![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
HUF76633P3, HUF76633S3S Data Sheet October 1999 File Number 4693.3 38A, 100V, 0.036 Ohm, N-Channel, Logic Level UltraFET Power MOSFET Packaging JEDEC TO-220AB SOURCE DRAIN GATE Features JEDEC TO-263AB DRAIN (FLANGE) * Ultra Low On-Resistance - rDS(ON) = 0.035, VGS = 10V - rDS(ON) = 0.036, VGS = 5V * Simulation Models - Temperature Compensated PSPICE(R) and SABER(c) Electrical Models - Spice and SABER(c) Thermal Impedance Models - www.Intersil.com * Peak Current vs Pulse Width Curve * UIS Rating Curve GATE SOURCE DRAIN (FLANGE) HUF76633P3 HUF76633S3S Symbol D * Switching Time vs RGS Curves Ordering Information PART NUMBER PACKAGE TO-220AB TO-263AB BRAND 76633P 76633S HUF76633P3 HUF76633S3S G S NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76633S3ST. Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified HUF76633P3, HUF76633S3S UNITS V V V A A A A Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TC= 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg NOTES: 100 100 16 38 39 27 27 Figure 4 Figures 6, 17, 18 145 0.97 -55 to 175 300 260 W W/oC oC oC oC 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 1 CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures. UltraFETTM is a trademark of Intersil Corporation. PSPICE(R) is a registered trademark of MicroSim Corporation. SABER(c) is a Copyright of Analogy Inc. 1-888-INTERSIL or 407-727-9207 | Copyright (c) Intersil Corporation 1999. HUF76633P3, HUF76633S3S Electrical Specifications PARAMETER OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage BVDSS IDSS IGSS VGS(TH) rDS(ON) ID = 250A, VGS = 0V (Figure 12) ID = 250A, VGS = 0V , TC = -40oC (Figure 12) Zero Gate Voltage Drain Current VDS = 95V, VGS = 0V VDS = 90V, VGS = 0V, TC = 150oC Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250A (Figure 11) ID = 39A, VGS = 10V (Figures 9, 10) ID = 27A, VGS = 5V (Figure 9) ID = 27A, VGS = 4.5V (Figure 9) THERMAL SPECIFICATIONS Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient RJC RJA TO-220 and TO-263 1.03 62 oC/W oC/W TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 100 90 - - 1 250 100 3 0.035 0.036 0.037 V V A A nA VGS = 16V 1 - 0.029 0.030 0.031 V SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time tON td(ON) tr td(OFF) tf tOFF tON td(ON) tr td(OFF) tf tOFF Qg(TOT) Qg(5) Qg(TH) Qgs Qgd CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 50V, ID = 27A, Ig(REF) = 1.0mA (Figures 14, 19, 20) VDD = 50V, ID = 39A VGS = 10V, RGS = 5.1 (Figures 16, 21, 22) VDD = 50V, ID = 27A VGS = 4.5V, RGS = 4.7 (Figures 15, 21, 22) 12 110 43 58 185 150 ns ns ns ns ns ns SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 5V Threshold Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance 1820 415 115 pF pF pF 56 30 2 6 15 67 37 2.4 nC nC nC nC nC 7.5 55 63 83 95 220 ns ns ns ns ns ns Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage SYMBOL VSD trr QRR ISD = 27A ISD = 13A Reverse Recovery Time Reverse Recovered Charge ISD = 27A, dISD/dt = 100A/s ISD = 27A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 1.0 113 425 UNITS V V ns nC 2 HUF76633P3, HUF76633S3S Typical Performance Curves 1.2 POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) 0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (oC) 50 ID, DRAIN CURRENT (A) 40 VGS = 10V 30 VGS = 4.5V 20 10 FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 1 THERMAL IMPEDANCE ZJC, NORMALIZED DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 100 101 SINGLE PULSE 0.01 10-5 10-4 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 500 IDM, PEAK CURRENT (A) TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 VGS = 10V 175 - TC 150 100 VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101 30 10-5 FIGURE 4. PEAK CURRENT CAPABILITY 3 HUF76633P3, HUF76633S3S Typical Performance Curves 200 100 ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) (Continued) 500 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC 100 100s 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) SINGLE PULSE TJ = MAX RATED 10 10 1ms TC = 25oC 1 1 10ms STARTING TJ = 150oC 1 100 300 0.001 0.01 0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 80 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V 60 80 VGS = 10V VGS = 5V ID, DRAIN CURRENT (A) 60 VGS = 4V VGS = 3.5V ID, DRAIN CURRENT (A) 40 40 VGS = 3V 20 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC 0 0 1 2 3 4 5 20 TJ = 25oC 0 1.5 2.0 TJ = 175oC TJ = -55oC 2.5 3.0 3.5 4.0 VGS, GATE TO SOURCE VOLTAGE (V) VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS 50 NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID = 39A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (m) 45 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC 3.0 VGS = 10V, ID = 39A 2.5 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 40 ID = 27A 35 ID = 15A 30 2.0 1.5 1.0 25 2 4 6 8 10 0.5 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 4 HUF76633P3, HUF76633S3S Typical Performance Curves 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250A NORMALIZED GATE THRESHOLD VOLTAGE 1.0 (Continued) 1.2 ID = 250A 1.1 0.8 1.0 0.6 0.4 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) 0.9 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE CISS = CGS + CGD C, CAPACITANCE (pF) 1000 COSS CDS + CGD VGS , GATE TO SOURCE VOLTAGE (V) 5000 10 VDD = 50V 8 6 CRSS = CGD 100 4 WAVEFORMS IN DESCENDING ORDER: ID = 39A ID = 27A ID = 15A 0 10 20 30 40 50 60 2 10 0.1 VGS = 0V, f = 1MHz 1 10 100 0 Qg, GATE CHARGE (nC) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 400 VGS = 4.5V, VDD = 50V, ID = 27A SWITCHING TIME (ns) SWITCHING TIME (ns) 500 VGS = 10V, VDD = 50V, ID = 39A 400 td(OFF) 300 tf 200 tr 100 td(ON) 0 50 0 10 20 30 40 50 300 tr 200 td(OFF) tf 100 td(ON) 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE () RGS, GATE TO SOURCE RESISTANCE () FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE 5 HUF76633P3, HUF76633S3S Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD + 0V IAS 0.01 0 tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS VDS RL VDD VDS VGS = 10V VGS + Qg(TOT) Qg(5) VDD VGS VGS = 1V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 5V DUT Ig(REF) FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON td(ON) RL VDS + tOFF td(OFF) tr tf 90% 90% VGS VDD DUT 0 10% 90% 10% RGS VGS VGS 0 10% 50% PULSE WIDTH 50% FIGURE 21. SWITCHING TIME TEST CIRCUIT FIGURE 22. SWITCHING TIME WAVEFORM 6 HUF76633P3, HUF76633S3S PSPICE Electrical Model .SUBCKT HUF76633 2 1 3 ; CA 12 8 3.50e-9 CB 15 14 3.50e-9 CIN 6 8 1.70e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD 10 rev 10 September1999 LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 DRAIN 2 RSLC1 51 ESLC 50 RSLC2 5 51 ESG 6 8 + LGATE GATE 1 RLGATE CIN EVTEMP RGATE + 18 22 9 20 EVTHRES + 19 8 6 IT 8 17 1 LDRAIN 2 5 1.00e-9 LGATE 1 9 5.17e-9 LSOURCE 3 7 2.13e-9 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2.04e-2 RGATE 9 20 2.15 RLDRAIN 2 5 10 RLGATE 1 9 51.7 RLSOURCE 3 7 21.3 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 4.85e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD MSTRO LSOURCE 8 RSOURCE RLSOURCE 7 SOURCE 3 S1A 12 S1B CA 13 + EGS 6 8 13 8 S2A 14 13 S2B CB + EDS 5 8 14 IT 15 17 - - VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*79),3.5))} .MODEL DBODYMOD D (IS = 1.96e-12 RS = 3.87e-3 TRS1 = 9.93e-4 TRS2 = 4.97e-6 CJO = 1.53e-9 TT = 7.41e-8 M = 0.50) .MODEL DBREAKMOD D (RS = 3.12e-1 TRS1 = 1.07e-3 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 1.97e-9 IS = 1e-30 M = 0.87) .MODEL MMEDMOD NMOS (VTO = 1.73 KP = 2.80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.15) .MODEL MSTROMOD NMOS (VTO = 2.04 KP = 80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.50 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 21.5 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.74e-4 TC2 = -3.71e-7) .MODEL RDRAINMOD RES (TC1 = 9.71e-3 TC2 = 2.90e-5) .MODEL RSLCMOD RES (TC1 = 2.17e-3 TC2 = 1.27e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.08e-3 TC2 = -6.82e-6) .MODEL RVTEMPMOD RES (TC1 = -1.52e-3 TC2 = -1.21e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -6.00 VOFF= -1.50) VON = -1.50 VOFF= -6.00) VON = -0.50 VOFF= 0.0) VON = 0.0 VOFF= -0.50) NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 7 + - EBREAK 11 7 17 18 120.7 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RDRAIN 21 16 DBODY MWEAK MMED RBREAK 18 RVTEMP 19 VBAT + 8 22 RVTHRES HUF76633P3, HUF76633S3S SABER Electrical Model REV 10 September 1999 template huf76633 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 1.96e-12, cjo = 1.53e-9, tt = 7.41e-8, m = 0.50) d..model dbreakmod = () d..model dplcapmod = (cjo = 1.97e-9, is = 1e-30, m = 0.87 ) m..model mmedmod = (type=_n, vto = 1.73, kp = 2.8, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.04, kp = 80, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.50, kp = 0.1, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.00, voff = -1.50) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.50, voff = -6.00) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.50, voff = 0.0) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.0, voff = -0.50) c.ca n12 n8 = 3.50e-9 c.cb n15 n14 = 3.50e-9 c.cin n6 n8 = 1.70e-9 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 5.17e-9 l.lsource n3 n7 = 2.13e-9 GATE 1 RLGATE CIN LGATE LDRAIN DPLCAP 10 RSLC1 51 RSLC2 ISCL RLDRAIN RDBREAK 72 DBREAK 11 MWEAK MMED MSTRO 8 EBREAK + 17 18 71 RDBODY 5 DRAIN 2 ESG + EVTEMP RGATE + 18 22 9 20 6 6 8 EVTHRES + 19 8 50 RDRAIN 21 16 DBODY - LSOURCE 7 RLSOURCE m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u S1A S2A 14 13 S2B 13 + EGS 6 8 EDS CB + 5 8 14 15 SOURCE 3 RSOURCE 12 RBREAK 17 18 RVTEMP 19 IT res.rbreak n17 n18 = 1, tc1 = 9.74e-4, tc2 = -3.71e-7 res.rdbody n71 n5 = 3.87e-3, tc1 = 9.93e-4, tc2 = 4.97e-6 res.rdbreak n72 n5 = 3.12e-1, tc1 = 1.07e-3, tc2 = 0 res.rdrain n50 n16 = 20.40e-3, tc1 = 9.71e-3, tc2 = 2.90e-5 res.rgate n9 n20 = 2.15 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 51.7 res.rlsource n3 n7 = 21.3 res.rslc1 n5 n51 = 1e-6, tc1 = 2.17e-3, tc2 = 1.27e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 4.85e-3, tc1 = 1.00e-3, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.52e-3, tc2 = 1.21e-7 res.rvthres n22 n8 = 1, tc1 = -2.08e-3, tc2 = -6.82e-6 spe.ebreak n11 n7 n17 n18 = 120.7 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 13 8 S1B CA VBAT + - - 8 RVTHRES 22 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/79))** 3.5)) } } 8 HUF76633P3, HUF76633S3S SPICE Thermal Model REV 9 September1999 HUF76633T CTHERM1 th 6 2.90e-3 CTHERM2 6 5 1.25e-2 CTHERM3 5 4 1.00e-2 CTHERM4 4 3 6.50e-3 CTHERM5 3 2 2.75e-2 CTHERM6 2 tl 12.55 RTHERM1 th 6 7.04e-3 RTHERM2 6 5 1.75e-2 RTHERM3 5 4 4.94e-2 RTHERM4 4 3 2.77e-1 RTHERM5 3 2 4.18e-1 RTHERM6 2 tl 5.54e-2 RTHERM1 CTHERM1 th JUNCTION 6 RTHERM2 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model SABER thermal model HUF76633T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 2.90e-3 ctherm.ctherm2 6 5 = 1.25e-2 ctherm.ctherm3 5 4 = 1.00e-2 ctherm.ctherm4 4 3 = 6.50e-3 ctherm.ctherm5 3 2 = 2.75e-2 ctherm.ctherm6 2 tl = 12.55 rtherm.rtherm1 th 6 = 7.04e-3 rtherm.rtherm2 6 5 = 1.75e-2 rtherm.rtherm3 5 4 = 4.94e-2 rtherm.rtherm4 4 3 = 2.77e-1 rtherm.rtherm5 3 2 = 4.18e-1 rtherm.rtherm6 2 tl = 5.54e-2 } 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029 9 |
Price & Availability of HUF76633S3S
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |