


# APT20M18B2VFR A20M18LVFR

**200V 100A 0.018**Ω

# POWER MOS V® FREDFET

Power MOS  $V^{\otimes}$  is a new generation of high voltage N-Channel enhancement mode power MOSFETs. This new technology minimizes the JFET effect, increases packing density and reduces the on-resistance. Power MOS  $V^{\otimes}$  also achieves faster switching speeds through optimized gate layout.



- T-MAX™ or TO-264 Package
- Avalanche Energy Rated

Faster Switching

FAST RECOVERY BODY DIODE

Lower Leakage



### **MAXIMUM RATINGS**

All Ratings:  $T_C = 25$ °C unless otherwise specified.

| Symbol                           | Parameter                                                     | APT20M18B2VFR_LVFR | UNIT   |  |
|----------------------------------|---------------------------------------------------------------|--------------------|--------|--|
| V <sub>DSS</sub>                 | Drain-Source Voltage                                          | 200                | Volts  |  |
| I <sub>D</sub>                   | Continuous Drain Current <sup>6</sup> @ T <sub>C</sub> = 25°C | 100                | Amps   |  |
| I <sub>DM</sub>                  | Pulsed Drain Current ①                                        | 400                | , unpo |  |
| V <sub>GS</sub>                  | Gate-Source Voltage Continuous                                | ±30                | Volts  |  |
| V <sub>GSM</sub>                 | Gate-Source Voltage Transient                                 | ±40                |        |  |
| P <sub>D</sub>                   | Total Power Dissipation @ T <sub>C</sub> = 25°C               | 625                | Watts  |  |
| , D                              | Linear Derating Factor                                        | 5.00               | W/°C   |  |
| T <sub>J</sub> ,T <sub>STG</sub> | Operating and Storage Junction Temperature Range              | -55 to 150         | °C     |  |
| T <sub>L</sub>                   | Lead Temperature: 0.063" from Case for 10 Sec.                | 300                | O      |  |
| I <sub>AR</sub>                  | Avalanche Current (1) (Repetitive and Non-Repetitive)         | 100                | Amps   |  |
| E <sub>AR</sub>                  | Repetitive Avalanche Energy ①                                 | 50                 | mJ     |  |
| E <sub>AS</sub>                  | Single Pulse Avalanche Energy <sup>(4)</sup>                  | 3000               | 1110   |  |

### STATIC ELECTRICAL CHARACTERISTICS

| Symbol              | Characteristic / Test Conditions                                                       | MIN | TYP | MAX   | UNIT  |
|---------------------|----------------------------------------------------------------------------------------|-----|-----|-------|-------|
| BV <sub>DSS</sub>   | Drain-Source Breakdown Voltage ( $V_{GS} = 0V$ , $I_D = 250\mu A$ )                    | 200 |     |       | Volts |
| R <sub>DS(on)</sub> | Drain-Source On-State Resistance $^{\textcircled{2}}$ ( $V_{GS}$ = 15V, $I_{D}$ = 50A) |     |     | 0.018 | Ohms  |
| I <sub>DSS</sub>    | Zero Gate Voltage Drain Current $(V_{DS} = 200V, V_{GS} = 0V)$                         |     |     | 250   | μΑ    |
|                     | Zero Gate Voltage Drain Current ( $V_{DS}$ = 160V, $V_{GS}$ = 0V, $T_{C}$ = 125°C)     |     |     | 1000  |       |
| I <sub>GSS</sub>    | Gate-Source Leakage Current $(V_{GS} = \pm 30V, V_{DS} = 0V)$                          |     |     | ±100  | nA    |
| V <sub>GS(th)</sub> | Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 2.5 \text{mA})$                      | 2   |     | 4     | Volts |

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

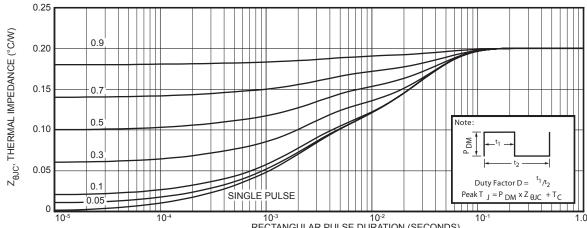
Microsemi Website - http://www.microsemi.com

### **DYNAMIC CHARACTERISTICS**

| Symbol              | Characteristic                 | Test Conditions              | MIN | TYP  | MAX | UNIT |
|---------------------|--------------------------------|------------------------------|-----|------|-----|------|
| C <sub>iss</sub>    | Input Capacitance              | V <sub>GS</sub> = 0V         |     | 9880 |     |      |
| C <sub>oss</sub>    | Output Capacitance             | V <sub>DS</sub> = 25V        |     | 2320 |     | pF   |
| C <sub>rss</sub>    | Reverse Transfer Capacitance   | f = 1 MHz                    |     | 700  |     |      |
| Q <sub>g</sub>      | Total Gate Charge <sup>③</sup> | V <sub>GS</sub> = 10V        |     | 330  |     |      |
| Q <sub>gs</sub>     | Gate-Source Charge             | V <sub>DD</sub> = 150V       |     | 55   |     | nC   |
| Q <sub>gd</sub>     | Gate-Drain ("Miller") Charge   | I <sub>D</sub> = 100A @ 25°C |     | 145  |     |      |
| t <sub>d(on)</sub>  | Turn-on Delay Time             | V <sub>GS</sub> = 15V        |     | 18   |     |      |
| t <sub>r</sub>      | Rise Time                      | V <sub>DD</sub> = 150V       |     | 27   |     | ns   |
| t <sub>d(off)</sub> | Turn-off Delay Time            | I <sub>D</sub> = 100A @ 25°C |     | 55   |     | 110  |
| t <sub>f</sub>      | Fall Time                      | $R_{G} = 0.6\Omega$          |     | 6    |     |      |

### SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

| Symbol                | Characteristic / Test Conditions                                       |                        | MIN | TYP | MAX | UNIT     |
|-----------------------|------------------------------------------------------------------------|------------------------|-----|-----|-----|----------|
| Is                    | Continuous Source Current (Body Diode)                                 |                        |     |     | 100 | Amps     |
| I <sub>SM</sub>       | Pulsed Source Current (1) (Body Diode)                                 |                        |     |     | 400 | 7111103  |
| V <sub>SD</sub>       | Diode Forward Voltage ② (V <sub>GS</sub> = 0V, I <sub>S</sub> = -100A) |                        |     |     | 1.3 | Volts    |
| dv <sub>/</sub><br>dt | Peak Diode Recovery <sup>dv</sup> / <sub>dt</sub> <sup>⑤</sup>         |                        |     |     | 8   | V/ns     |
|                       | Reverse Recovery Time                                                  | T <sub>i</sub> = 25°C  |     |     | 230 | 230 ns   |
| t <sub>rr</sub>       | $(I_S = -100A, \frac{di}{dt} = 100A/\mu s)$                            | T <sub>i</sub> = 125°C |     |     | 450 | 1113     |
|                       | Reverse Recovery Charge                                                | T <sub>i</sub> = 25°C  |     | 0.9 |     | μC       |
| Q <sub>rr</sub>       | $(I_S = -100A, \frac{di}{dt} \le = 100A/\mu s)$                        | T <sub>i</sub> = 125°C |     | 3.4 |     |          |
|                       | Peak Recovery Current                                                  | T <sub>i</sub> = 25°C  |     | 11  |     | Amps     |
| RRM                   | $(I_S = -100A, \frac{di}{dt} = 100A/\mu s)$                            | T <sub>i</sub> = 125°C |     | 20  |     | 1 VIIIh2 |


### THERMAL CHARACTERISTICS

| Symbol           | Characteristic      | MIN | TYP | MAX  | UNIT |
|------------------|---------------------|-----|-----|------|------|
| $R_{\theta JC}$  | Junction to Case    |     |     | 0.20 | °C/W |
| R <sub>θJA</sub> | Junction to Ambient |     |     | 40   |      |

- ① Repetitive Rating: Pulse width limited by maximum junction temperature
- ② Pulse Test: Pulse width < 380 μs, Duty Cycle < 2%
- 3 See MIL-STD-750 Method 3471

- ④ Starting T<sub>j</sub> = +25°C, L = 600μH, R<sub>G</sub> = 25Ω, Peak I<sub>L</sub> = 100A ⑤ <sup>dv</sup>/<sub>dt</sub> numbers reflect the limitations of the test circuit rather than the device itself.  $I_S \le -I_D 100A$   $I_d \le 200A/μs$   $I_R \le 200V$   $I_J \le 150°C$  6 The maximum current is limited by lead temperature.

Microsemi reserves the right to change, without notice, the specifications and information contained herein.



RECTANGULAR PULSE DURATION (SECONDS)
FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION

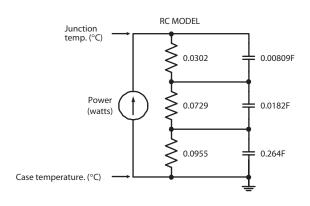
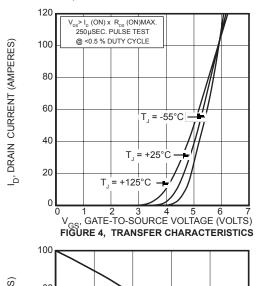
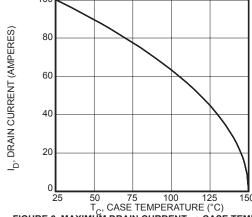
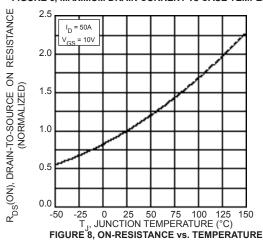
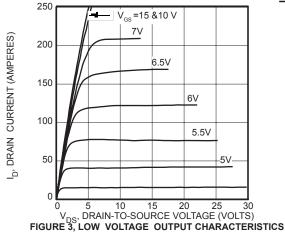
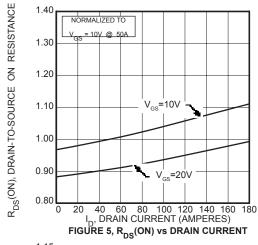
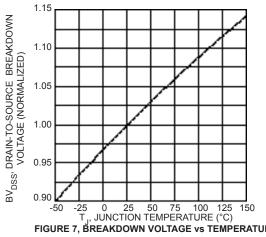
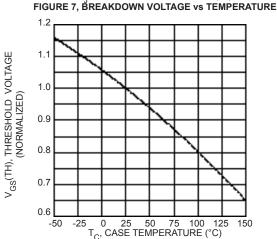



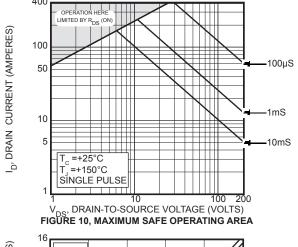

FIGURE 2, TRANSIENT THERMAL IMPEDANCE MODEL

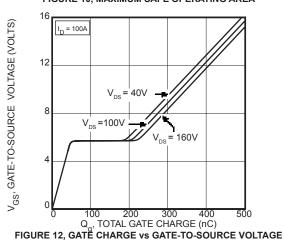


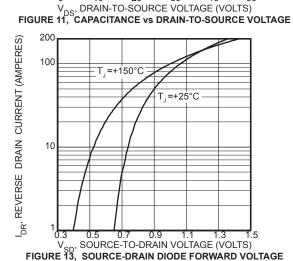


FIGURE 6, MAXIMUM DRAIN CURRENT vs CASE TEMPERATURE



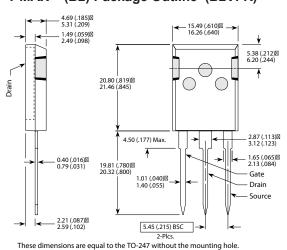




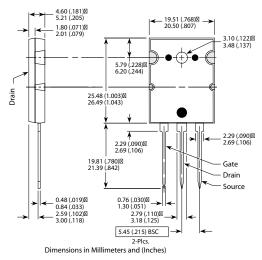




# Typical Performance Curves






# APT20M18B2VFR\_LVFR 30,000 10,000 C<sub>iss</sub> C<sub>oss</sub> 1,000 1,000 V<sub>DCI, DRAIN-TO-SOURCE VOLTAGE (VOLTS)</sub>




## T-MAX™ (B2) Package Outline (B2VFR)



Dimensions in Millimeters and (Inches)

# TO-264 (L) Package Outline (LVFR)



### Disclaimer:

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp