40nVRMS - 8.06k 10k 2k 2 - 1/2 LT6014 1 -5 * VIN 3 + 4 V- 6014 TA01a 0 1 U 2 3 456 TIME (SEC) 7 8 9 10 6014 TA01b U U 6014f 1 LT6014 ABSOLUTE AXI U RATI GS (Note 1) Maximum Junction Temperature DD Package ..................................................... 125C S8 Package ...................................................... 150C Storage Temperature Range DD Package ..................................... - 65C to 125C S8 Package ...................................... - 65C to 150C Lead Temperature (Soldering, 10 sec).................. 300C Total Supply Voltage (V+ to V-) .............................. 40V Differential Input Voltage (Note 2) .......................... 10V Input Voltage .................................................... V+ to V- Input Current (Note 2) ....................................... 10mA Output Short-Circuit Duration (Note 3) ........... Indefinite Operating Temperature Range (Note 4) .. - 40C to 85C Specified Temperature Range (Note 5) ... - 40C to 85C PACKAGE/ORDER I FOR ATIO TOP VIEW OUT A 1 -IN A 2 +IN A 3 V - ORDER PART NUMBER 8 V+ OUT B -IN B +IN B A B 7 6 5 4 LT6014CDD LT6014IDD LT6014ACDD LT6014AIDD DD PART MARKING* LBCB DD PACKAGE 8-LEAD (3mm x 3mm) PLASTIC DFN TJMAX = 125C, JA = 160C/W UNDERSIDE METAL CONNECTED TO V- (PCB CONNECTION OPTIONAL) *Temperature and electrical grades are identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges. 2 U U W WW U W ORDER PART NUMBER TOP VIEW OUT A 1 -IN A 2 A +IN A 3 V- B 4 5 6 -IN B +IN B 8 7 V+ OUT B LT6014CS8 LT6014IS8 LT6014ACS8 LT6014AIS8 S8 PART MARKING 6014 6014I 6014A 6014AI S8 PACKAGE 8-LEAD PLASTIC SO TJMAX = 150C, JA = 190C/W 6014f LT6014 ELECTRICAL CHARACTERISTICS SYMBOL VOS PARAMETER Input Offset Voltage (Note 8) The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25C. VS = 5V, 0V; VCM = 2.5V; RL to 0V; unless otherwise specified. (Note 5) CONDITIONS LT6014AS8 TA = 0C to 70C TA = -40C to 85C LT6014S8 TA = 0C to 70C TA = -40C to 85C LT6014ADD TA = 0C to 70C TA = -40C to 85C LT6014DD TA = 0C to 70C TA = -40C to 85C VOS/T IOS Input Offset Voltage Drift (Note 6) Input Offset Current (Note 8) S8 Package DD Package LT6014AS8, LT6014ADD TA = 0C to 70C TA = -40C to 85C LT6014S8, LT6014DD TA = 0C to 70C TA = -40C to 85C IB Input Bias Current (Note 8) LT6014AS8, LT6014ADD TA = 0C to 70C TA = -40C to 85C LT6014S8, LT6014DD TA = 0C to 70C TA = -40C to 85C en Input Noise Voltage Density f = 1kHz, LT6014 f = 1kHz, LT6014A q q MIN TYP 20 MAX 60 85 110 75 100 125 85 135 170 125 175 210 0.8 1.2 500 600 700 800 1000 1200 400 600 700 800 1000 1200 13 UNITS V V V V V V V V V V V V V/C V/C pA pA pA pA pA pA pA pA pA pA pA pA nV/Hz nV/Hz nVP-P nVRMS nVP-P nVRMS pA/Hz pAP-P pARMS pAP-P pARMS G M pF V V dB V dB V/mV V/mV dB 6014f 25 q q 25 q q 30 q q q q q q 0.2 0.2 100 150 q q 100 q q 150 q q 9.5 9.5 200 50 200 40 0.15 7 1.3 5 0.4 120 20 4 q q q q q q q q Input Noise Voltage (Low Frequency) Bandwidth = 0.01Hz to 1Hz Bandwidth = 0.1Hz to 10Hz in Input Noise Current Density f = 1kHz Input Noise Current (Low Frequency) Bandwidth = 0.01Hz to 1Hz Bandwidth = 0.1Hz to 10Hz RIN CIN VCM CMRR PSRR AVOL Input Resistance Input Capacitance Input Voltage Range (Positive) Input Voltage Range (Negative) Common Mode Rejection Ratio Minimum Supply Voltage Power Supply Rejection Ratio Large-Signal Voltage Gain Channel Separation Guaranteed by CMRR Guaranteed by CMRR VCM = 1V to 3.8V Guaranteed by PSRR VS = 2.7V to 36V, VCM = 1/2VS RL = 10k, VOUT = 1V to 4V RL = 2k, VOUT = 1V to 4V VOUT = 1V to 4V 3.8 107 112 300 250 110 Common Mode, VCM = 1V to 3.8V Differential 4 0.7 135 2.4 135 2000 2000 140 1 2.7 3 LT6014 ELECTRICAL CHARACTERISTICS SYMBOL VOUT PARAMETER Maximum Output Swing (Positive, Referred to V +) The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25C. VS = 5V, 0V; VCM = 2.5V; RL to 0V; unless otherwise specified. (Note 5) CONDITIONS No Load, 50mV Overdrive q MIN TYP 35 120 MAX 55 65 170 220 55 65 225 275 UNITS mV mV mV mV mV mV mV mV mA mA mA mA V/s V/s V/s MHz MHz s s ISOURCE = 1mA, 50mV Overdrive q Maximum Output Swing (Negative, Referred to 0V) No Load, 50mV Overdrive q 40 150 q ISINK = 1mA, 50mV Overdrive ISC Output Short-Circuit Current (Note 3) VOUT = 0V, 1V Overdrive, Source q 8 4 8 4 0.15 0.12 0.1 1 0.9 14 21 0.2 VOUT = 5V, -1V Overdrive, Sink q SR Slew Rate AV = -10, RF = 50k, RG = 5k TA = 0C to 70C TA = -40C to 85C f = 10kHz q q q GBW ts tr, tf VOS Gain Bandwidth Product Settling Time Rise Time, Fall Time Offset Voltage Match (Note 7) 1.4 20 1 50 120 170 220 170 270 340 150 200 250 250 350 420 800 1200 1400 1600 2000 2400 AV = -4, 0.01%, VOUT = 1.5V to 3.5V AV = 5, 10% to 90%, 0.1V Step LT6014AS8 TA = 0C to 70C TA = -40C to 85C LT6014ADD TA = 0C to 70C TA = -40C to 85C LT6014S8 TA = 0C to 70C TA = -40C to 85C LT6014DD TA = 0C to 70C TA = -40C to 85C q q V V V V V V V V V V V V pA pA pA pA pA pA dB dB 50 q q 50 q q 60 q q IB Input Bias Current Match (Note 7) LT6014AS8, LT6014ADD TA = 0C to 70C TA = -40C to 85C LT6014S8, LT6014DD TA = 0C to 70C TA = -40C to 85C 200 q q 300 q q q q CMRR PSRR IS Common Mode Rejection Ratio Match (Note 7) Power Supply Rejection Ratio Match (Note 7) Supply Current per Amplifier TA = 0C to 70C TA = -40C to 85C 101 106 135 135 145 165 210 230 q q A A A 6014f 4 LT6014 ELECTRICAL CHARACTERISTICS SYMBOL VOS PARAMETER Input Offset Voltage (Note 8) The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25C. VS = 15V, VCM = 0V, RL to 0V, unless otherwise specified. (Note 5) CONDITIONS LT6014AS8 TA = 0C to 70C TA = -40C to 85C LT6014S8 TA = 0C to 70C TA = -40C to 85C LT6014ADD TA = 0C to 70C TA = -40C to 85C LT6014DD TA = 0C to 70C TA = -40C to 85C S8 Package DD Package LT6014AS8, LT6014ADD TA = 0C to 70C TA = -40C to 85C LT6014S8, LT6014DD TA = 0C to 70C TA = -40C to 85C LT6014AS8, LT6014ADD TA = 0C to 70C TA = -40C to 85C LT6014S8, LT6014DD TA = 0C to 70C TA = -40C to 85C f = 1kHz, LT6014 f = 1kHz, LT6014A MIN q q TYP 30 MAX 135 160 185 150 175 200 160 210 225 200 250 275 0.8 1.3 500 600 700 800 1000 1200 400 600 700 800 1000 1200 13 UNITS V V V V V V V V V V V V V/C V/C pA pA pA pA pA pA pA pA pA pA pA pA nV/Hz nV/Hz nV P-P nVRMS nV P-P nVRMS pA/Hz pAP-P pARMS pA P-P pARMS G M pF V dB dB V dB V/mV V/mV V/mV V/mV dB 6014f 35 q q 35 q q 40 q q q q q q VOS/T IOS Input Offset Voltage Drift (Note 6) Input Offset Current (Note 8) 0.2 0.2 100 150 q q IB Input Bias Current (Note 8) 100 q q 150 q q en Input Noise Voltage Density 9.5 9.5 200 50 200 40 0.15 7 1.3 5 0.4 400 20 4 14 135 135 1.2 135 2000 1500 140 Input Noise Voltage (Low Frequency) Bandwidth = 0.01Hz to 1Hz Bandwidth = 0.1Hz to 10Hz in Input Noise Current Density f = 1kHz Input Noise Current (Low Frequency) Bandwidth = 0.01Hz to 1Hz Bandwidth = 0.1Hz to 10Hz RIN CIN VCM CMRR Input Resistance Input Capacitance Input Voltage Range Common Mode Rejection Ratio Minimum Supply Voltage Power Supply Rejection Ratio Large-Signal Voltage Gain Common Mode, VCM = 13.5V Differential Guaranteed by CMRR VCM = -13.5V to 13.5V Guaranteed by PSRR VS = 1.35V to 18V RL = 10k, VOUT = -13.5V to 13.5V RL = 5k, VOUT = -13.5V to 13.5V q 13.5 115 q 112 q q q q 1.35 PSRR AVOL Channel Separation VOUT = -13.5V to 13.5V q 112 1000 600 500 300 120 5 LT6014 ELECTRICAL CHARACTERISTICS SYMBOL VOUT PARAMETER Maximum Output Swing (Positive, Referred to V +) The q denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25C. VS = 15V, VCM = 0V, RL to 0V, unless otherwise specified. (Note 5) CONDITIONS No Load, 50mV Overdrive q MIN TYP 45 140 MAX 80 100 195 240 80 100 250 300 UNITS mV mV mV mV mV mV mV mV mA mA mA mA V/s V/s V/s MHz MHz s s ISOURCE = 1mA, 50mV Overdrive q Maximum Output Swing (Negative, Referred to V -) No Load, 50mV Overdrive q 45 150 q ISINK = 1mA, 50mV Overdrive ISC Output Short-Circuit Current (Note 3) VOUT = 0V, 1V Overdrive (Source) q 8 5 8 5 0.15 0.12 0.1 1.1 1 15 20 0.2 VOUT = 0V, -1V Overdrive (Sink) q SR Slew Rate AV = -10, RF = 50k, RG = 5k TA = 0C to 70C TA = -40C to 85C f = 10kHz q q q GBW ts tr, tf VOS Gain Bandwidth Product Settling Time Rise Time, Fall Time Offset Voltage Match (Note 7) 1.6 40 0.9 50 270 320 370 320 420 450 300 350 400 400 500 550 800 1200 1400 1600 2000 2400 AV = -4, 0.01%, VOUT = 0V to 10V AV = 5, 10% to 90%, 0.1V Step LT6014AS8 TA = 0C to 70C TA = -40C to 85C LT6014ADD TA = 0C to 70C TA = -40C to 85C LT6014S8 TA = 0C to 70C TA = -40C to 85C LT6014DD TA = 0C to 70C TA = -40C to 85C q q V V V V V V V V V V V V pA pA pA pA pA pA dB dB 50 q q 70 q q 80 q q IB Input Bias Current Match (Note 7) LT6014AS8, LT6014ADD TA = 0C to 70C TA = -40C to 85C LT6014S8, LT6014DD TA = 0C to 70C TA = -40C to 85C 200 q q 300 q q q q CMRR PSRR IS Common Mode Rejection Ratio Match (Note 7) Power Supply Rejection Ratio Match (Note 7) Supply Current per Amplifier TA = 0C to 70C TA = -40C to 85C 109 106 135 135 200 250 290 310 q q A A A 6014f 6 LT6014 ELECTRICAL CHARACTERISTICS Note 1: Absolute Maximum Ratings are those beyond which the life of the device may be impaired. Note 2: The inputs are protected by back-to-back diodes and internal series resistors. If the differential input voltage exceeds 10V, the input current must be limited to less than 10mA. Note 3: A heat sink may be required to keep the junction temperature below absolute maximum ratings. Note 4: Both the LT6014C and LT6014I are guaranteed functional over the operating temperature range of - 40C to 85C. Note 5: The LT6014C is guaranteed to meet the specified performance from 0C to 70C and is designed, characterized and expected to meet specified performance from - 40C to 85C but is not tested or QA sampled at these temperatures. The LT6014I is guaranteed to meet specified performance from -40C to 85C. Note 6: This parameter is not 100% tested. Note 7: Matching parameters are the difference between the two amplifiers. CMRR and PSRR are defined as follows: (1) CMRR and PSRR are measured in V/V for the individual amplifiers. (2) The difference between matching amplifiers is calculated in V/V. (3) The result is converted to dB. Note 8: The specifications for VOS, IB, and IOS depend on the grade and on the package. The following table clarifies the notations. STANDARD GRADE S8 Package DFN Package LT6014S8 LT6014DD A GRADE LT6014AS8 LT6014ADD TYPICAL PERFOR A CE CHARACTERISTICS Distribution of Input Offset Voltage 30 25 PERCENT OF UNITS (%) 125 CHANGE IN OFFSET VOLTAGE (V) VS = 5V, 0V TA = 25C LT6014AS8 OFFSET VOLTAGE (V) 20 15 10 5 0 -90 -70 -50 -30 -10 10 30 50 70 INPUT OFFSET VOLTAGE (V) Distribution of Input Bias Current 50 VS = 5V, 0V TA = 25C LT6014A 600 INPUT BIAS CURRENT (pA) CHANGE IN INPUT BIAS CURRENT (pA) 40 PERCENT OF UNITS (%) 30 20 10 0 -400 -300 -200 -100 0 100 200 300 400 INPUT BIAS CURRENT (pA) 6014 G04 UW 6014 G01 Input Offset Voltage vs Temperature 100 75 50 25 0 -25 -50 -75 -100 VS = 5V, 0V REPRESENTATIVE UNITS Offset Voltage vs Input Common Mode Voltage 1000 900 800 700 600 500 400 300 200 100 TA = 85C TA = 25C VS = 5V, 0V TA = -40C 90 -125 -50 -25 50 25 0 75 TEMPERATURE (C) 100 125 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 INPUT COMMON MODE VOLTAGE (V) 6014 G03 6014 G02 Input Bias Current vs Temperature 800 VS = 5V, 0V TYPICAL PART 400 300 Input Bias Current vs Input Common Mode Voltage VS = 5V, 0V TA = -40C 200 100 0 -100 -200 -300 -400 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 INPUT COMMON MODE VOLTAGE (V) 1614 G06 400 200 0 -200 -400 -600 -800 -50 -25 0 25 75 50 TEMPERATURE (C) 100 125 TA = 25C TA = 85C 6014 G05 6014f 7 LT6014 TYPICAL PERFOR A CE CHARACTERISTICS en, in vs Frequency 1000 INPUT VOLTAGE NOISE DENSITY (nV/Hz) 1/f CORNER = 40Hz 0.1 TOTAL NOISE 0.01 RESISTOR NOISE ONLY 10 1/f CORNER = 2Hz VOLTAGE NOISE 100 0.001 1 1 VS = 5V, 0V TA = 25C 10 100 FREQUENCY (Hz) 1000 6014 G07 0.0001 100 1k 10k 100k 1M 10M SOURCE RESISTANCE () 100M INPUT VOLTAGE NOISE (0.1V/DIV) TOTAL INPUT NOISE (V/Hz) CURRENT NOISE UNBALANCED SOURCE RESISTORS 0.01Hz to 1Hz Voltage Noise INPUT VOLTAGE NOISE (0.1V/DIV) VS = 5V, 0V TA = 25C INPUT CURRENT NOISE (2pA/DIV) INPUT CURRENT NOISE (2pA/DIV) 0 10 20 30 40 50 60 70 80 90 100 TIME (SEC) 6014 G10 Output Voltage Swing vs Temperature V+ OUTPUT VOLTAGE SWING (mV) OUTPUT HIGH SATURATION VOLTAGE (V) -20 -40 OUTPUT HIGH -60 TA = 85C TA = 25C 0.1 TA = -40C OUTPUT LOW SATURATION VOLTAGE (V) VS = 5V, 0V NO LOAD 60 40 20 V- - 50 - 25 0 OUTPUT LOW 75 50 25 TEMPERATURE (C) 8 UW 100 6014 G11 Total Input Noise vs Source Resistance 10 VS = 5V, 0V TA = 25C f = 1kHz 1 UNBALANCED SOURCE RESISTORS INPUT CURRENT NOISE DENSITY (fA/Hz) 0.1Hz to 10Hz Voltage Noise VS = 5V, 0V TA = 25C 0 1 2 3 456 TIME (SEC) 7 8 9 10 6014 G08 6014 G09 0.1Hz to 10Hz Current Noise VS = 5V, 0V TA = 25C BALANCED SOURCE RESISTANCE 0.01Hz to 1Hz Current Noise VS = 5V, 0V TA = 25C BALANCED SOURCE RESISTANCE 0 1 2 3 456 TIME (SEC) 7 8 9 10 0 10 20 30 40 50 60 70 80 90 100 TIME (SEC) 6014 G32 6014 G31 Output Saturation Voltage vs Load Current (Output High) 1 VS = 5V, 0V 1 Output Saturation Voltage vs Load Current (Output Low) VS = 5V, 0V TA = 85C TA = 25C 0.1 TA = -40C 125 0.01 0.01 0.1 1 LOAD CURRENT (mA) 10 6014 G12 0.01 0.01 0.1 1 LOAD CURRENT (mA) 10 6014 G13 6014f LT6014 TYPICAL PERFOR A CE CHARACTERISTICS Supply Current vs Supply Voltage 500 450 400 SUPPLY CURRENT (A) PER AMPLIFIER CHANGE IN OFFSET VOLTAGE (V) 300 250 200 150 100 50 0 TA = 85C TA = 25C 2 THD + NOISE (%) 350 TA = -40C 0 2 4 6 8 10 12 14 16 18 20 SUPPLY VOLTAGE (V) 6014 G14 THD + Noise vs Frequency 10 VS = 15V VOUT = 20VP-P TA = 25C AV = 5 OUTPUT STEP (V) CHANNEL SEPARATION (dB) 1 THD + NOISE (%) 0.1 0.01 0.001 0.0001 10 100 1k FREQUENCY (Hz) CMRR vs Frequency 160 COMMON MODE REJECTION RATIO (dB) 140 120 100 80 60 40 20 0 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M POWER SUPPLY REJECTION RATIO (dB) POWER SUPPLY REJECTION RATIO (dB) TA = 25C UW 6014 G17 Warm-Up Drift 3 THD + Noise vs Frequency 10 VS = 5V, 0V VOUT = 2VP-P TA = 25C AV = 5 1 15V 0.1 1 2.5V 0.01 0.001 0 30 60 90 120 TIME AFTER POWER-ON (SECONDS) 150 0.0001 10 100 1k 10k FREQUENCY (Hz) 100k 6014 G16 6014 G15 Settling Time vs Output Step 4 VS = 5V, 0V AV = 5 TA = 25C 160 Channel Separation vs Frequency 140 120 100 80 60 40 20 VS = 5V, 0V TA = 25C 0.1% 0.01% 3 2 1 0 10k 0 5 15 10 20 SETTLING TIME (s) 25 30 6014 G18 0 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M 6014 G20 PSRR vs Frequency, Single Supply 140 120 100 80 60 40 20 0 0.1 1 10 100 1k 10k 100k FREQUENCY (Hz) 1M VS = 5V, 0V TA = 25C PSRR vs Frequency, Split Supplies 140 120 100 80 60 40 20 0 0.1 1 10 100 1k 10k 100k FREQUENCY (Hz) 1M NEGATIVE SUPPLY VS = 15V TA = 25C POSITIVE SUPPLY 6014 G21 6014 G19 6014 G22 6014f 9 LT6014 TYPICAL PERFOR A CE CHARACTERISTICS Output Impedance vs Frequency 1000 VS = 5V, 0V TA = 25C OPEN-LOOP GAIN (dB) 100 OUTPUT IMPEDANCE () OPEN-LOOP GAIN (dB) 10 AV = 100 1 AV = 10 0.1 AV = 5 0.01 1 10 100 1k FREQUENCY (Hz) 10k 100k 6014 G23 Gain vs Frequency, AV = 5 22 18 14 GAIN (dB) VS = 5V, 0V TA = 25C CL = 500pF CL = 50pF 10 6 2 -2 1k 10k 100k FREQUENCY (Hz) 1M 6014 G26 GAIN (dB) Small-Signal Transient Response 20mV/DIV AV = 5 2s/DIV 10 UW Open-Loop Gain vs Frequency 140 120 100 80 60 40 20 0 -20 -40 0.01 0.1 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 6014 G24 Gain and Phase vs Frequency 60 50 40 30 20 10 0 GAIN -200 PHASE -160 VS = 5V, 0V TA = 25C RL = 10k -80 VS = 5V, 0V TA = 25C RL = 10k -120 PHASE SHIFT (DEG) -10 - 240 - 20 -30 - 40 1k 10k 100k 1M FREQUENCY (Hz) -280 10M 6014 G25 Gain vs Frequency, AV = -4 20 16 CL = 500pF 12 CL = 50pF 8 4 0 -4 1k 10k 100k FREQUENCY (Hz) 1M 6014 G27 VS = 5V, 0V TA = 25C Large-Signal Transient Response 5V Rail-to-Rail Output Swing 5V 1V/DIV 1V/DIV 0V 0V 6014 G28 AV = -4 VS = 5V, 0V RL = 2k 20s/DIV 6014 G29 AV = -4 VS = 5V, 0V RL = 2k 100s/DIV 6014 G30 6014f LT6014 APPLICATIO S I FOR ATIO Not Unity-Gain Stable The LT6014 amplifier is optimized for the lowest possible noise and small package size, and is intentionally decompensated to be stable in a gain configuration of 5 or greater. Do not connect the amplifier in a gain less than 5 (such as unity-gain). For a unity-gain stable amplifier with similar performance though slightly higher noise and lower bandwidth, see the LT6011/LT6012 datasheet. Figure 1 shows simple inverting and non-inverting op amp configurations and indicates how to achieve a gain of 5 or greater. For more general feedback networks, determine the gain that the op amp "sees" as follows: 1. Suppose the op amp is removed from the circuit. 2. Apply a small-signal voltage at the output node of the op amp. 3. Find the differential voltage that would appear across the two inputs of the op amp. 4. The ratio of the output voltage to the input voltage is the gain that the op amp "sees". This ratio must be 5 or greater. Do not place a capacitor bigger than 200pF between the output to the inverting input unless there is a 5 times larger capacitor from that input to AC ground. Otherwise, the op amp gain would drop to less than 5 at high frequencies, and the stability of the loop would be compromised. + RG VIN VREF VIN - RF RG VREF INVERTING: SIGNAL GAIN = -RF/RG OP AMP GAIN = 1 + RF/RG STABLE IF 1 + RF/RG 5 Figure 1. Use LT6014 in a Gain of 5 or Greater U Preserving Input Precision Preserving the input accuracy of the LT6014 requires that the applications circuit and PC board layout do not introduce errors comparable to or greater than the 25V typical offset of the amplifiers. Temperature differentials across the input connections can generate thermocouple voltages of 10's of microvolts so the connections to the input leads should be short, close together and away from heat dissipating components. Air currents across the board can also generate temperature differentials. The extremely low input bias currents allow high accuracy to be maintained with high impedance sources and feedback resistors. The LT6014 low input bias currents are obtained by a cancellation circuit on-chip. This causes the resulting IB+ and IB- to be uncorrelated, as implied by the IOS specification being comparable to I B. Do not try to balance the input resistances in each input lead; instead keep the resistance at either input as low as possible for maximum accuracy. Leakage currents on the PC board can be higher than the input bias current. For example, 10G of leakage between a 15V supply lead and an input lead will generate 1.5nA! Surround the input leads with a guard ring driven to the same potential as the input common mode to avoid excessive leakage in high impedance applications. + - RF VIN W UU + - 6014 F01 NONINVERTING: SIGNAL GAIN = 1 + RF/RG OP AMP GAIN = 1 + RF/RG STABLE IF 1 + RF/RG 5 UNITY-GAIN: DO NOT USE 6014f 11 LT6014 APPLICATIO S I FOR ATIO Input Protection The LT6014 features on-chip back-to-back diodes between the input devices, along with 500 resistors in series with either input. This internal protection limits the input current to approximately 10mA (the maximum allowed) for a 10V differential input voltage. Use additional external series resistors to limit the input current to 10mA in applications where differential inputs of more than 10V are expected. For example, a 1k resistor in series with each input provides protection against 30V differential voltage. Input Common Mode Range The LT6014 output is able to swing close to each power supply rail (rail-to-rail out), but the input stage is limited to operating between V - + 1V and V+ - 1.2V. Exceeding this common mode range will cause the gain to drop to zero, however, no phase reversal will occur. Total Input Noise The LT6014 amplifier contributes negligible noise to the system when driven by sensors (sources) with impedance 12 U between 10k and 1M. Throughout this range, total input noise is dominated by the 4kTRS noise of the source. If the source impedance is less than 10k, the input voltage noise of the amplifier starts to contribute with a minimum noise of 9.5nV/Hz for very low source impedance. If the source impedance is more than 1M, the input current noise of the amplifier, multiplied by this high impedance, starts to contribute and eventually dominate. Total input noise spectral density can be calculated as: W UU vn(TOTAL) = en2 + 4kTRS + (in RS )2 where en = 9.5nV/Hz , in = 0.15pA/Hz and RS is the total impedance at the input, including the source impedance. Capacitive Loads The LT6014 can drive capacitive loads up to 500pF at a gain of 5. The capacitive load driving capability increases as the amplifier is used in higher gain configurations. A small series resistance between the output and the load further increases the amount of capacitance that the amplifier can drive. 6014f LT6014 SI PLIFIED SCHE ATIC V+ R3 Q7 R4 Q3 R1 500 -IN D1 +IN R2 500 Q1 Q2 D2 V- W W (One Amplifier) R5 R6 Q6 Q8 Q5 Q4 Q21 B A Q22 C2 D3 D4 Q12 D5 RC1 C1 Q18 Q19 Q13 OUT Q16 Q17 C B A Q11 Q15 Q9 Q10 Q14 C3 Q20 6014 SS 6014f 13 LT6014 PACKAGE DESCRIPTIO U DD Package 8-Lead Plastic DFN (3mm x 3mm) (Reference LTC DWG # 05-08-1698) 0.675 0.05 PACKAGE OUTLINE 0.25 0.05 0.50 BSC 2.38 0.05 (2 SIDES) RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS R = 0.115 TYP 5 0.38 0.10 8 3.00 0.10 (4 SIDES) PIN 1 TOP MARK (NOTE 6) (DD8) DFN 1203 3.5 0.05 1.65 0.05 2.15 0.05 (2 SIDES) 1.65 0.10 (2 SIDES) 0.200 REF 0.75 0.05 4 0.25 0.05 2.38 0.10 (2 SIDES) 1 0.50 BSC 0.00 - 0.05 BOTTOM VIEW--EXPOSED PAD NOTE: 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1) 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE 6014f 14 LT6014 PACKAGE DESCRIPTIO U S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .189 - .197 (4.801 - 5.004) NOTE 3 8 7 6 5 .045 .005 .050 BSC .160 .005 .228 - .244 (5.791 - 6.197) .150 - .157 (3.810 - 3.988) NOTE 3 1 2 3 4 .053 - .069 (1.346 - 1.752) 0- 8 TYP .004 - .010 (0.101 - 0.254) .014 - .019 (0.355 - 0.483) TYP .050 (1.270) BSC SO8 0303 .245 MIN .030 .005 TYP RECOMMENDED SOLDER PAD LAYOUT .010 - .020 x 45 (0.254 - 0.508) .008 - .010 (0.203 - 0.254) .016 - .050 (0.406 - 1.270) NOTE: 1. DIMENSIONS IN INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) 6014f Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 15 LT6014 TYPICAL APPLICATIO U Low Power Hall Sensor Amplifier VS HALL ELEMENT ASAHI-KASEI HW-108A (RANK D) www.asahi-kasei.co.jp 6 10k OFFSET VS ADJUST 1 2 3 + - 8 1 + VS 4 LT1790-1.25 1, 2 1/2 LT6014 2 49.9k 400 x4 3 4 499 49.9k 499 0.1F VOUT 7.87k 1% + 100k 1% VS = 3V TO 18V IS = ~600A VOUT = ~40mV/mT LT1782 - 6 26.7k 1% - 1/2 LT6014 7 - 5 + 4 6014 TA02 RELATED PARTS PART NUMBER LT1112/LT1114 LT1880 LT1881/LT1882 LT1884/LT1885 LT6011/LT6012 LT6010 DESCRIPTION Dual/Quad Low Power, Picoamp Input Precision Op Amps Rail-to-Rail Output, Picoamp Input Precision Op Amp COMMENTS 250pA Input Bias Current SOT-23 Dual/Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps CLOAD Up to 1000pF Dual/Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps 9.5nV/Hz Input Noise Dual/Quad Low Power Rail-to-Rail Output, Precision Op Amps Single Low Power Rail-to-Rail Output, Precision Op Amp 14nV/Hz, Unity-Gain Stable Version of LT6014 200pA Input Bias Current, Shutdown Feature 6014f 16 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 q FAX: (408) 434-0507 q LT/TP 0304 1K * PRINTED IN USA www.linear.com (c) LINEAR TECHNOLOGY CORPORATION 2004 |
Price & Availability of LT6014
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |