

XR32430/XR32431

3-Driver/5-Receiver Intelligent RS-232 Transceiver with 1.65V-5.5V Interface

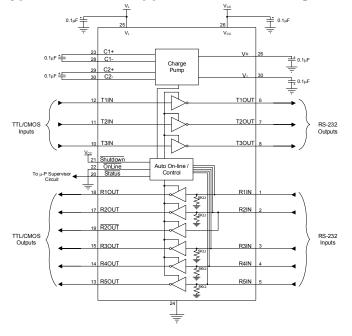
General Description

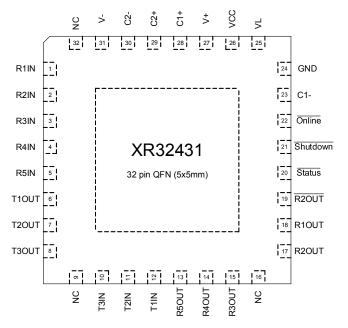
The XR32430 and XR32431 products are 3 driver/ 5 receiver RS-232 transceivers. The XR32431 features a variable low voltage logic interface, down to 1.65V. These products are intended for portable or hand-held applications such as notebook and palmtop computers. The XR32430EB and XR32431EB devices feature slew-rate limited outputs for reduced crosstalk and EMI. The XR32430EH and XR32431EH devices are optimized for mid speed applications, with data rates up to 460Kbps. The XR32430EU and XR32431EU devices are optimized for high speed designs with data rates up to 1Mbps, easily meeting the demands of high speed RS-232 applications.

The XR32430/31 uses an internal high-efficiency charge-pump power supply that requires only four 0.1µF capacitors in 3.3V operation. This charge pump combined with Exar's driver architecture allow the XR32430/31 to deliver compliant RS-232 performance from a single power supply ranging from +3.0V to +5.5V.

The AUTO ON-LINE® feature allows the device to automatically "wake-up" during a shutdown state when an RS-232 cable is connected and a connected peripheral is turned on. Otherwise, the device automatically shuts itself down drawing less than 1µA.

FEATURES


- Meets true EIA/TIA-232-F Standards from a +3.0V to 5.5V power supply
- Interoperable with EIA/TIA-232 and adheres to EIA/TIA-562 down to a +2.7V power source
- •1.65V to 5.5V Logic Interface V₁ pin (XR32431)
- AUTO ON-LINE circuitry automatically wakes up from a $1\mu A$ shutdown
- Regulated Charge Pump yields stable RS-232 Outputs regardless of V_{CC} variations
- Enhanced ESD Specifications
- ±15kV Human Body Model
- ±15kV IEC61000-4-2 Air Discharge
- ±8kV IEC61000-4-2 Contact Discharge
- 250Kbps/460Kbps/1Mbps min transmission rates (speed grades B/H/U)
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) package


APPLICATIONS

- Industrial and Single Board Computers
- Industrial and Process Control Equipment
- Point-Of-Sales Equipment
- Building Security and Automation

Ordering Information – page 13

Typical XR32431 Application and Package Pinout

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Maximum Rating condition for extended periods may affect device reliability and lifetime.

Supply Voltage (V _{CC})	0.3V to +6.0V
Logic Interface Voltage (V _L)	$V_L \leq V_{CC}$
V+	0.3V to +7.0V
V	+0.3V to -7.0V
V+ + V-	±13V
ICC (DC V _{CC} or GND current)	±100mA
Junction Temperature	125°C
Input Voltages	
TxIN, ONLINE, Shutdown,	0.3V to +6.0V
RxIN	±15V

Output Voltage
TxOUT±13.2V
RxOUT, Status0.3V to +6.0V
Short-Circuit Duration
TxOUTContinuous
Storage Temperature65°C to +150°C
ESD Rating RS-232 Bus pins
HBM - Human Body Model±15kV
IEC614000-4-2 Air Discharge±15kV
IEC614000-4-2 Contact Discharge±8kV

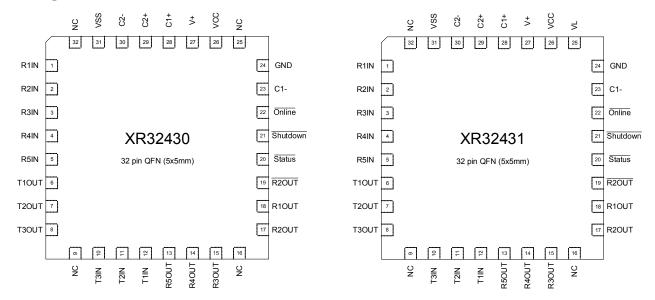
Operating Conditions

Consumer Operating Temperature Range.	0°C to +70°C
Industrial Operating Temperature Range	40°C to +85°C
V _{CC} Supply Range	3.0V to 5.5V
V_1 I/O Supply Range ($V_1 \le V_{CC}$)	1.65V to 5.5V

Thermal Information (32 Ld QFN (5x5mm))

Θ_{JA}	30.1(°C/W)
Θις	

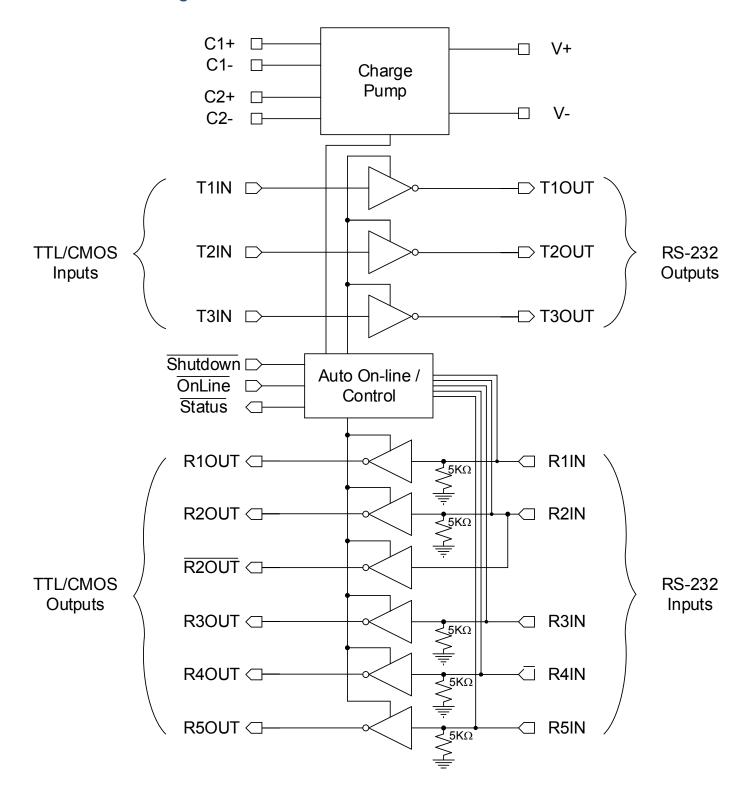
Electrical Characteristics


Unless otherwise noted: $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 3.3V \pm 10\%$ or $5.0V \pm 10\%$, $V_L = V_{CC}$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Parameter	Conditions		Min	Тур	Max	Units
enabled = V_L V_CO = V_L = 3.3V, TXIN = V_L or GND	DC CHARA	ACTERISTICS						
TxIN = V_L or GND TxIN = V_L or GND Company Com	I _{CC1}		= V_L , V_{CC} = V_L = 3.3V, $TxIN$ = V_L or	1.0		1.0	10	μА
Abled	I _{CC2}	Supply Current, Shutdown		•		1.0	10	μΑ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{CC3}		_	•		0.3	1.0	mA
No No No No No No No No	LOGIC INF	PUTS AND OUTPUTS - XR32430			l		1	l
V _{IH} Input High Voltage • 2.4 V I _{IL} Input Leakage Current TxIN, Online, Shutdown; V _{IN} = 0V to V _{CC} • ±0.01 ±1.0 μA I _{OL} Output Leakage Current Status, RxOUT (Receivers disabled); V _{OUT} = 0V to V _{CC} • ±0.05 ±10 μA V _{OL} Output Leakage Current Status, RxOUT; I _{OUT} = 1.5mA • • 0.4 V V _{OH} Output High Voltage Status, RxOUT; I _{OUT} = -1.5mA • V _{CC} -0.6 • v LOGIC INPUTS AND OUTPUTS - XR32431 * V _{CC} -0.6 • v V V _{IL} Input Low Voltage TxIN, Online, Shutdown; Online, Shutdown; V _{IN} = 0V to V _L • 2/3 ° V _L v V _{IL} Input Leakage Current TxIN, Online, Shutdown; V _{IN} = 0V to V _L • 2/3 ° V _L v I _{IL} Input Leakage Current TxIN, Online, Shutdown; V _{IN} = 0V to V _L • ±0.01 ±1.0 µA V _{OL} Output Leakage Current Status, RxOUT; (Receivers disabled); V _{IN} = 0V to V _L • ±0.05	V _{IL}	Input Low Voltage		•			0.8	٧
VCC	V _{IH}	Input High Voltage	- 3.0V≤ V _{CC} ≤ 5.5V	•	2.4			V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{IL}	Input Leakage Current		•		±0.01	±1.0	μА
VOH Output High Voltage Status, RXOUT; I _{OUT} = -1.5mA • V _{CC} - 0.6 V LOGIC INPUTS AND OUTPUTS - XR32431 ViL Input Low Voltage TxIN, Online, Shutdown; 1.65V ≤ V _L ≤ 5.5V & V _L ≤ V _{CC} • 2/3 * V _L V VIH Input Leakage Current TxIN, Online, Shutdown; V _L ≤ 0.5V & V _L ≤ 0.5V & V _L ≤ 0.5V & V _L • 2/3 * V _L V I _{LL} Input Leakage Current TxIN, Online, Shutdown; V _L = 0.0V to V _L • 2.001 ±1.0 μA I _{OL} Output Leakage Current Status, RXOUT (Receivers disabled); V _{OUT} = 0.0 ±0.05 ±1.0 μA V _{OL} Output Low Voltage Status, RXOUT; I _{OUT} = 1.5mA • V _L - 0.6 V V PRIVER OUTPUTS Status, RXOUT; I _{OUT} = -1.5mA • V _L - 0.6 V V DRIVER OUTPUTS V V _C - 0.6 V V OR Output Voltage Swing All drivers outputs loaded with 3KΩ to GND • ±5.0 ±5.4 V I _{OSC} Output Short-Circuit Current V _{OUT} = 0V • 300 ±25.4 μA I _{OSC} Output Leakage Curr	I _{OL}	Output Leakage Current		•		±0.05	±10	μА
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{OL}	Output Low Voltage	Status, RxOUT; I _{OUT} = 1.5mA	•			0.4	٧
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{OH}	Output High Voltage	Status, RxOUT; I _{OUT} = -1.5mA	•	V _{CC} - 0.6			V
$V_{\text{IH}} \qquad \text{Input High Voltage} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LOGIC INF	PUTS AND OUTPUTS - XR32431			l		1	l
$V_{\text{II}} \qquad \text{Input High Voltage} \qquad \qquad \bullet \qquad 2/3 ^{\circ} V_{\text{L}} \qquad \qquad V$ $I_{\text{IL}} \qquad \text{Input Leakage Current} \qquad \text{TxIN, } \overline{\text{Online, }} \overline{\text{Shutdown}} ; V_{\text{IN}} = 0 \text{V to } V_{\text{L}} \qquad \bullet \qquad \pm 0.01 \qquad \pm 1.0 \qquad \mu \text{A}$ $I_{\text{OL}} \qquad \text{Output Leakage Current} \qquad \frac{\text{Status, }}{\text{Status, }} \overline{\text{RxOUT; }} \text{ (Receivers disabled)}; \qquad \bullet \qquad \pm 0.05 \qquad \pm 10 \qquad \mu \text{A}$ $V_{\text{OL}} \qquad \text{Output Low Voltage} \qquad \overline{\text{Status, }} \overline{\text{RxOUT; }} \text{ I}_{\text{OUT}} = 1.5 \text{mA} \qquad \bullet \qquad V_{\text{L}} = 0.6 \qquad V$ $V_{\text{OH}} \qquad \text{Output High Voltage} \qquad \overline{\text{Status, }} \overline{\text{RxOUT; }} \text{ I}_{\text{OUT}} = -1.5 \text{mA} \qquad \bullet \qquad V_{\text{L}} = 0.6 \qquad V$ $DRIVER OUTPUTS$ $V_{\text{SWING}} \qquad \text{Output Voltage Swing} \qquad \text{All drivers outputs loaded with } 3K\Omega \text{ to } \text{GND} \qquad \pm 5.0 \qquad \pm 5.4 \qquad V$ $Q_{\text{R}} \qquad \text{Output Resistance} \qquad V_{\text{CC}} = V + = V - = 0 \text{V, } V_{\text{OUT}} = \pm 2 \text{V} \qquad \bullet \qquad 300 \qquad \qquad \Omega$ $I_{\text{OSC}} \qquad \text{Output Short-Circuit Current} \qquad V_{\text{OUT}} = 0 \text{V} \qquad \bullet \qquad \pm 35 \qquad \pm 60 \qquad \text{mA}$ $I_{\text{OL}} \qquad \text{Output Leakage Current} \qquad V_{\text{CC}} = 0 \text{V or } 3.0 \text{V to } 5.5 \text{V, } V_{\text{OUT}} = \pm 12 \text{V} \qquad \bullet \qquad \pm 35 \qquad \pm 60 \qquad \text{mA}$ $I_{\text{OL}} \qquad \text{Output Leakage Current} \qquad V_{\text{CC}} = 0 \text{V or } 3.0 \text{V to } 5.5 \text{V, } V_{\text{OUT}} = \pm 12 \text{V} \qquad \bullet \qquad \pm 25 \qquad \mu \text{A}$ $RECEIVER \text{ INPUTS}$ $IVR \qquad \text{Input Voltage Range} \qquad V_{\text{CC}} = 3.3 \text{V} \qquad \bullet \qquad $	V _{IL}	Input Low Voltage		•			1/3 * V _L	V
I_{OL} Output Leakage Current $\frac{Status}{V_{OUT} = 0V \text{ to } V_L}$ $\frac{1}{V_{OUT}} = 1.5 \text{mA}$ $\frac{1}{V_{OU}} = 1.5 \text{mA}$ \frac	V _{IH}	Input High Voltage	1.05 V S V L S 5.5 V & V L S V CC	•	2/3 * V _L			V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{IL}	Input Leakage Current	TxIN, Online, Shutdown; V _{IN} = 0V to V _L	•		±0.01	±1.0	μА
VOH Output High Voltage Status, RxOUT; $I_{OUT} = -1.5 mA$ • V _L - 0.6 V DRIVER OUTPUTS VSWING Output Voltage Swing All drivers outputs loaded with $3KΩ$ to GND • ±5.0 ±5.4 V O _R Output Resistance V _{CC} = V + = V - = 0V, V _{OUT} = ±2V • 300 Ω I_{OSC} Output Short-Circuit Current V _{OUT} = 0V • ±35 ±60 mA I_{OL} Output Leakage Current V _{CC} = 0V or 3.0V to 5.5V, V _{OUT} = ±12V • ±25 μA RECEIVER INPUTS IVR Input Voltage Range • -15 +15 V V _{IL} Input Low Voltage V _{CC} = 3.3V • 0.6 1.2 V	I _{OL}	Output Leakage Current		•		±0.05	±10	μА
DRIVER OUTPUTS VSWING Output Voltage Swing All drivers outputs loaded with $3K\Omega$ to GND • ±5.0 ±5.4 V OR Output Resistance $V_{CC} = V + = V - = 0V$, $V_{OUT} = \pm 2V$ • 300 Ω Ω I_{OSC} Output Short-Circuit Current $V_{OUT} = 0V$ • ±35 ±60 mA I_{OL} Output Leakage Current $V_{CC} = 0V$ or 3.0V to 5.5V, $V_{OUT} = \pm 12V$ • ±25 μ A RECEIVER INPUTS IVR Input Voltage Range • -15 +15 V V_{IL} Input Low Voltage $V_{CC} = 3.3V$ • 0.6 1.2 V	V _{OL}	Output Low Voltage	Status, RxOUT; I _{OUT} = 1.5mA	•			0.4	V
VSWING Output Voltage Swing All drivers outputs loaded with $3KΩ$ to GND $±5.0$ $±5.4$ V OR Output Resistance $V_{CC} = V + = V - = 0V$, $V_{OUT} = ±2V$ • 300 Ω I_{OSC} Output Short-Circuit Current $V_{OUT} = 0V$ • $±35$ $±60$ mA I_{OL} Output Leakage Current $V_{CC} = 0V$ or $3.0V$ to $5.5V$, $V_{OUT} = ±12V$ • $±25$ $μA$ RECEIVER INPUTS IVR Input Voltage Range • -15 $±15$ $+15$ V V_{IL} Input Low Voltage $V_{CC} = 3.3V$ • 0.6 1.2 V	V _{OH}	Output High Voltage	Status, RxOUT; I _{OUT} = -1.5mA	•	V _L - 0.6			٧
GND GND O _R Output Resistance $V_{CC} = V + = V - = 0V$, $V_{OUT} = \pm 2V$ • 300 Ω I _{OSC} Output Short-Circuit Current $V_{OUT} = 0V$ • ±35 ±60 mA I _{OL} Output Leakage Current $V_{CC} = 0V$ or 3.0V to 5.5V, $V_{OUT} = \pm 12V$ • ±25 μ A RECEIVER INPUTS IVR Input Voltage Range • -15 +15 V V_{IL} Input Low Voltage $V_{CC} = 3.3V$ • 0.6 1.2 V	DRIVER O	UTPUTS						·
I _{OSC} Output Short-Circuit Current V _{OUT} = 0V • ±35 ±60 mA I _{OL} Output Leakage Current V _{CC} = 0V or 3.0V to 5.5V, V _{OUT} = ±12V • ±25 μA RECEIVER INPUTS IVR Input Voltage Range • -15 +15 V V _{IL} Input Low Voltage V _{CC} = 3.3V • 0.6 1.2 V	V _{SWING}	Output Voltage Swing		•	±5.0	±5.4		V
I_{OL} Output Leakage Current V_{CC} = 0V or 3.0V to 5.5V, V_{OUT} = ±12V • ±25 μA RECEIVER INPUTS IVR Input Voltage Range • -15 +15 V V_{IL} Input Low Voltage V_{CC} = 3.3V • 0.6 1.2 V	O _R	Output Resistance	$V_{CC} = V + = V - = 0V, V_{OUT} = \pm 2V$	•	300			Ω
RECEIVER INPUTS IVR Input Voltage Range • -15 +15 V V _{IL} Input Low Voltage V _{CC} = 3.3V • 0.6 1.2 V	I _{OSC}	Output Short-Circuit Current	V _{OUT} = 0V	•		±35	±60	mA
IVR Input Voltage Range • -15 +15 V V _{IL} Input Low Voltage V _{CC} = 3.3V • 0.6 1.2 V	I _{OL}	Output Leakage Current	$V_{CC} = 0V \text{ or } 3.0V \text{ to } 5.5V, V_{OUT} = \pm 12V$	•			±25	μА
V _{IL} Input Low Voltage V _{CC} = 3.3V • 0.6 1.2 V	RECEIVER	RINPUTS						
	IVR	Input Voltage Range		•	-15		+15	V
V _{CC} = 5.0V • 0.8 1.5 V	V _{IL}	Input Low Voltage	V _{CC} = 3.3V	•	0.6	1.2		V
			V _{CC} = 5.0V	•	0.8	1.5		V

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IH}	Input High Voltage	V _{CC} = 3.3V	•		1.5	2.4	٧
		V _{CC} = 5.0V	•		1.8	2.4	V
RX _{HYS}	Receiver Input Hysteresis				0.3		V
RX _R	Receiver Input Resistance		•	3	5	7	ΚΩ
AUTO ON-	LINE CIRCUITRY CHARACTERISTICS	ONLINE = GND, SHUTDOWN = V _L , V _L =	V _{CC})		<u> </u>		•
RX _{STSH}	Receiver Threshold to STATUS high level		•	-2.7		+2.7	V
RX _{STSL}	Receiver Threshold to STATUS low level	US low		-0.3		+0.3	V
t _{STSH}	Receiver Threshold to STATUS high	Figure 11			0.2		μS
t _{STSL}	Receiver Threshold to STATUS low	Figure 11			30		μS
t _{ONLINE}	Receiver Thresholds to Drivers Enabled	Figure 11, (charge pump fully discharged when receiver threshold crossed)			30		μs
t _{OFFLINE} Receiver Thresholds to Drivers Disabled		Figure 11			35		μS
TIMING CH	HARACTERISTICS						
f _{MAX}	Max Output Frequency (Speed U)	$R_L = 3K\Omega$, $C_L = 250pF$, 1 driver active, $T_{AMB} = 0$ °C to 70 °C	•	1000			Kbps
	Max Output Frequency (Speed H)	$R_L = 3K\Omega$, $C_L = 1000pF$, 1 driver active, $T_{AMB} = 0^{\circ}C$ to $70^{\circ}C$	•	460			Kbps
	Max Output Frequency (Speed B)	$R_L = 3K\Omega$, $C_L = 1000pF$, 1 driver active	•	250			Kbps
t _{PHL}	Receiver Propagation Delay (high to low)	Receiver input (<10ns rise/fall) to Receiver output, C _L = 150pF			0.15		μS
t _{PLH}	Receiver Propagation Delay (low to high)	Receiver input (<10ns rise/fall) to Receiver output, C _L = 150pF			0.15		μS
t _{RXSKEW}	Receiver Skew	It _{PHL} - t _{PLH} I			50		ns
t _{RXOE}	Receiver Output Enable Time	Normal operation			200		ns
t _{RXOD}	Receiver Output Disable Time	Normal operation			200		ns
t _{TXSKEW}	Driver Skew (Speeds U and H)	It _{PHL} t _{PLH} (Driver propagation delays)	•		30	100	ns
	Driver Skew (Speed B)	It _{PHL} t _{PLH} (Driver propagation delays)	•		100	500	ns
TX _{SLEW}	Transition-Region Slew Rate Speeds U	V_{CC} = 3.3V, R_L = 3KΩ to 7KΩ, C_L = 150pF to 250pF, Measured from -3.0V to +3.0V or +3.0V to -3.0V			90		V/µs
	Transition-Region Slew Rate Speed H	V_{CC} = 3.3V, R_L = 3KΩ to 7KΩ, C_L = 150pF to 1000pF, Measured from			90		V/μs
	Transition-Region Slew Rate Speed B	-3.0V to +3.0V or +3.0V to -3.0V	•	6		30	V/μs

^{*} Limits applying over the full operating temperature range are denoted by a "•".


Pin Configuration

Pin Assignments

XR32340	XR32341	Pin Name	Туре	Description		
1, 2, 3, 4, 5	1, 2, 3, 4, 5	R1IN, R2IN, R3IN, R4IN, R5IN	Inputs (5KΩ pull- dwn)-	±15KV ESD Protected, RS-232 Receiver Inputs		
6. 7, 8	6. 7, 8	T1OUT, T2OUT, T3OUT	Output	±15KV ESD Protected, RS-232 Driver Output		
9,16, 25, 32	9,16, 32	NC	-	No Connect (not connect to the die). Can be left floating or tied to GND or V _{CC} .		
10, 11, 12	10, 11, 12	T3IN, T2IN, T1IN	Input	TTL/CMOS Driver Input		
13,14,15, 17, 18, 19	13,14,15, 17, 18, 19	R5OUT, R4OUT, R3OUT, R2OUT, R1OUT, R2OUT	Output	TTL/CMOS Receiver Output		
20	20	Status	Output	TTL/CMOS level output indicating if no valid RS-232 levels are present at the R1IN or R2IN input pins.		
21	21	Shutdown	Input	TTL/CMOS level input, when driven low puts the part into shutdown mode (tri-stating driver outputs and disabling the charge-pump); normal operation when driven high.		
22	22	Online	Input	TTL/CMOS level input. A low input enables Auto On-Line mode, a high input disables Auto On-Line Mode.		
23, 28	23, 28	C1-, C1+	Analog	Negative and positive terminals of voltage doubler charge pump capacitor.		
24	24	GND	Supply	Ground		
-	25	V _L	Supply	I/O Power Supply		
26	26	V _{CC}	Supply	Power Supply		
27	27	V+	Analog	Regulated positive (+5.5V) charge pump rail.		
29, 30	29, 30	C2+, C2-	Analog	Positive and negative terminals of the inverting charge pump capacitor.		
31	31	V-	Analog	Regulated positive (-5.5V) charge pump rail.		
-	-	Paddle	Supply	Ground. The exposed paddle on the bottom of package is connected to device ground. The paddle should be connected to ground on pcb.		

Functional Block Diagram

Typical Performance Characteristics

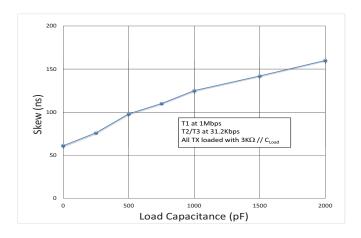


Figure 1: Transmitter Skew vs Load Capacitance

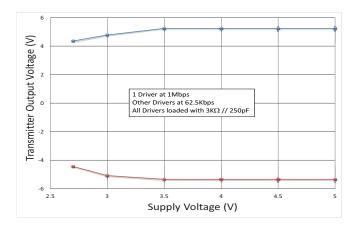


Figure 2: Transmitter Output Voltage vs Supply Voltage

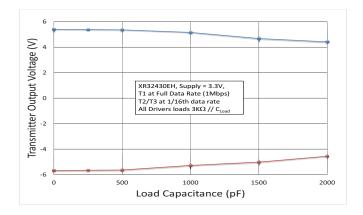


Figure 3: Transmitter Output Voltage vs Load Capacitance

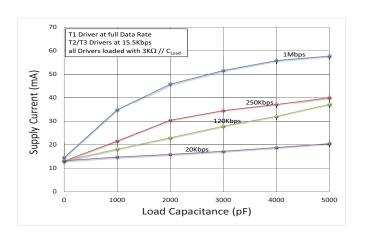


Figure 4: Supply Current vs Load Capacitance

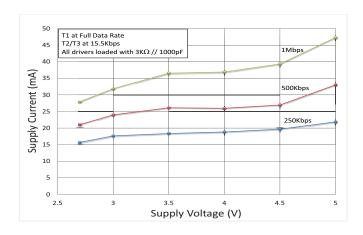


Figure 5: Supply Current vs Supply Voltage

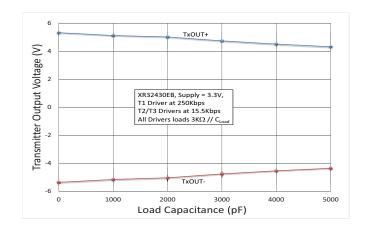


Figure 6: Transmitter Output Voltage vs Load Capacitance

Application Information

General Description

The XR32430/31 transceiver meets the EIA/TIA-232 and ITU-T V.28/V.24 communication protocols and can be implemented in battery-powered, portable, or hand-held applications such as notebook or laptop computers. The XR32430/31 device features Exar's proprietary and patented (U.S. 5,306,954) on-board charge pump circuitry that generates ±5.5V RS-232 voltage levels from a single +3.0V to +5.5V power supply. The XR32430/31EU and XR32430/31EH devices can operate at a data rate of 1000Kbps and 460Kbps fully loaded while the XR32430/31EB devices feature slew-rate limited outputs for reduced crosstalk and EMI.

The XR32430/31 is a 3-driver/5-receiver device, ideal for portable or hand-held applications.

The XR32430/31 is an ideal choice for power sensitive designs. The XR32430/31 devices feature AUTO ON-LINE® circuitry which reduces the power supply drain to a 1µA supply current. The XR32430/31 includes one complementary receiver that remains alert to monitor an external device's Ring Indicator while the XR32430/31 is shutdown.

In many portable or hand-held applications, an RS-232 cable can be disconnected or a connected peripheral can be turned off. Under these conditions, the internal charge pump and the drivers will be shut down. Otherwise, the system automatically comes on line. This feature allows design engineers to address power saving concerns without major design changes.

Theory of Operation

The XR32430/31 series is made up of four basic circuit blocks:

- 1. Drivers
- 2. Receivers
- 3. The Exar proprietary charge pump, and
- 4. AUTO ON-LINE® circuitry.

Drivers

The drivers are inverting level transmitters that convert TTL or CMOS logic levels to 5.0V EIA/TIA-232 levels with an inverted sense relative to the input logic levels. Typically, the RS-232 output voltage swing is ±5.5V with no load and ±5V minimum fully loaded. The driver outputs are protected against infinite short-circuits to ground without degradation in reliability. These drivers comply with the EIA-TIA-232-F

and all previous RS-232 versions. Unused drivers inputs should be connected to GND or $V_{CC}/V_{\rm I}$.

The drivers have a minimum data rate of 250kbps (XR32430/31EB), 460Kbps (XR32430/31EH) or 1Mbps (XR32430/31EU) fully loaded.

Receivers

The receivers convert +5.0V EIA/TIA-232 levels to TTL or CMOS logic output levels. Receivers are High-Z when the AUTO ON-LINE® circuitry is enabled and activated or when in shutdown. The truth table logic of the XR32430/31 driver and receiver outputs can be found in Table 2 on page 11.

Since receiver input is usually from a transmission line where long cable lengths and system interference can degrade the signal, the inputs have a typical hysteresis margin of 300mV. This ensures that the receiver is virtually immune to noisy transmission lines. Should an input be left unconnected, an internal $5K\Omega$ pull-down resistor to ground will commit the output of the receiver to a HIGH state.

Charge Pump

The charge pump is a Exar–patented design (U.S. 5,306,954) and uses a unique approach compared to older less–efficient designs. The charge pump still requires four external capacitors, but uses a four–phase voltage shifting technique to attain symmetrical $\pm 5.5 \text{V}$ power supplies. The internal power supply consists of a regulated dual charge pump that provides output voltages of $\pm 5.5 \text{V}$ regardless of the input voltage (V_{CC}) over the +3.0 V to +5.5 V range. This is important to maintain compliant RS-232 levels regardless of power supply fluctuations.

The charge pump operates in a discontinuous mode using an internal oscillator. If the output voltages are less than a magnitude of ±5.5V, the charge pump is enabled. If the output voltages exceed a magnitude of 5.5V, the charge pump is disabled. This oscillator controls the four phases of the voltage shifting. A description of each phase follows.

Phase 1

V- charge storage — During this phase of the clock cycle, the positive side of capacitors C1 and C2 are initially charged to V $_{CC}$. C1+ is then switched to GND and the charge in C1- is transferred to C2-. Since C2+ is connected to V $_{CC}$, the voltage potential across capacitor C2 is now 2 times V $_{CC}$.

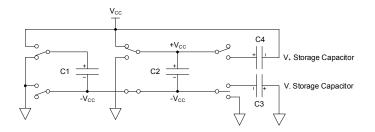


Figure 7: Charge Pump - Phase 1

V_{CC} V

Figure 9: Charge Pump - Phase 3

Phase 2

V- transfer — Phase two of the clock connects the negative terminal of C2 to the VSS storage capacitor and the positive terminal of C2 to GND. This transfers a negative generated voltage to C3. This generated voltage is regulated to a minimum voltage of -5.5V. Simultaneous with the transfer of the voltage to C3, the positive side of capacitor C1 is switched to V_{CC} and the negative side is connected to GND.

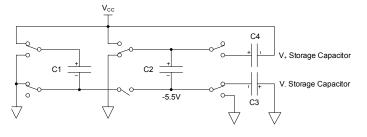


Figure 8: Charge Pump - Phase 2

Phase 4

V+ transfer — The fourth phase of the clock connects the negative terminal of C2 to GND, and transfers this positive generated voltage across C2 to C4, the V+ storage capacitor. This voltage is regulated to +5.5V. At this voltage, the internal oscillator is disabled. Simultaneous with the transfer of the voltage to C4, the positive side of capacitor C1 is switched to V_{CC} and the negative side is connected to GND, allowing the charge pump cycle to begin again. The charge pump cycle will continue as long as the operational conditions for the internal oscillator are present.

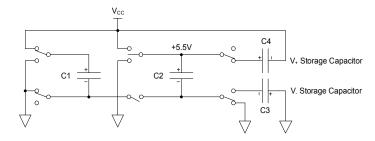


Figure 10: Charge Pump - Phase 4

Phase 3

V+ charge storage — The third phase of the clock is identical to the first phase — the charge transferred in C1 produces $-V_{CC}$ in the negative terminal of C1, which is applied to the negative side of capacitor C2. Since C2+ is at V_{CC} , the voltage potential across C2 is 2 times V_{CC} .

Since both V+ and V– are separately generated from V_{CC} , in a no–load condition V+ and V– will be symmetrical. Older charge pump approaches that generate V– from V+ will show a decrease in the magnitude of V– compared to V+ due to the inherent inefficiencies in the design. The clock rate for the charge pump typically operates at greater than 250kHz. The external capacitors can be as low as $0.1\mu F$ with a 16V breakdown voltage rating.

The Exar-patented charge pumps are designed to operate reliably with a range of low cost capacitors. Either polarized or non polarized capacitors may be used. If polarized capacitors are used they should be oriented as shown in the Typical Applications Circuit. The V+ capacitor may be connected to either ground or Vcc (polarity reversed.)

The charge pump operates with $0.1\mu F$ capacitors for 3.3V operation. For other supply voltages, see the table for required capacitor values. Do not use values smaller than those listed. Increasing the capacitor values (e.g., by doubling in value) reduces ripple on the transmitter outputs and may slightly reduce power consumption. C2, C3, and C4 can be increased without changing C1's value.

Table 1:

Minimum Recommended Charge Pump Capacitor Values						
Supply Voltage Charge Pump Capacitor Value for XR32430/31						
3.0V to 3.6V $C1 - C4 = 0.1 \mu F$						
4.5V to 5.5V	$C1 = 0.047 \mu F,$ $C2 - C4 = 0.33 \mu F$					
3.0V to 5.5V	$C1 - C4 = 0.22 \mu F$					

For best charge pump efficiency locate the charge pump and bypass capacitors as close as possible to the IC. Surface mount capacitors are best for this purpose. Using capacitors with lower equivalent series resistance (ESR) and self-inductance, along with minimizing parasitic PCB trace inductance will optimize charge pump operation. Designers are also advised to consider that capacitor values may shift over time and operating temperature.

AUTO ON-LINE® Circuitry

The XR32430/31 devices have a patent pending AUTO ON-LINE® circuitry on board that saves power in applications such as laptop computers, palmtop (PDA) computers and other portable systems.

The XR32430/31 devices incorporate an AUTO ON-LINE® circuit that automatically enables itself when the external transmitters are enabled and the cable is connected. Conversely, the AUTO ON-LINE® circuit also disables most of the internal circuitry when the device is not being used and goes into a standby mode where the device typically draws 1µA. This function is externally controlled by the ONLINE pin. When this pin is tied to a logic LOW, the AUTO ON-

LINE® function is active. Once active, the device is enabled until there is no activity on the receiver inputs. The receiver input typically sees at least +3V, which are generated from the transmitters at the other end of the cable with a +5V minimum.

When the external transmitters are disabled or the cable is disconnected, the receiver inputs will be pulled down by their internal $5k\Omega$ resistors to ground. When this occurs over a period of time, the internal transmitters will be disabled and the device goes into a shutdown or standby mode. When $\overline{\text{ONLINE}}$ is HIGH, the AUTO ON-LINE® mode is disabled.

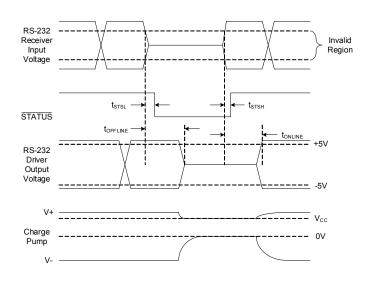


Figure 11: Auto On-Line Timing

The STATUS pin goes to a logic LOW when the cable is disconnected or the external transmitters are disabled.

When the XR32430/31 drivers and internal charge pump are disabled, the supply current is reduced to $1\mu A$. This can commonly occur in hand-held or portable applications where the RS-232 cable is disconnected or the RS-232 drivers of the connected peripheral are turned off.

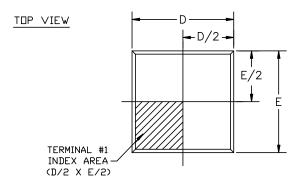
The AUTO ON-LINE® mode can be disabled by the SHUT-DOWN pin. If this pin is a logic LOW, the AUTO ON-LINE® function will not operate regardless of the logic state of the ONLINE pin. The truth table logic of the XR32430/31 driver and receiver outputs can be found in Table 3 on page 11.

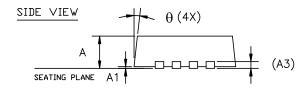
The STATUS pin outputs a logic LOW signal if the no valid RS-232 level is detected at either of the receiver inputs. This pin goes to a logic HIGH when the external transmitters are enabled and the cable is connected providing valid RS-232 voltage levels to all the RxIN receiver input pins.

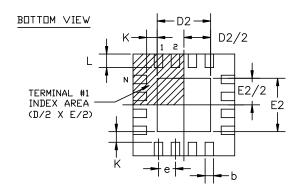
When the XR32430/31 is shut down, the charge pumps are turned off. V+ charge pump output decays to V_{CC} , the V- output decays to GND. The decay time will depend on the size of capacitors used for the charge pump. Once in shutdown, the time required to exit the shut down state and have valid V+ and V- levels is typically 30 μ s.

For easy programming, the STATUS can be used to indicate DSR or a Ring Indicator signal. Tying ONLINE and SHUT-DOWN together will bypass the AUTO ON-LINE® circuitry so this connection acts like a shutdown input pin.

Table 2: XR32430/31 Operation Truth Table


Valid RS-232 Level at Receiver Input	Shutdown	OnLine	Driver Outputs	Receiver Outputs	Status	Mode of Operation
Yes	L	x	High-Z	High-Z	Н	Manually forced shutdown
No	L	X	High-Z	High-Z	L	Manually forced shutdown
Yes	Н	L	Active	Active	Н	Normal Operation (Auto On-Line® enabled)
No	Н	L	High-Z	Active	L	Standby Operation due to Auto On-Line® circuitry
Yes	Н	Н	Active	Active	Н	Normal Operation
No	Н	Н	Active	Active	L	Normal Operation


Table 3: XR32430/31 Driver and Receiver Truth Table


Shutdown	RxIN	RxOUT	TxIN	TxOUT
L	X	High-Z	X	High-Z
Н	L	Н	L	Н
Н	Н	L	Н	L

Mechanical Dimensions

32-Pin QFN (5x5mm)

32LD 5x5 QFN (OPTION 4) JEDEC MO-220 Variation VHHD-5									
SYMBOLS	DIMENSIONS IN MM (Control Unit)			DIMENSIONS IN INCH (Reference Unit)					
	MIN	NOM	MAX	MIN	NOM	MAX			
Α	0.80	0.90	1.00	0.032	0.035	0.039			
A1	0.00	0.02	0.05	0.000	0.001	0.002			
A3		.20 REF	•		0.008	REF			
b	0.18	0.25	0.30	0.007	0.010	0.012			
D		5.00 BS	С	(.197 BS				
D2	3.20	3.25	3.30	0.126	0.128	0.130			
E	,	5.00 BS	С	0.197 BSC					
E2	3.20	3.25	3.30	0.126	0.128	0.130			
е		0.50 BS	0	(0.020 BS	C			
L	0.35	0.40	0.45	0.014	0.016	0.018			
K	0.20	-	-	0.008	-	_			
θ	0.	_	14°	0,	_	14°			
N	32			32					
ND		8		8					
NE		8			8				

Ordering Information

Part Number	Speed	Package	Green	Operating Temperature Range	Shipping Packaging	Marking
XR32430EBCR-F	250Kbps	32-pin QFN	Yes	0°C to +70°C	Tray	32430EBCR
XR32430EBCR-F/TR	250Kbps	32-pin QFN	Yes	0°C to +70°C	Tape and Reel	32430EBCR
XR32430EBER-F	250Kbps	32-pin QFN	Yes	-40°C to +85°C	Tray	32430EBER
XR32430EBER-F/TR	250Kbps	32-pin QFN	Yes	-40°C to +85°C	Tape and Reel	32430EBER
XR32430EHCR-F	460Kbps	32-pin QFN	Yes	0°C to +70°C	Tray	32430EHCR
XR32430EHCR-F/TR	460Kbps	32-pin QFN	Yes	0°C to +70°C	Tape and Reel	32430EHCR
XR32430EUCR-F	1Mbps	32-pin QFN	Yes	0°C to +70°C	Tray	32430EUCR
XR32430EUCR-F/TR	1Mbps	32-pin QFN	Yes	0°C to +70°C	Tape and Reel	32430EUCR
XR32431EBCR-F	250Kbps	32-pin QFN	Yes	0°C to +70°C	Tray	32431EBCR
XR32431EBCR-F/TR	250Kbps	32-pin QFN	Yes	0°C to +70°C	Tape and Reel	32431EBCR
XR32431EBER-F	250Kbps	32-pin QFN	Yes	-40°C to +85°C	Tray	32431EBER
XR32431EBER-F/TR	250Kbps	32-pin QFN	Yes	-40°C to +85°C	Tape and Reel	32431EBER
XR32431EHCR-F	460Kbps	32-pin QFN	Yes	0°C to +70°C	Tray	32431EHCR
XR32431EHCR-F/TR	460Kbps	32-pin QFN	Yes	0°C to +70°C	Tape and Reel	32431EHCR
XR32431EUCR-F	1Mbps	32-pin QFN	Yes	0°C to +70°C	Tray	32431EUCR
XR32431EUCR-F/TR	1Mbps	32-pin QFN	Yes	0°C to +70°C	Tape and Reel	32431EUCR

Revision History

Revision	Date	Description	
1A	September 2014	Initial release of datasheet.	ECN 1441-01 Oct 2014

For Further Assistance:

Email: serialtechsupport@exar.com

Exar Technical Documentation: http://www.exar.com/techdoc/

Exar Corporation Headquarters and Sales Offices 48720 Kato Road Tel: +1 (510) 668-7000 Fremont, CA 95438 - USA Fax: +1 (510) 668-7001

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Exar:

<u>XR32430EHCRTR-F</u> <u>XR32430EBERTR-F</u> <u>XR32430EUCRTR-F</u> <u>XR32430EBER-F</u> <u>XR32431EBER-F</u> <u>XR32431EBERTR-F</u> <u>XR32431EBCRTR-F</u> <u>XR32431EBCR-F</u> <u>X</u>