

H2A1-H410

High Power single chip LED

H2A1-H410 is a InGaN based, high power 410 nm single chip LED in standard hexagonal Aluminum package for general application. Slots in the Aluminum-core PCB allow for easy mounting of standard collimating optics and are also suitable for M3 or M4 mounting screws. Large electrical interconnection pads on the PCB allow for convenient installation.

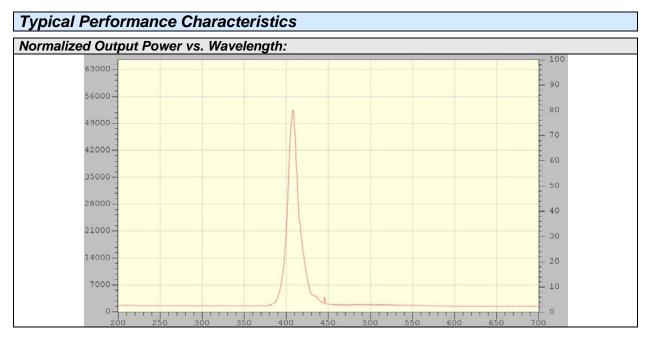
Specifications

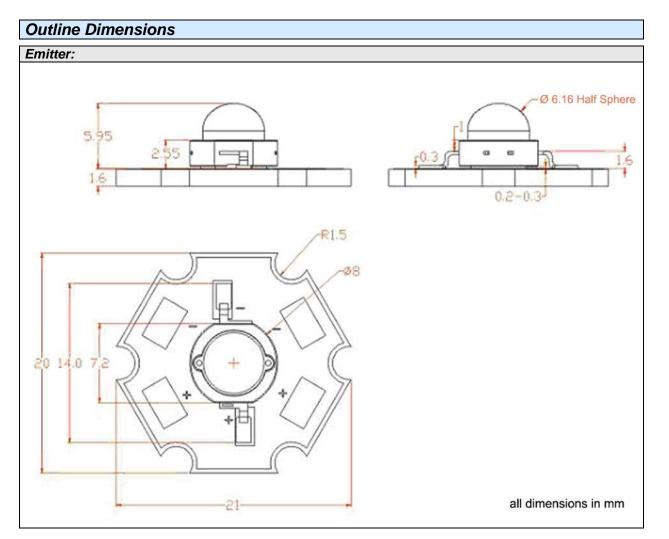
- Structure: InGaN
- Peak Wavelength: 410 nm
- Optical Output Power: typ. 125 mW
- Life Time: > 10.000 hours
- Lead free product RoHS compliant

Absolute Maximum Ratings (T _a =25°C)					
Parameter	Symbol	Value	Unit		
Power Dissipation, DC	PD	1000	mW		
Forward Current, DC	I _F	500	mA		
Pulsed Current (1% duty cycle, 1kHz)	I _{FP}	1000	mA		
Reverse Voltage	U _R	-5	V		
Operating Temperature	T _{opr}	-30 +70	C°		
Storage Temperature	T _{stg}	-30 +85	°C		
Soldering Temperature (max. 1,5 s)	T _{sol}	330	°C		

Electro-Optical Characteristics (T_a=25°C)

		1 = /				
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Current	I _F		-	350	-	mA
Viewing Angle	φ	I _F = 350 mA		± 75		deg.
CW Output Power	Po	I _F = 350 mA		125		mW
Peak Wavelength	λ_{P}	I _F = 350 mA		410		nm
Forward Voltage	U _F	I _F = 350 mA	-	3.65	-	V
Half Width (FWHM)	Δλ	I _F = 350 mA	-	20		nm
Novelength measurements televenes is 1/20/						


Wavelength measurements tolerance is +/- 2% Output power measurement tolerance is +/- 10%


Voltage measurement tolerance is +/- 2%

Device Materials

Item	Material					
foundation	Plastic	P. C. D. D.				
Lens	Silicone resin					
Electrodes	AgCu					
PCB	AI					

Radiation Pattern (lambertian lens without optics) Relative Intensity vs. Angular Displacement 100 90 80 Relative Intensity (%) 70 60 50 40 30 20 10 -100 -80 -60 -40 -20 0 20 40 60 80 100 Angular Displacement (Degrees)

Accessories

Collimating optics, holders, reflectors

10158 + 10146, 2° half angle spot optic + optic holder 10048 + 10076, 4° half angle spot optic + optic holder 10003 + 10043, 6° half angle spot optic + optic holder 10003/15 + 10043, 15° half angle spot optic + optic holder 10003/25 + 10043, 25° half angle spot optic + optic holder CLP17CR, 6° metalized polycarbonate reflector CLP23CR, 20° metalized polycarbonate reflector

Static Electricity

LEDs are very sensitive to static Electricity and surge voltage. It is recommended to wear a wristband or an anti-electrostatic glove whenever handling the LEDs

All devices, equipment, and machinery that is used when handling the LEDs must be grounded properly.

Heat Generation

It is advised to operate these LEDs at a reasonable low temperature for long lifetime and stability. High operating temperature will result in premature degradation and shortened lifetime.

Soldering Conditions

Reflow Soldering:

APG2C1 LEDs have a maximum storage temperature of 85°. Therefor it is not possible to use a reflow soldering process for array assembly!

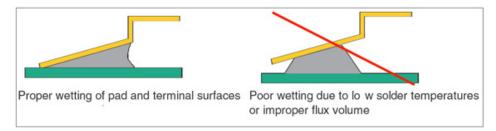
Hot Bar Soldering:

A Hot Bar Soldering process is recommended when soldering APG2C1 emitters. This process will only transfer heat to the leads and avoids overheating the emitter which will damage the device. In order to transfer sufficient heat from the hot bar to the device, following parameters must be carefully considered:

- Amount of flux
- Pressing force of solder tip
- Hot bar temperature

For the standard assembly process, following parameters should be maintained:

- Hot Bar temperature: 330 °C
- Force of Hot Bar. 40 N
- Soldering time: 1.5 s


It is recommended to use a copper nickel-plated hot bar mounted to standard temperature controlled soldering equipment.

Manual Hand Soldering:

For prototype build or small series production runs, it is possible to place and solder the emitters by hand. It is therefore recommended to maintain the following parameters:

- Solder Tip Temperature 330 °C
- Soldering time. < 1.5 s
- Junction temperature must be kept below 70 °C

A visual inspection may be used to check the quality of the solder joint

General Soldering Precautions:

- Mechanical stress, shock and vibration must be avoided during soldering
- Only use non corrosive flux.
- Do not apply current to the device until it has cooled down to room temperature after soldering.