![]() |
|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
PROFET(R) BTS 640 S2 Smart Sense High-Side Power Switch Features * Short circuit protection * Current limitation * Proportional load current sense * CMOS compatible input Package * Open drain diagnostic output * Fast demagnetization of inductive loads TO220-7-11 * Undervoltage and overvoltage shutdown with auto-restart and hysteresis * Overload protection * Thermal shutdown 1 Standard (staggered) * Overvoltage protection including load dump (with external GND-resistor) * Reverse battery protection (with external GND-resistor) * Loss of ground and loss of Vbb protection * Electrostatic discharge (ESD) protection Product Summary Operating voltage On-state resistance Load current (ISO) Current limitation Vbb(on) RON IL(ISO) IL(SCr) 5.0 ... 34 V 30 m 12.6 A 24 A TO220-7-12 TO263-7-2 1 SMD 1 Straight * C compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads * All types of resistive, inductive and capacitve loads * Replaces electromechanical relays, fuses and discrete circuits Application General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, proportional sense of load current, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions. Block Diagram 4 + V bb Voltage source V Logic Voltage sensor Overvoltage protection Current limit Gate protection OUT 6, 7 IL Charge pump Level shifter Rectifier Limit for unclamped ind. loads Output Voltage detection Temperature sensor 3 1 IN Current Sense Load ST ESD Logic R O GND 5 R IS I IS IS Signal GND GND PROFET Load GND 2 Semiconductor Group Page 1 of 15 2003-Oct-01 BTS 640 S2 Pin 1 2 3 4 5 6&7 Symbol ST GND IN Vbb IS OUT (Load, L) Function Diagnostic feedback: open drain, invers to input level Logic ground Input, activates the power switch in case of logical high signal Positive power supply voltage, the tab is shorted to this pin Sense current output, proportional to the load current, zero in the case of current limitation of load current Output, protected high-side power output to the load. Both output pins have to be connected in parallel for operation according this spec (e.g. kILIS). Design the wiring for the max. short circuit current Maximum Ratings at Tj = 25 C unless otherwise specified Parameter Supply voltage (overvoltage protection see page 4) Supply voltage for full short circuit protection Tj Start=-40 ...+150C Symbol Vbb Vbb VLoad dump3) IL Tj Tstg Ptot Values 43 34 60 self-limited -40 ...+150 -55 ...+150 85 0,41 3,5 1.0 4.0 8.0 -10 ... +16 2.0 5.0 14 Unit V V V A C W J kV Load dump protection1) VLoadDump = VA + Vs, VA = 13.5V RI2)= 2 , RL= 1 , td= 200 ms, IN= low or high Load current (Short circuit current, see page 5) Operating temperature range Storage temperature range Power dissipation (DC), TC 25 C Inductive load switch-off energy dissipation, single pulse Vbb = 12V, Tj,start = 150C, TC = 150C const. IL = 12.6 A, ZL = 4,2 mH, 0 : EAS IL = 4 A, ZL = 330 mH, 0 : EAS Electrostatic discharge capability (ESD) IN: VESD (Human Body Model) ST, IS: out to all other pins shorted: acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993 R=1.5k; C=100pF Input voltage (DC) Current through input pin (DC) Current through status pin (DC) Current through current sense pin (DC) see internal circuit diagrams page 8 VIN IIN IST IIS V mA 1) 2) 3) Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins (a 150 resistor in the GND connection is recommended). RI = internal resistance of the load dump test pulse generator VLoad dump is setup without the DUT connected to the generator according to ISO 7637-1 and DIN 40839 Semiconductor Group Page 2 2003-Oct-01 BTS 640 S2 Thermal Characteristics Parameter and Conditions Thermal resistance Symbol min ---chip - case: RthJC junction - ambient (free air): RthJA SMD version, device on PCB4): Values typ max -- 1.47 -75 33 -Unit K/W Electrical Characteristics Parameter and Conditions at Tj = 25 C, Vbb = 12 V unless otherwise specified Symbol Values min typ max Unit Load Switching Capabilities and Characteristics On-state resistance (pin 4 to 6&7) IL = 5 A Tj=25 C: RON Tj=150 C: VON(NL) IL(ISO) IL(NOM) IL(GNDhigh) ton toff dV /dton -dV/dtoff -- 27 54 50 12.6 4.5 -70 80 --- 30 60 ---8 150 200 1 1 m Output voltage drop limitation at small load currents (pin 4 to 6&7), see page 14 IL = 0.5 A VON = 0.5 V, TC = 85 C Tj =-40...+150C: -11.4 4.0 -25 25 0.1 0.1 mV A A mA s V/s V/s Nominal load current, ISO Norm (pin 4 to 6&7) Nominal load current, device on PCB4) TA = 85 C, Tj 150 C VON 0.5 V, Output current (pin 6&7) while GND disconnected or GND pulled up, Vbb=30 V, VIN= 0, see diagram page 9; not subject to production test, specified by design Turn-on time IN to 90% VOUT: Turn-off time IN to 10% VOUT: RL = 12 , Tj =-40...+150C Slew rate on 10 to 30% VOUT, RL = 12 , Tj =-40...+150C 70 to 40% VOUT, RL = 12 , Tj =-40...+150C Slew rate off 4) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70m thick) copper area for Vbb connection. PCB is vertical without blown air. Semiconductor Group Page 3 2003-Oct-01 BTS 640 S2 Parameter and Conditions at Tj = 25 C, Vbb = 12 V unless otherwise specified Symbol Values min typ max Unit Operating Parameters Operating voltage 5) Undervoltage shutdown Undervoltage restart Vbb(on) Tj =-40...+150C: Vbb(under) Tj =-40...+25C: Vbb(u rst) Tj =+150C: Undervoltage restart of charge pump see diagram page 13 Tj =-40...+25C: Vbb(ucp) Tj =25...150C: Undervoltage hysteresis Vbb(under) Tj =-40...+150C: Vbb(under) = Vbb(u rst) - Vbb(under) 5.0 3.2 ----34 33 -41 43 ----- --4.5 4.7 -0.5 --1 -47 4 12 -1.2 34 5.0 5.5 6.0 6.5 7.0 -43 ---52 15 25 10 3 V V V V V V V V V A A mA Overvoltage shutdown Overvoltage restart Overvoltage hysteresis Overvoltage protection6) Ibb=40 mA Vbb(over) Tj =-40...+150C: Vbb(o rst) Tj =-40...+150C: Vbb(over) Tj =-40C: Vbb(AZ) Tj =+25...+150C Tj =-40...+150C: Standby current (pin 4) Tj=-40...+25C: Ibb(off) Tj= 150C: IL(off) Off state output current (included in Ibb(off)) VIN=0 VIN=0, Tj =-40...+150C: Operating current (Pin 2)7), VIN=5 V IGND 5) 6) 7) At supply voltage increase up to Vbb= 4.7 V typ without charge pump, VOUT Vbb - 2 V Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins (a 150 resistor in the GND connection is recommended). See also VON(CL) in table of protection functions and circuit diagram page 9. Add IST, if IST > 0, add IIN, if VIN>5.5 V Semiconductor Group Page 4 2003-Oct-01 BTS 640 S2 Parameter and Conditions at Tj = 25 C, Vbb = 12 V unless otherwise specified Symbol Values min typ max Unit Protection Functions8) Initial peak short circuit current limit (pin 4 to 6&7) IL(SCp) Tj =-40C: Tj =25C: =+150C: Tj Repetitive short circuit shutdown current limit IL(SCr) Tj = Tjt (see timing diagrams, page 12) 48 40 31 -- 56 50 37 24 -47 -10 -600 65 58 45 --52 --32 -- A A V C K V mV Output clamp (inductive load switch off) Tj =-40C: Tj =+25..+150C: Thermal overload trip temperature Thermal hysteresis Reverse battery (pin 4 to 2) 9) Reverse battery voltage drop (Vout > Vbb) IL = -5 A Tj=150 C: at VOUT = Vbb - VON(CL); IL= 40 mA, VON(CL) Tjt Tjt -Vbb -VON(rev) 41 43 150 ---- Diagnostic Characteristics Current sense ratio10), static on-condition, VIS = 0...5 V, Vbb(on) = 6.511)...27V, Tj kILIS = IL / IIS = -40C, IL = 5 A: kILIS Tj= -40C, IL= 0.5 A: 4550 3300 4550 4000 5000 5000 5000 5000 6.1 ---- 6000 8000 5550 6500 6.9 1 15 10 V A Tj= 25...+150C, IL= 5 A: , Tj= 25...+150C, IL = 0.5 A: Current sense output voltage limitation Tj = -40 ...+150C IIS = 0, IL = 5 A: VIS(lim) 5.4 0 0 0 Current sense leakage/offset current Tj = -40 ...+150C VIN=0, VIS = 0, IL = 0: IIS(LL) VIN=5 V, VIS = 0, IL = 0: IIS(LH) VIN=5 V, VIS = 0, VOUT = 0 (short circuit): IIS(SH)12 ) 8) 9) 10) 11) 12) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. Requires 150 resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 2 and circuit page 9). This range for the current sense ratio refers to all devices. The accuracy of the kILIS can be raised at least by a factor of two by matching the value of kILIS for every single device. In the case of current limitation the sense current IIS is zero and the diagnostic feedback potential VST is High. See figure 2b, page 11. Valid if Vbb(u rst) was exceeded before. not subject to production test, specified by design Semiconductor Group Page 5 2003-Oct-01 BTS 640 S2 Parameter and Conditions at Tj = 25 C, Vbb = 12 V unless otherwise specified Symbol Values min typ max --300 Unit Current sense settling time to IIS static10% after positive input slope13) , IL = 0 5 A, Tj= -40...+150C tson(IS) s s s V k Current sense settling time to 10% of IIS static after negative input slope13) , IL = 5 0A, tsoff(IS) Tj= -40...+150C --2 5 30 10 3 15 100 -4 40 Current sense rise time (60% to 90%) after change of load current13) , IL = 2.5 5A tslc(IS) Open load detection voltage14) (off-condition) Tj=-40..150C: VOUT(OL) RO Internal output pull down (pin 6 to 2), VOUT=5 V, Tj=-40..150C Input and Status Feedback15) Input resistance see circuit page 8 RI 3,0 -1.5 -1 20 ---5.4 ---- 4,5 --0.5 -50 400 13 1 6.1 ---- 7,0 3.5 --50 90 ---6.9 0.4 0.7 2 k V V V A A s s s V Input turn-on threshold voltage Tj =-40..+150C: VIN(T+) Input turn-off threshold voltage Tj =-40..+150C: VIN(T-) Input threshold hysteresis VIN(T) Off state input current (pin 3), VIN = 0.4 V Tj =-40..+150C IIN(off) On state input current (pin 3), VIN = 5 V Tj =-40..+150C IIN(on) td(ST OL3) tdon(ST) tdoff(ST) Delay time for status with open load after Input neg. slope (see diagram page 13) Status delay after positive input slope13) Tj=-40 ... +150C: Status delay after negative input slope13) Tj=-40 ... +150C: Status output (open drain) Zener limit voltage Tj =-40...+150C, IST = +1.6 mA: VST(high) ST low voltage Tj =-40...+25C, IST = +1.6 mA: VST(low) Tj = +150C, IST = +1.6 mA: Status leakage current, VST = 5 V, Tj=25 ... +150C: IST(high) A 13) 14) not subject to production test, specified by design External pull up resistor required for open load detection in off state. 15) If a ground resistor R GND is used, add the voltage drop across this resistor. Semiconductor Group Page 6 2003-Oct-01 BTS 640 S2 Truth Table Input level Normal operation Currentlimitation Short circuit to GND Overtemperature Short circuit to Vbb Open load Undervoltage Overvoltage Negative output voltage clamp L = "Low" Level H = "High" Level L H L H L H L H L H L H L H L H L Output level L H L H L L16) L L H H L19) H L L L L L Status level H L H H H H H H L17) L H (L20)) L H L H L H Current Sense IIS 0 nominal 0 0 0 0 0 0 0 16) 17) 18) 19) 20) The voltage drop over the power transistor is Vbb-VOUT>typ.3V. Under this condition the sense current IIS is zero An external short of output to Vbb, in the off state, causes an internal current from output to ground. If RGND is used, an offset voltage at the GND and ST pins will occur and the VST low signal may be errorious. Low ohmic short to Vbb may reduce the output current IL and therefore also the sense current IIS. Power Transistor off, high impedance with external resistor between pin 4 and pin 6&7 Semiconductor Group Page 7 2003-Oct-01 BTS 640 S2 Terms V 4 3 IN ST Ibb IL VON OUT PROFET OUT GND 2 R GND I GND 7 V 6 Status output +5V bb I IN I ST I IS Vbb R ST(ON) ST 1 V IN IS VST 5 V IS OUT GND ESDZD ESD-Zener diode: 6.1 V typ., max 5 mA; RST(ON) < 440 at 1.6 mA, The use of ESD zener diodes as voltage clamp at DC conditions is not recommended. Input circuit (ESD protection) R IN I Current sense output V IS I ESD-ZD I GND IS I I IS ESD-ZD R GND IS The use of ESD zener diodes as voltage clamp at DC conditions is not recommended. ESD-Zener diode: 6.1 V typ., max 14 mA; RIS = 1 k nominal Inductive and overvoltage output clamp + V bb V Z VON OUT GND PROFET VON clamped to 47 V typ. Semiconductor Group Page 8 2003-Oct-01 BTS 640 S2 Overvoltage protection of logic part + 5V + V bb GND disconnect V bb 3 1 IN ST IS 4 Ibb R ST IN ST IS RI Logic V Z2 Vbb OUT PROFET OUT GND 2 V GND 6 7 RV R IS V Z1 GND 5 VVV IN ST IS R GND Signal GND Any kind of load. In case of Input=high is VOUT VIN - VIN(T+) . Due to VGND >0, no VST = low signal available. VZ1 = 6.1 V typ., VZ2 = 47 V typ., RI= 4 k typ, RGND= 150 , RST= 15 k, RIS= 1 k, RV= 15 k, GND disconnect with GND pull up 4 Vbb OUT PROFET OUT IS GND 2 7 Reverse battery protection + 5V 3 IN ST 6 - Vbb R ST IN ST IS 1 5 RI Logic VZ1 Power Inverse Diode OUT RV R IS GND V bb V VSTV IN IS V GND Any kind of load. If VGND > VIN - VIN(T+) device stays off Due to VGND >0, no VST = low signal available. RL Power GND RGND Signal GND Vbb disconnect with energized inductive load 4 high 3 1 5 IN ST IS Vbb OUT PROFET OUT GND 2 7 6 The load RL is inverse on, temperature protection is not active RGND= 150 , RI= 4 k typ, RST 500 , RIS 200 , RV 500 , Open-load detection OFF-state diagnostic condition: VOUT > 3 V typ.; IN low V bb V bb R EXT Normal load current can be handled by the PROFET itself. OFF Out ST Logic V OUT R O Signal GND Semiconductor Group Page 9 2003-Oct-01 BTS 640 S2 Vbb disconnect with charged external inductive load 4 high 3 1 5 IN ST IS Vbb OUT PROFET OUT GND 2 RL V bb L 7 6 D If other external inductive loads L are connected to the PROFET, additional elements like D are necessary. Inductive Load switch-off energy dissipation E bb E AS ELoad OUT PROFET OUT IS GND 2 ER 6 7 EL 4 3 1 IN ST Vbb = Vbb 5 Energy stored in load inductance: EL = 1/2*L*I L While demagnetizing load inductance, the energy dissipated in PROFET is EAS= Ebb + EL - ER= VON(CL)*iL(t) dt, with an approximate solution for RL > 0 : EAS= IL* L IL*RL *(V + |VOUT(CL)|)* ln (1+ ) |VOUT(CL)| 2*RL bb 2 Semiconductor Group Page 10 2003-Oct-01 BTS 640 S2 Figure 2a: Switching a lamp Timing diagrams IN Figure 1a: Switching a resistive load, change of load current in on-condition: ST IN ST V t don(ST) OUT t doff(ST) VOUT t on tslc(IS) t off t slc(IS) IL IL I IS t Load 1 IIS t son(IS) Load 2 Figure 2b: Switching a lamp with current limit: IN t soff(IS) t The sense signal is not valid during settling time after turn or change of load current. ST Figure 1b: Vbb turn on: IN VOUT Vbb IL I L IIS t I IS ST t proper turn on under all conditions Semiconductor Group Page 11 2003-Oct-01 BTS 640 S2 Figure 2c: Switching an inductive load: IN IN ST ST VOUT IL Figure 4a: Overtemperature: Reset if Tj I IS IIS t TJ t Figure 3a: Short circuit: shut down by overtempertature, reset by cooling Figure 5a: Open load: detection in ON-state, open load occurs in on-state IN IL IL(SCp) I L(SCr) IN ST VOUT I IS IL normal open normal ST t IIS t Heating up may require several milliseconds, depending on external conditions IL(SCp) = 50 A typ. increases with decreasing temperature. Semiconductor Group Page 12 2003-Oct-01 BTS 640 S2 Figure 6b: Undervoltage restart of charge pump Figure 5b: Open load: detection in ON- and OFF-state (with REXT), turn on/off to open load V on VON(CL) IN td(ST OL3) off-state on-state V bb(over) V OUT V bb(u rst) V bb(o rst) I L open load I IS V V bb(under) bb(u cp) t charge pump starts at Vbb(ucp) =4.7 V typ. Figure 7a: Overvoltage: Figure 6a: Undervoltage: IN IN ST not defined Vbb ST V ON(CL) V bb(over) V bb(o rst) V bb V I bb(under) Vbb(u cp) Vbb(u rst) IL L I IIS t IS t Semiconductor Group Page 13 2003-Oct-01 off-state V bb ST BTS 640 S2 Figure 8b: Current sense ratio21: Figure 8a: Current sense versus load current: 1.3 [mA] 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 1 2 3 4 IL 5 [A] 6 0 [A] I L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 5000 10000 15000 k ILIS I IS Figure 9a: Output voltage drop versus load current: VON [V] 0.2 RON 0.1 VON(NL) IL 0 1 2 3 4 5 6 7 [A] 8 0.0 21 This range for the current sense ratio refers to all devices. The accuracy of the kILIS can be raised at least by a factor of two by matching the value of kILIS for every single device. Semiconductor Group Page 14 2003-Oct-01 BTS 640 S2 Package and Ordering Code All dimensions in mm Standard (=staggered): P-TO220-7-11 Sales code Ordering code 10 0.2 9.8 0.15 8.5 3.7 -0.15 1) Straight: P-TO220-7-12 Sales Code Ordering code 10 0.2 9.8 0.15 A B 4.4 1.27 0.1 BTS640S2 Q67060-S6307-A5 A 4.4 1.27 0.1 BTS640S2 S Q67060-S6307-A7 8.5 3.7 -0.15 1) 170.3 15.650.3 1) 15.650.3 17 0.3 2.8 0.2 13.4 2.8 0.2 1) 13.4 0.05 9.25 0.2 0.05 8.6 0.3 110.5 10.2 0.3 C 0...0.15 1.27 3.70.3 C 0.5 0.1 3.9 0.4 13 0.5 0...0.15 1.27 7x 0.6 0.1 0.25 M 2.4 8.4 0.4 1) 7x 0.6 0.1 0.25 M 0.5 0.1 2.4 ABC AC 1) Typical All metal surfaces tin plated, except area of cut. Typical All metal surfaces tin plated, except area of cut. SMD: P-TO263-7-2 (tape&reel) Sales code Ordering code 10 0.2 9.8 0.15 A 8.5 1) BTS640S2 G Q67060-S6307-A6 4.4 1.27 0.1 B 0.1 2.4 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 Munchen (c) Infineon Technologies AG 2001 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. 10.3 0.05 9.25 0.2 (15) 1.3 0.3 8 1) We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). 0...0.15 7x0.60.1 6x1.27 4.7 0.5 2.7 0.3 0.5 0.1 8 max. 0.25 1) M AB 0.1 Typical All metal surfaces tin plated, except area of cut. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Ordering code Q67060-S6307-A6 Semiconductor Group Page 15 2003-Oct-01 9.25 0.2 |
Price & Availability of BTS640S2
![]() |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |