Part Number Hot Search : 
FDN361 06QNQ EMK23 20020 QTLP652C B80NF F800B MM1591J
Product Description
Full Text Search
 

To Download MAX1662 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-1306; Rev 0; 10/97
EVALUATION KIT AVAILABLE
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
________________General Description
The MAX1661/MAX1662/MAX1663 serial-to-parallel/ parallel-to-serial converters are intended to control external power MOSFETs in power-plane switching applications. These small, low-cost devices can be used on a system motherboard to control point-of-load switching from a 2wire SMBusTM serial interface. Each device has three highvoltage open-drain outputs that double as TTL-level logic inputs, giving them bidirectional capabilities. The I/O pins can withstand +28V, so they can control battery voltagedistribution switches in notebook computers. The MAX1661 is intended for driving N-channel MOSFETs and its outputs are low upon power-up. The MAX1662/ MAX1663 are intended for P-channel MOSFETs, and their outputs are high-impedance upon power-up. This ensures that the MOSFETs are off at power-up, so the system can enforce power-plane sequencing. The SMBSUS control input selects control data between two separate data registers. This feature allows the system to select between two different power-plane configurations asynchronously, eliminating latencies introduced by the serial bus. Other features include thermal-overload and overcurrent protection, ultra-low supply current, and both hardware and software interrupt capabilities. These devices are available in the space-saving 10-pin MAX package.
____________________________Features
o Performs Serial-to-Parallel and Parallel-to-Serial Conversions o Three General-Purpose Digital Input/Output Pins (withstand +28V) o SMBus 2-Wire Serial Interface o Supports SMBSUS Asynchronous Suspend Mode o 3A Supply Current o +2.7V to +5.5V Supply Range o Space-Saving, Low-Cost 10-Pin MAX Package
MAX1661/MAX1662/MAX1663
______________Ordering Information
PART MAX1661EUB MAX1662EUB MAX1663EUB TEMP. RANGE -40C to +85C -40C to +85C -40C to +85C PIN-PACKAGE 10 MAX 10 MAX 10 MAX
__________________Pin Configuration
TOP VIEW
VCC 1 I/O1 2 3 4 5 10 ALERT 9 SMBCLK SMBDATA SMBSUS ADD
________________________Applications
Power-Plane Switching Point-of-Load Power-Bus Switching Notebook and Subnotebook Computers Desktop Computers Smart Batteries
I/O2 I/O3 GND
MAX1661 MAX1662 MAX1663
8 7 6
MAX
Typical Operating Circuits appear at end of data sheet.
______________________________________________________________Selector Guide
PART x MAX1661 POWER-ONRESET STATE Outputs Low INTENDED APPLICATION N-Channel MOSFETs SMBus ADDRESS ADDRESS PIN GND High-Z VCC GND High-Z VCC GND High-Z VCC ADDRESS 0100000 0111100 1001000 0100001 0111101 1001001 0100010 0111110 1001010
MAX1662
Outputs High (high-Z state) Outputs High (high-Z state)
P-Channel MOSFETs
MAX1663
P-Channel MOSFETs
SMBus is a trademark of Intel Corp.
________________________________________________________________ Maxim Integrated Products 1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468.
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
MAX1661/MAX1662/MAX1663
ABSOLUTE MAXIMUM RATINGS
VCC to GND ..............................................................-0.3V to +6V I/O to GND (I/O1, I/O2, I/O3) ..................................-0.3V to +30V I/O Sink Current (I/O1, I/O2, I/O3), Internally Limited.............................................-1mA to +50mA Digital Inputs to GND (SMBCLK, SMBDATA, SMBSUS, ALERT).................................................-0.3V to +6V ADD to GND ...............................................-0.3V to (VCC + 0.3V) SMBDATA Current, ALERT Current ....................-1mA to +50mA Continuous Power Dissipation (TA = +70C) 10-pin MAX (derate 5.6mW/C above +70C) ...........444mW Operating Temperature Range MAX166_EUB ..................................................-40C to +85C Storage Temperature Range .............................-65C to +160C Lead Temperature (soldering, 10sec) .............................+300C
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VCC = +2.7V to +5.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are for TA = +25C.) (Note 1) PARAMETER Input Voltage Range Supply Current Undervoltage Lockout/ Power-On Reset Threshold I/O Sink Current I/O Current Limit Thermal Shutdown I/O Leakage Current Digital Input Current SMBus Logic Input Voltage Range Logic Input High Voltage Logic Input Low Voltage SMBDATA Output Low Sink Current ALERT Output Low Sink Current ALERT Output Leakage Current SMBus Input Capacitance SMBus Clock Frequency SMBCLK High Time SMBCLK Low Time tHIGH tLOW Static condition; SMBDATA, SMBCLK, ADD, ALERT = VCC or GND (Note 2) VCC falling VI/O_ = 0.4V, VCC = 2.7V or 5.5V VI/O_ = 1.0V, VCC = 4.5V I/O1, I/O2, or I/O3; VCC = 4.5V Typical hysteresis of 10C VI/O_ = 28V, high-impedance state VI/O_ = 0V, VCC; high-impedance state VSMBDATA, VSMBCLK, V SMBSUS, VADD = 0V, VCC VCC = 2.7V to 5.5V; SMBDATA, SMBCLK, SMBSUS I/O_, SMBSUS, SMBCLK, SMBDATA I/O_, SMBSUS, SMBCLK, SMBDATA VSMBDATA = 0.6V V ALERT = 0.4V V ALERT = 5.5V, high-Z state SMBCLK, SMBDATA (Notes 3, 4) Measured between the 90% level of the rising edge and the 90% level of the falling edge Measured between the 10% level of the falling edge and the 10% level of the rising edge 4 4.7 5 100 6 1 1 -1 -1 0 2.4 0.8 1.2 2 8 15 13 20 140 0.5 0.5 5 1 1 5.5 50 SYMBOL CONDITIONS MIN 2.7 3 1.6 TYP MAX 5.5 10 2.5 UNITS V A V mA mA C A A V V V mA mA A pF kHz s s
2
_______________________________________________________________________________________
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
ELECTRICAL CHARACTERISTICS (continued)
(VCC = +2.7V to +5.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are for TA = +25C.) (Note 1) PARAMETER Start-Condition Setup Time SYMBOL tSU:STA CONDITIONS Measured from 90% of the SMBCLK rising edge to 90% of the SMBDATA falling edge Measured from 10% of the falling edge of SMBDATA to 90% of the falling edge of SMBCLK Measured from 90% of the rising edge of SMBCLK to 10% of the rising edge of SMBDATA 10% or 90% of SMBDATA to 10% of the rising edge of SMBCLK VCC = 4.5V to 5.5V VCC = 2.7V to 4.5V MIN 4.7 TYP MAX UNITS s
MAX1661/MAX1662/MAX1663
Start-Condition Hold Time
tHD:STA
4
s
SMBus Stop-Condition Setup Time
tSU:STO
4
s
SMBDATA Valid to SMBCLK Rising Edge Time, Slave Clocking in Data SMBCLK Falling Edge to SMBDATA Transition Hold Time SMBCLK Falling Edge to SMBus Data Valid Time SMBus Bus-Free Time SMBus Write to I/O_ Propagation Delay I/O Data Valid to SMBCLK Rising-Edge Setup Time I/O Data Hold Time START-STOP Software-Interrupt Pulse Width
500 ns 1000 0 1 4.7 100 15 0 10 15 30 s s s ns s s s
tSU:DAT
tHD:DAT tDV tBUF tP:I/O tSU:I/O tHD:I/O tLOW:SS
(Notes 4, 5) Tested with a 10k pull-up resistor on SMBDATA (Note 6) Between stop and start conditions (Note 7) Measured from SMBCLK rising edge to 10% or 90% of I/O (Note 4) Measured from 10% or 90% of VI/O to 10% of the rising edge of SMBCLK (Note 8) (Note 8) Measured from the 10% point of the falling edge of SMBDATA to the 10% point of the rising edge of SMBDATA (Note 7)
Note 1: Specifications from 0C to -40C are guaranteed by design, not production tested. Note 2: Supply current is specified for static state only. Note 3: The SMBus logic block is a static design that works with clock frequencies down to DC. While slow operation is possible, it violates the 10kHz minimum clock frequency of the SMBus specifications, and may monopolize the bus. Note 4: Refer to Figures 2a and 2b for SMBus timing parameter definitions (write and read diagrams). Note 5: A transition must internally provide a hold time of 300ns to accommodate for the undefined region of the falling edge. Note 6: Refer to Figure 3 for the acknowledge timing diagram and tDV parameter definition. Note 7: Refer to Figure 5 for START-STOP interrupt timing diagrams and parameter definitions. Note 8: Refer to Figure 4 for I/O setup and hold timing parameter definitions.
_______________________________________________________________________________________
3
?@@@@@@@@ehY0@@@@@@@@ehY0@@@@@@@@@@&?@@@@@@@@e@@@@@@@@@@@4V?hY0@@@@@@@@@@e@@@@@@@@@@@@&?fY0@@@@@@@@@@&?@@@@@@@@ehY0@@@@@@@@ehY0@@@@@@@@@@@? ? ?@@@@@@@@h?Y(@@@@@@@@@hYY(@@@@@@@@@@&W?@@@@@@@@e1@@@@@@@@@@@'Vg?Y(@@@@@@@@@@7e@@@@@@@@@@@&W?e?Y(@@@@@@@@@@&W?@@@@@@@@h?Y(@@@@@@@@@h?Y(@@@@@@@@@@&W? @@h? @@ ?@@@@@@@@hY(@@@@@@@@@@g?Y((@@@@@@@@@@&We@@@@@@@@eX)@@@@@@@@@@@'V?fY(@@@@@@@@@@&We@@@@@@@@@@@JfY(@@@@@@@@@@&We@@@@@@@@hY(@@@@@@@@@@hY(@@@@@@@@@@&W7? ?@@@@@@@@g?Y(@@@@@@@@@ @@@@@@@@@@&W?e@@@@@@@@e?X6@@@@@@@@@@@'Ve?M(@@@@@@@@@@&W?e@@@@@@@@@@7?e?Y(@@@@@@@@@@&W?e@@@@@@@@g?Y(@@@@@@@@@@@g?Y(@@@@@@@@@@@ ?@@@@@@@@gY(@@@@@@@@@@@@f?Y(@@@@@@@@@@&W?f@@@@@@@@gX)@@@@@@@@@@@@@@@@@@@@@@@2W?f@@@@@@@@&Wee(@@@@@@@@@@&W?f@@@@@@@@f?Y(@@@@@@@@@@@@@f?Y(@@@@@@@@@@@&WW? @gY(@@@@@@@@@@&Wf@@@@@@@@f?K)@@@@@@@@@@'IM0@@@@@@@@@@@&Wf@@@@@@@@@&W??YY(@@@@@@@@@@&Wf@@@@@@@@gY(@@@@@@@@@@@@gY(@@@@@@@@@@@& ?@@@@@@@@f?Y(@@@@@@ ?@@@@@@@@fY(@@@@@@@@@@@@@@fY(@@@@@@@@@@&Wg@@@@@@@@g?X)@@@@@@@@@@@@@@@@@@@@&O?g@@@@@@@&W?eY(@@@@@@@@@@&Wg@@@@@@@@fY(@@@@@@@@@@@@@@fY(@@@@@@@@@@@&W? ?@@@@@@@@e?Y(@@@@@@@@@@@@@@@e?Y(@@@@@@@@@@&W?g@@@@@@@@h?X)@@@@@@@@@@@@@@@@&W?h@@@@@@@Je?Y(@@@@@@@@@@&W?g@@@@@@@@eY(@@@@@@@@@@@@@@@@eY(@@@@@@@@@@@&&W @@@@@@ ?@@@@@@@@eY(@@@@@@@@@@@@@@@@eY(@@@@@@@@@@&Wh@@@@@@@@hX)@@@@@@@@@@@@@@@@@@&Wh@@@@@@@?eY(@@@@@@@@@@&Wh@@@@@@@@e?Y(@@@@@@@@@@@@@@@e?Y(@@@@@@@@@@@W? ?@@@@@@@@? @@@@@@@@@@@?Y(@@@@@@@@@@&W?h@@@@@@@@ehX)@@@@@@@@@@@@@@&Weh@@@@@@@??Y(@@@@@@@@@@&W?h@@@@@@@@?Y(@@@@@@@@@@@@@@@@@?Y(@@@@@@@@@@@ ?@@@@@@@@YY(@@@@@@@@@@@@@@@@@Y(@@@@@@@@@@&Weh@@@@@@@@eh?X)@@@@@@@@@@@@&W?eh@@@@@@@?M(@@@@@@@@@@&Weh@@@@@@@@Y(@@@@@@@@@@@@@@@@@@Y(@@@@@@@@@@@&&W ?@@@@@@@@@(@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&W?eh@@@@@@@@fhL@@@@@@@@@@@@?fh@@@@@@@@@@@@@@@@@@@&W?eh@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&WW? @@@@@@@@ ?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&Wfh@@@@@@@@fh(@@@@@@@@@@@@@N?eh@@@@@@@@@@@@@@@@@2W?fh@@@@@@@@@@@@@@@@@@&W@@@@@@@@@@@@@@@@@@&WW? @@@@@@@@@@@@@&W@@@@@@@@@@@@@@@@@& @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@& ?@@@@@@@@@@@@@@@@@&W?@@@@@@@@@@@@@@@@&WW?fh@@@@@@@@ehY(@@@@@@@@@@@@@@'Veh@@@@@@@@@@@@@@@&O?&Wfh@@@@@@@@@@@@@@@@@&W?@@@@@@@@@@@@@@@@@&W? @@@@@@@@eh?YH@@@@@@@@@@@@3fh@@@@@@@@@@@@@@@@@@ ?@@@@@@@@@@@@@@@@&We@@@@@@@@@@@@@@@&W? ?@@@@@ ?@@@@@@@@@@@@@@@@&We@@@@@@@@@@@@@@@& @@@@@@@@h?Y(@@@@@@@@@@@@@@@@'V?h@@@@@@@@@@@@@@&W @@@@@@@@h?Y(@@@@@@@@@@@@@@@@'V?h@@@@@@@@@@@@@@&W @@@@@@@@@@@@@@@@&We@@@@@@@@@@@@@@@@&W @@@@@@@@@@@@@@@@&We@@@@@@@@@@@@@@@@&W ?@@@@@@@@@@@@@@@&W?e@@@@@@@@@@@@@@@JW? @@@@@@@@hY(@@@@@@@@@@@@@@@@@@'Vh@@@@@@@@@@@@@&W? @@@@@@@@@@@@@@@&W?e@@@@@@@@@@@@@@@&W? ?@@@@@@@@@@@@@@&Wf@@@@@@@@@@@@@@ @@@@@@@@g?Y(@@@@@@@@@@@@@@@@@@@@'V?g@@@@@@@@@@@@ @@@@@@@@@@@@@@&Wf@@@@@@@@@@@@@@ ?@@@@@@@@@@@@@&W?f@@@@@@@@@@@@@&7? @@@@@@@@gY(@@@@@@@@@&OK)@@@@@@@@@'Vg@@@@@@@@@@@&&W @@@@@@@@@@@@@&W?f@@@@@@@@@@@@@&&W ?@@@@@@@@@@@@&Wg@@@@@@@@@@@@&WW? @@@@@@@@f?Y(@@@@@@@@@&WeX)@@@@@@@@@'V?f@@@@@@@@@@&WW? @@@@@@@@@@@@&Wg@@@@@@@@@@@@&WW? ? @@@@@@@@fY(@@@@@@@@@&W?e?X)@@@@@@@@@'Vf@@@@@@@@@& @@@@@@@@@@@&W?g@@@@@@@@@@@& ?@@@@@@@@@@@&W?g@@@@@@@@@@@&W? @@@@@@@@f5@@@@@@@@@&WgX)@@@@@@@@@3f@@@@@@@@&WW? @@@@@@@@@@&Wh@@@@@@@@@@&WW? ?@@@@@@@@@@&Wh@@@@@@@@@@&W @@@@@@@@f@@@@@@@@@2W?g?X6@@@@@@@@@f@@@@@@@2W? @@@@@@@@@2W?h@@@@@@@@@2W? ?@@@@@@@@@2W?h@@@@@@@@@2W?
MAX1661/MAX1662/MAX1663
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
(VCC = +5.0V, TA = +25C, unless otherwise noted.)
4
POR DELAY (s) CURRENT LIMIT (mA) SUPPLY CURRENT (A)
__________________________________________Typical Operating Characteristics
_______________________________________________________________________________________
INPUT BIAS CURRENT (A) INPUT BIAS CURRENT (A) 0.5 1.0 1.5 SUPPLY CURRENT (A) 4.0
MAX1661toc03
5.0
SUPPLY CURRENT vs. TEMPERATURE
4.5
SUPPLY CURRENT vs. SUPPLY VOLTAGE
15.0
I/O_ SINK CURRENT vs. SUPPLY VOLTAGE
MAX1661toc01
MAX1661toc02
4.5
VCC = 5.5V
3.5
SINK CURRENT (mA)
2.0
2.5
3.0
3.5
10
15
20
25
MAX1661toc07
MAX1661toc08
35
10
12
14
22
CURRENT LIMIT (mA)
16
MAX1661toc04
MAX1661toc05
26
0
-40
ALL I/Os OFF
-20
I/O_ CURRENT LIMIT vs. TEMPERATURE
0
TEMPERATURE (C)
20
40
VCC = 2.7V
60
80
100
25.0
0.5
1.0
1.5
2.0
2.5
3.0
4.0
0
2.0
I/O_ CURRENT LIMIT vs. I/O_ VOLTAGE
2.5
3.0
SUPPLY VOLTAGE (V)
3.5
4.0
4.5
5.0
5.5
10.5
12.0
13.5
1.5
3.0
4.5
6.0
7.5
9.0
40
0
0
0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0
POR DELAY vs. TEMPERATURE
SUPPLY VOLTAGE (V)
VI/O_ = 1.0V
VI/O_ = 0.4V
MAX1661toc06
24
VI/O_ FORCED TO 15V VCC = 5.5V
17.5
POR DELAY (s)
18
20
-40
POR DELAY vs. SUPPLY VOLTAGE
-20
0
TEMPERATURE (C)
20
40
60
80
100
10.0
12.5
15.0
20.0
22.5
1.0
2.5
5.0
7.5
0
0
3
I/O_ INPUT BIAS CURRENT vs. TEMPERATURE
6
VCC = 2.7V
9
12 15 18 21 24 27 30
VI/O_ (V)
VCC = 5.5V
1.0
10
15
20
25
30
35
0
5
-40
-20
I/O_INPUT BIAS CURRENT vs. OUTPUT VOLTAGE
0
TEMPERATURE (C)
20
40
60
80
100
MAX1661toc09
30
0 5
3.0
3.5
SUPPLY VOLTAGE (V) 4.0 4.5 5.0 5.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 VCC = 5.5V VI/O_ = 15V -40 -20 0
TEMPERATURE (C) 20 40 60 80 100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0 3 6
OUTPUT VOLTAGE (V) 9 12 15 18 21 24 27 30
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
______________________________________________________________Pin Description
PIN 1 2 3 4 5 6 7 8 9 10 NAME VCC I/O1 I/O2 I/O3 GND ADD SMBSUS SMBDATA SMBCLK ALERT Supply Voltage Input, 2.7V to 5.5V. Input 1 or Output 1 (open drain). This pin can tolerate up to 28V. Input 2 or Output 2 (open drain). This pin can tolerate up to 28V. Input 3 or Output 3 (open drain). This pin can tolerate up to 28V. Ground SMBus Address Select Pin (see Table 1 for details). SMBus Suspend-Mode Control Input. Drive low to select the suspend-mode register. Drive high to select the normal-mode register. (See Detailed Description.) SMBus Serial-Data Input/Output (open drain) SMBus Serial Clock Input Interrupt Output, active low, open drain FUNCTION
MAX1661/MAX1662/MAX1663
TRANSITION DETECTORS I/01 SMBCLK SMBDATA SMB 8 INPUT REGISTER
I/02
MAX1661/ MAX1662/ MAX1663
ADD
I/03
ADDRESS DECODER
NORMAL NORMAL DATA REGISTER MUX SUSPEND CONTROL NORMAL MUX SUSPEND CONTROL NORMAL MUX SUSPEND CONTROL O3 O2 O1
7
ALERT RESPONSE REGISTER
ALERT
R FAULT LATCH S THERMAL SHUTDOWN
SUSPENDMODE DATA REGISTER
SMBSUS
Figure 1. Functional Diagram
_______________________________________________________________________________________ 5
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
MAX1661/MAX1662/MAX1663
_______________Detailed Description
The MAX1661/MAX1662/MAX1663 convert 2-wire SMBus serial data into three latched parallel outputs (I/O1, I/O2, I/O3). These devices are intended to drive Nchannel and P-channel, high-side MOSFET switches in load power-management systems. Readback capabilities allow them to function as parallel-to-serial devices. The MAX1661/MAX1662/MAX1663 operate from a single supply with a typical quiescent current of 3A, making them ideal for portable applications (Figure 1).
Table 1. SMBus Addresses
ADD GND High-Z (floating) VCC MAX1661 0100000 0111100 1001000 MAX1662 0100001 0111101 1001001 MAX1663 0100010 0111110 1001010
SMBus Interface Operation
The SMBus serial interface is a 2-wire interface with multi-mastering capability. From a software perspective, the MAX1661/MAX1662/MAX1663 appears as a set of byte-wide registers that contain information controlling the I/O_ pins, masking capabilities, and a control bit that determines which register is being addressed. The 2-wire slave interface employs standard SMBus send-byte and receive-byte protocols. SMBDATA and SMBCLK are Schmitt-triggered inputs that can accommodate slower edges; however, the rising and falling edges should still be faster than 1s and 300ns, respectively. Except for the stop and start conditions, the SMBDATA input never transitions while SMBCLK is high. A third interface line (SMBSUS) is used to execute commands asynchronously from previously stored registers (see the section SMBSUS (Suspend-Mode) Input). This reduces the inherent delay in a standard 2-wire serial interface. In the receive-byte operation, the SMBus interface reads back I/O states and thermal-shutdown status.
SMBus Send-Byte Commands If the MAX1661/MAX1662/MAX1663 receives its correct slave address (Table 1) followed by R/W low, it expects to receive a byte of information. If the device detects a start or stop condition prior to clocking in the byte of data, it considers this an error condition and disregards all of the data. The MAX1661/MAX1662/MAX1663 generates a first acknowledge after the write bit and another acknowledge after the data. It executes the data byte at the rising edge of SMBCLK following the second acknowledge, just prior to the stop condition (Figure 2a). See Table 2 for sendbyte operations. SMBSUS (Suspend-Mode) Input The SMBus can write to either of the normal-data and suspend-mode registers via the MSB (bit 7) of the send-byte word (Table 2). The state of the SMBSUS input selects which register contents (normal data or suspend mode) are applied to the I/O_ pins. Driving SMBSUS low selects the suspend-mode register, while driving SMBSUS high selects the normal-data register. This feature allows the system to select between two different power-plane configurations asynchronously, eliminating latencies introduced by the serial bus. SMBSUS typically connects to the SUSTAT# signal in a notebook computer. SMBus Receive-Byte Operation If the MAX1661/MAX1662/MAX1663 receives its correct slave address, followed by R/W high, the device becomes a slave transmitter (Figure 2b). After receiving the address data, the device generates an acknowledge during the acknowledge clock pulse and drives SMBDATA in sync with SMBCLK. The SMB protocol requires that the master terminate the read transmission by not acknowledging during the acknowledge bit of SMBCLK. See Table 3 for receive-byte data format. Figure 4 shows the complete receive-byte operation timing diagram.
The logic states of the three I/O pins can be read over the serial interface (Table 3). The state of the I/O pins is sampled at the falling edge of the SMBCLK pulse that follows the R/W bit and acknowledge bit (Figure 4). The states of the I/O bits in the status register reflect the
SMBus Addressing Each slave device only responds to two addresses: its own unique address and the alert response address. The device's unique address is determined at power-up (Table 1). The three-level state of the address-select pin (ADD) is only sampled upon power-on reset (POR) causing momentary input bias current of 100A. The address will not change until the part is power cycled. Stray capacitance in excess of 50pF on the ADD pin when floating may cause address recognition problems. The normal start condition consists of a high-to-low transition on SMBDATA while SMBCLK is high. After the start condition, the master transmits a 7-bit address followed by a single bit to determine whether the device is sending or receiving (high = READ, low = WRITE). If the address is correct, the MAX1661/MAX1662/ MAX1663 sends an acknowledgment pulse by pulling SMBDATA low. Otherwise, the address is not recognized and the device stays off the bus and waits until another start condition occurs.
6
_______________________________________________________________________________________
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
MAX1661/MAX1662/MAX1663
tP: I/O I/O A B C D E F G H I J K L M
tLOW
tHIGH
SMBCLK
SMBDATA
tSU:STA
tHD:STA
tSU:DAT
tHD:DAT F = ACKNOWLEDGE BIT CLOCKED INTO MASTER G = MSB OF DATA CLOCKED INTO SLAVE (OP/SUS BIT) H = LSB OF DATA CLOCKED INTO SLAVE I = SLAVE PULLS SMBDATA LINE LOW
tSU:STO tBUF J = ACKNOWLEDGE CLOCKED INTO MASTER K = ACKNOWLEDGE CLOCK PULSE L = STOP CONDITION, DATA EXECUTED BY SLAVE M = NEW START CONDITION
A = START CONDITION B = MSB OF ADDRESS CLOCKED INTO SLAVE C = LSB OF ADDRESS CLOCKED INTO SLAVE D = R/W BIT CLOCKED INTO SLAVE E = SLAVE PULLS SMBDATA LINE LOW
Send-Byte Format
ADDRESS START CONDITION 7 bits WRITE 1 bit (low) ACK 1 bit (low) DATA 8 bits ACK 1 bit (low) STOP CONDITION
Shaded = Slave Transmission Figure 2a. SMBus Send-Byte Timing Diagram and Format
Table 2. Format for Send-Byte Data
BIT 7 (MSB) 6 5 4 3 2 1 0 NAME SELECT Mask SS Mask 3 Mask 2 Mask 1 I/O3 I/O2 I/O1 POR STATE* (MAX1661) N/A 1 1 1 1 0 0 0 POR STATE* (MAX1662/MAX1663) N/A 1 1 1 1 1 1 1 FUNCTION Writes data to normal register when high; writes data to suspend register when low. Masks START-STOP software interrupts when high. Masks I/O3 interrupts when high. Masks I/O2 interrupts when high. Masks I/O1 interrupts when high. I/O output enable bit. I/O3 is on when this bit is low (low state). I/O output enable bit. I/O2 is on when this bit is low (low state). I/O output enable bit. I/O1 is on when this bit is low (low state).
*Note: POR states apply to both suspend- and normal-mode registers.
current I/O pin states (i.e., they are not latched). There is a 15s data-setup time requirement, due to the slow level translators needed for high-voltage (28V) operation. Data-hold time is zero.
Interrupts
The MAX1661/MAX1662/MAX1663 generate interrupts (hardware and software) whenever the logic states of the I/O pins change or when thermal shutdown occurs. Interrupts are signaled with the hardware ALERT pin
_______________________________________________________________________________________
7
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
MAX1661/MAX1662/MAX1663
A tLOW
B tHIGH
C
D
E
F
G
H
I
J
K
SMBCLK
SMBDATA
tSU:STA tHD:STA A = START CONDITION B = MSB OF ADDRESS CLOCKED INTO SLAVE C = LSB OF ADDRESS CLOCKED INTO SLAVE D = R/W BIT CLOCKED INTO SLAVE
tSU:DAT E = SLAVE PULLS SMBDATA LINE LOW F = ACKNOWLEDGE BIT CLOCKED INTO MASTER G = MSB OF DATA CLOCKED INTO MASTER H = LSB OF DATA CLOCKED INTO MASTER
tSU:STO I = ACKNOWLEDGE CLOCK PULSE J = STOP CONDITION K = NEW START CONDITION
tBUF
Receive-Byte Format
ADDRESS START CONDITION 7 bits READ 1 bit (high) ACK 1 bit (low) DATA 8 bits ACK 1 bit (high-Z) STOP CONDITION
ACK = SMBDATA High Shaded = Slave Transmission Figure 2b. SMBus Receive-Byte Timing Diagram and Format
Table 3. Format for Receive-Byte Data
BIT 7 (MSB) 6 5 4 3 2 1 0 NAME -- -- -- -- THSD Data 3 Data 2 Data 1 POR STATE 0 0 0 0 N/A N/A N/A N/A Not used Not used Not used Not used This bit indicates a thermal shutdown. This bit indicates the state of I/O3 (high or low). This bit indicates the state of I/O2 (high or low). This bit indicates the state of I/O1 (high or low). FUNCTION LATCHED -- -- -- -- Yes No No No
and with the software START-STOP method (software interrupts are discussed in the START-STOP Software Interrupt section). The I/O interrupts can be masked individually. In addition, the software START-STOP interrupt can be masked independently. The power-onreset state masks the START-STOP interrupt, as well as the individual I/O interrupts to the ALERT pin (Table 1). The thermal-shutdown interrupt cannot be masked. Note that excessive noise on the supply can cause false interrupts (see Applications Information).
8
The MAX1661/MAX1662/MAX1663 are slave-only devices that never initiate communications, except when asserting an interrupt by forcing ALERT low, or via the software START-STOP interrupt.
Alert Response Address (0001100)
The Alert Response (interrupt pointer) address provides quick fault identification for simple slave devices that lack the complex, expensive logic needed to be a bus master. When a slave device generates an inter-
_______________________________________________________________________________________
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
MAX1661/MAX1662/MAX1663
R/W BIT CLOCKED INTO SLAVE
ACKNOWLEDGE BIT CLOCKED INTO MASTER
MOST SIGNIFICANT BIT OF DATA CLOCKED INTO MASTER
SMBCLK
***
SLAVE PULLING SMBDATA LOW SMBDATA
***
tDV tDV
Figure 3. SMB Serial-Interface Timing--Acknowledge and Data Valid
ADDRESS MSB
ADDRESS LSB
SLAVE ACKNOWLEDGE I/O LATCHED R/W BIT DATA MSB
SLAVE ACKNOWLEDGE (ACK)
START
DATA LSB
SMBCLK tSU:I/O (NOTE 1) SMBDATA SLAVE PULLS SMBDATA LOW 4 ZEROS (NOT USED) tHD:I/O (NOTE 1) THSD DATA3 DATA2 DATA1
NOTE 1: THE SETUP AND HOLD TIMING LIMITS ARE ABSOLUTE LIMITS (15s MIN AND 0s MIN, RESPECTIVELY) AND DO NOT NECESSARILY CORRESPOND TO A PARTICULAR CLOCK EDGE.
Figure 4. I/O Read Timing Diagram
rupt, the host (Bus Master) interrogates the bus slave devices via a special receive-byte operation that includes the alert response address. The data returned by this receive-byte operation is the address of the offending slave device. The interrupt pointer address can activate several different slave devices simultaneously. If more than one slave attempts to respond, bus arbitration rules apply, with the lowest address code going first. The other device(s) will not generate an acknowledge and will continue to hold the ALERT line low or repeat the START-STOP interrupt until serviced.
Clearing Interrupts via Alert Response
When a fault occurs, ALERT asserts and latches low. If the fault is momentary and disappears before the device is serviced, ALERT remains asserted. Normally, the master sends out the Alert Response address followed by a read bit (00011001). ALERT clears when the device responds by successfully putting its address on the bus. Reading the Alert Response address is the only method for clearing hardware and software interrupt latches. Clearing the interrupt has no effect on the state of the status registers.
_______________________________________________________________________________________
9
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
MAX1661/MAX1662/MAX1663
START
SLAVE ACKNOWLEDGE (ACK)
STOP
SMBCLK tLOW:SS SMBDATA tBUF ALERT START-STOP INTERRUPT ALERT RESPONSE ADDRESS (0001100) DATA LINE HELD LOW BY SLAVE ACTUAL SLAVE ADDRESS (0100000 IN THIS EXAMPLE) DUMMY BIT (1)
Figure 5. START-STOP Software Interrupt Timing Diagram and Alert Response
START-STOP Software Interrupt
The START-STOP interrupt is a method for the slave device to initiate a signal over the 2-wire interface without the need for a third (interrupt) wire. A START-STOP interrupt is a start condition followed by a stop condition; in other words, SMBDATA goes low and then high with SMBCLK high (Figure 5 shows the START-STOP interrupt and a subsequent Alert Response transmission used to clear the interrupt). The START-STOP function can be disabled (masked) by setting the data register mask SS (bit 6) high. In order to avoid bus collisions, the START-STOP interrupt will not occur when the bus is busy. If the device begins a start condition simultaneously with another transmitter on the bus, it recognizes the falling SMBCLK as a collision and re-transmits the interrupt when the bus becomes available. Upon thermal shutdown or a transition on an I/O line, the device issues only one START-STOP interrupt, and won't repeat it unless there has been a collision. However, thermal-shutdown faults, not being edge triggered, may result in a continuous stream of START-STOP bits.
monly used in power-switching applications. Other factors include the VGS, the input capacitance of the MOSFET, and the pull-up resistor value used in the circuit. Typical MOSFET gate capacitance ranges from 150pF to 2000pF. Increasing the RC time constant slows down the MOSFET's response, but provides for a smoother transition.
Power-On Reset
The power-on reset circuit keeps the external MOSFETs off during a power-up sequence. When the supply voltage falls below the power-on reset threshold voltage, the MAX1662/MAX1663's outputs reset to a highimpedance state, and the MAX1661's outputs reset to a low state. During the initial power-up sequence, as VCC increases, the ALERT pin goes low and then high, which indicates the device is powered on. The time between the low and high state on ALERT is the poweron delay time. Below VCC = 0.8V (typical) the POR states can't be enforced, and the I/O pins of all versions exhibit increasingly weak pull-down current capability, eventually becoming high impedance.
Input/Output Pins
Each input/output (I/O) is protected by an internal 20mA (typical) current-limit circuit. The I/O current limit depends on the supply voltage and the voltage applied to the I/O pins (see Typical Operating Characteristics). The typical I/O bias current is 0.5A to VI/O_ = 28V. The ability of the I/Os to sink current depends on VCC as well as the voltage on the I/O. Typical pull-down onresistance at VCC = 2.7V and 5.5V is 106 and 66, respectively. I/O source and sink capability can affect the rise and fall times of external power MOSFETs com-
Thermal Shutdown
These devices have internal thermal-shutdown circuitry that turns off all output stages (I/O pins) when the junction temperature exceeds +140C typical. Thermal shutdown only occurs during an overload condition on the I/O pins. The device cycles between thermal shutdown and the overcurrent condition until the overload condition is removed. This could cause a sustained START-STOP interrupt and, in the extreme case, tie up the master controller. However, the device asserts ALERT low, indicating this fault status.
10
______________________________________________________________________________________
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
__________Applications Information
Bypassing and Grounding Considerations
Voltage transients exceeding 500mV at 25V/s may trigger a false interrupt and thermal-shutdown indication. If large VCC transients are expected, add a 100 resistor in series with VCC. Retain the 0.1F capacitor from VCC to GND to act as a filter.
P-Channel/N-Channel Load Switch with Controlled Turn-On
For a more controlled voltage-switching application, add a series resistor to slow the switch turn-on time. The external MOSFET gate has typical capacitance of 150pF to 2000pF, but an optional external capacitance can be added to further slow the switching time (Figure 6).
MAX1661/MAX1662/MAX1663
+5V 100* 10k 10k 10k 10k 0.1F 200k I/O1 I/O2 I/O3 IRF7406 200k IRF7406 200k IRF7406 10k 10k
VCC
0.01F*
0.01F*
0.01F*
MAX1662 MAX1663
ALERT TO/FROM HOST SMBDATA SMBCLK SMBSUS ADD GND
LOAD1
LOAD2
LOAD3
+12V +5V 100* 10k 10k 10k 0.1F 10k 10k IRF7413 200k I/O1 I/O2 I/O3 0.01F* 200k 0.01F* 10k IRF7413 200k 0.01F* IRF7413
VCC
MAX1661
ALERT
TO/FROM HOST
SMBDATA SMBCLK SMBSUS ADD GND
LOAD1
LOAD2
LOAD3 *OPTIONAL
Figure 6. Load Switch with Controlled Turn-On
______________________________________________________________________________________
11
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
MAX1661/MAX1662/MAX1663
Battery Switch with Back-to-Back MOSFETs
For battery-operated applications, use back-to-back MOSFETs to keep reverse currents from flowing from the load to the supply (Figure 7). This protects the battery from potential damage, and isolates the load from the power source.
LED Drivers
A MAX1661/MAX1662/MAX1663 can be used as a programmable LED driver (Figure 8). With their low quiescent current, these devices are ideal for use as indicator light drivers on the front panel of a notebook computer.
+5V 100* 100k 10k 10k 10k VCC 0.1F IRF7406
+3.3V TO +28V
P
MAX1662 MAX1663
ALERT TO/FROM HOST SMBDATA SMBCLK SMBSUS ADD GND I/O1 I/O2
75k**
1M
IRF7406 I/O3
P
LOAD NOTE: I/O2 AND I/O3 CAN BE CONFIGURED SIMILARLY. *OPTIONAL **75k RESISTOR FOR VOLTAGES GREATER THAN +12V.
Figure 7. Battery Switch with Back-to-Back MOSFETs
+5V 100* 1k 10k 10k VCC 0.1F 1k 1k
MAX1661 MAX1662 ALERT MAX1663
SMBDATA TO/FROM HOST SMBCLK SMBSUS ADD GND
I/O1 I/O2 I/O3
*OPTIONAL
Figure 8. LED Drivers
12 ______________________________________________________________________________________
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
Mechanical Switch Monitor
The ability of the MAX1661/MAX1662/MAX1663 to read back the logic state of the I/Os makes them suitable for checking system status. They can be used as an "open-lid indicator", sensing a change in the I/O and sending an interrupt to the master to indicate a change in status (Figure 9). The same can be done to detect a chassis intrusion.
+5V 100* 0.1F 100k 100k 100k
Simple High-Voltage Switch
For applications requiring a higher voltage, use a simple resistive divider to protect the gate from breakdown yet allow the MOSFETs to handle higher-voltage applications (Figure 10).
MAX1661/MAX1662/MAX1663
10k
10k
10k
VCC
MAX1661 MAX1662 ALERT MAX1663 I/O1
TO/FROM HOST SMBDATA SMBCLK SMBSUS ADD GND *OPTIONAL I/O2 I/O3
Figure 9. Open-Lid Detect or Chassis Intrusion Detector
+5V 100* 200k 10k 10k 10k VCC 0.1F
VIN = 10V TO 28V
MAX1662 MAX1663
ALERT TO/FROM HOST SMBCLK SMBDATA SMBSUS ADD *OPTIONAL I/O2 AND I/O3 CAN BE CONFIGURED SIMILIARLY. GND I/O1 I/O2 I/O3
0.01F* 200k IRF7406
LOAD
Figure 10. Simple High-Voltage Switch
______________________________________________________________________________________
13
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
MAX1661/MAX1662/MAX1663
___________________________________________________Typical Operating Circuit
+2.7V TO +5.5V
VCC
100k 0.1F
100k
100k
MAX1662 MAX1663
ALERT SMBUS TO/ FROM HOST SMBDATA SMBCLK SMBSUS ADD GND I/O1 I/O2 I/O3
P-CH
LOAD1
LOAD2
LOAD3
+12V +2.7V TO +5.5V 100k 0.1F 100k 100k
VCC
MAX1661
ALERT SMBUS TO/ FROM HOST SMBDATA SMBCLK SMBSUS ADD GND I/O1 I/O2 I/O3
N-CH
LOAD1
LOAD2
LOAD3
___________________Chip Information
TRANSISTOR COUNT: 3334 SUBSTRATE CONNECTED TO GND
14
______________________________________________________________________________________
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
________________________________________________________Package Information
10LUMAXB.EPS
MAX1661/MAX1662/MAX1663
______________________________________________________________________________________
15
Serial-to-Parallel/Parallel-to-Serial Converters and Load-Switch Controllers with SMBus Interface
MAX1661/MAX1662/MAX1663
NOTES
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.


▲Up To Search▲   

 
Price & Availability of MAX1662

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X