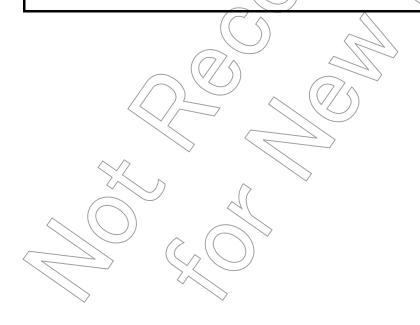
# **TOSHIBA**

TOSHIBA Original CMOS 32-Bit Microcontroller


TLCS-900/H1 Series

TMP92CY23FG

TMP92CY23DFG

TMP92CD23AFG

TMP92CD23ADFG



### **TOSHIBA CORPORATION**

Semiconductor Company

# Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Notes and Restrictions".



**TOSHIBA** 

#### CMOS 32-Bit Microcontrollers

# TMP92CY23FG/TMP92CY23DFG/TMP92CD23AFG/TMP92CD23ADFG

#### Outline and Device Characteristics

The TMP92CY23/CD23A are a high-speed advanced 32-bit Microcontroller developed for controlling equipment which processes mass data.

The TMP92CY23/CD23A has a high-performance CPU (900/H1 CPU) and various built-in I/Os. TMP92CY23FG, TMP92CY23FG, TMP92CD23AFG and TMP92CD23ADFG are housed in a 100-pin flat package.

| Product Name  | RAM      | ROM       | Package              |
|---------------|----------|-----------|----------------------|
| TMP92CY23FG   | 16K byte | 256K byte | LQFP100-P-1414-0.50F |
| TMP92CY23DFG  | ,        | ,         | QFP-P-1420-0.65A     |
| TMP92CD23AFG  | 20K byto | F10K byto | LQFP100-P-1414-0.50F |
| TMP92CD23ADFG | 32K byte | 512K byte | QFP-P-1420-Ø,65A     |

Device characteristics are as follows:

- (1) CPU: 32-bit CPU (900/H1 CPU)
  - Compatible with 900/L1 instruction code
  - 16 Mbytes of linear address space
  - General-purpose register and register banks
  - Micro DMA: 8 channels (250 ns/4 bytes at fsys = 20 MHz, best case)
- (2) Minimum instruction execution time: 50 ns (at fsys = 20 MHz)
- (3) External memory expansion
  - Expandable up to 16 Mbytes (Shared program/data area)
  - Can simultaneously support 8- or 16-bit width external data bus ... Dynamic data bus sizing
  - Separate bus system
- (4) Memory controller
  - Chip select output: 4 channels
- (5) 8-bit timers: 6 channels
- (6) 16-bit timers: 2 channels
- (7) General-purpose serial interface: 3 channels
  - (UART/synchronous mode: 3 channels (channel 0, 1 and 2)
  - IrDA yer. 1.0 (115 kbps) mode selectable: 3 channels (channel 0, 1 and 2)
- (8) Serial bus interface 2 channels
  - I<sup>2</sup>C bus modé/
  - Clock synchronous mode
- (9) High Speed serial interface: 1 channels

Note: This circuit is not built into TMP92CY23.

- (10) 10-bit AD converter: 12 channels
- (11) Watchdog timer
- (12) Special timer for CLOCK

92CY23-1 2009-08-28

- (13) Key-on wake up (only for HALT release):8 channels
- (14) Program patch logic: 8 banks
- (15) Interrupts: TMP92CY23: 50 interrupts, TMP92CD23A: 51 interrupts
  - 9 CPU interrupts: Software interrupt instruction and illegal instruction
  - 32 internal interrupts (TMP92CY23), 33 internal interrupts (TMP92CD23A)

: Seven selectable priority levels

• 9 external interrupts (INT0 to INT7 and NMI): Seven selectable priority levels (INT0 to INT7 selectable edge or level interrupt)

(16) Input/output ports: 84 pins

(17) Standby function

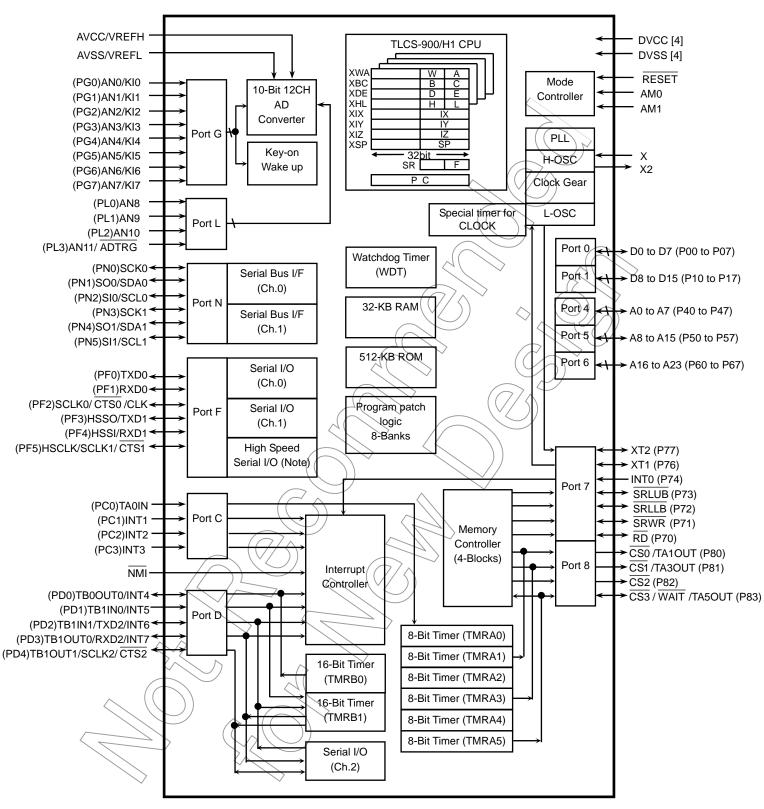
• Three HALT modes: IDLE2 (Programmable), IDLE1, STOP

(18) Clock controller

• Clock doubler (PLL)

• Clock gear function: Select high-frequency clock to fc/16

• Special timer for CLOCK (fs = 32.768 kHz)


(19) Operating voltage

•  $V_{CC} = 3.0 \text{ V}$  to 3.6 V (fc max = 40 MHz,  $f_{OSCH}$  max = 10 MHz (TMP92CD23A))

(20) Package

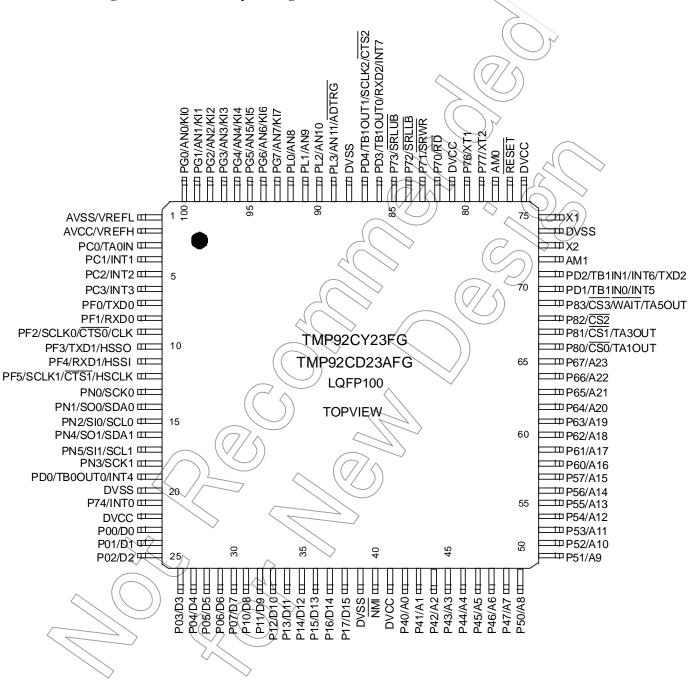
• 100-pin QFP: LQFP100-P-1414-0.50F (TMP92CY23FG/TMP92CD23AFG) QFP100-P-1420-0.65A (TMP92CY23DFG/TMP92CD23ADFG)





(): Initial function after reset

Note: This circuit is not built into TMP92CY23.

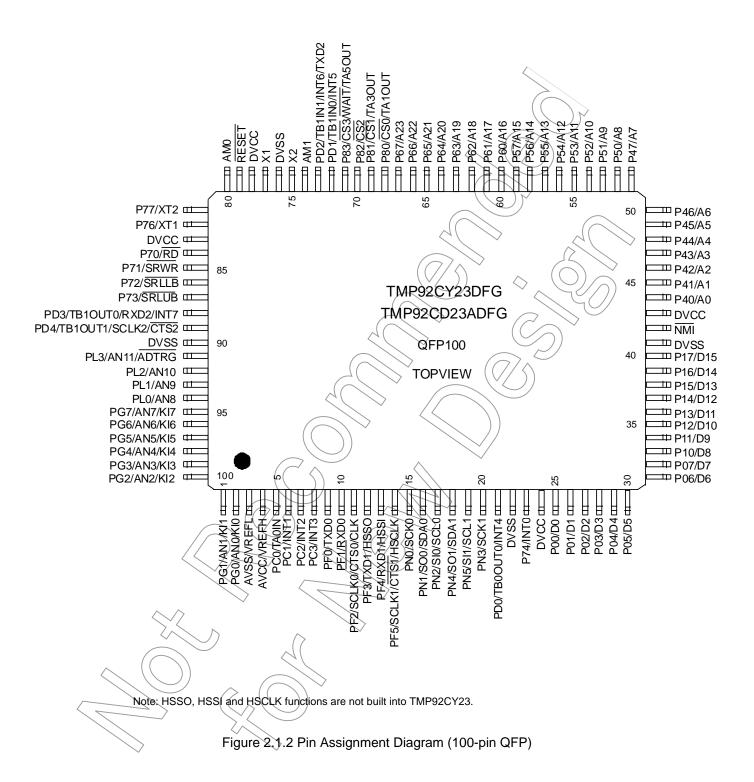

Figure 1.1 TMP92CY23/CD23A Block Diagram

# 2. Pin Assignment and Functions

The assignment of input/output pins for the TMP92CY23/CD23A, their names and functions are as follows:

### 2.1 Pin Assignment Diagram

Figure 2.1.1 shows the pin assignment of the TMP92CY23FG/TMP92CD23AFG.




Note: HSSO, HSSI and HSCLK functions are not built into TMP92CY23.

Figure 2.1.1 Pin Assignment Diagram (100-pin LQFP)

TOSHIBA

Figure 2.1.2 shows the pin assignment of the TMP92CY23DFG/TMP92CD23ADFG.



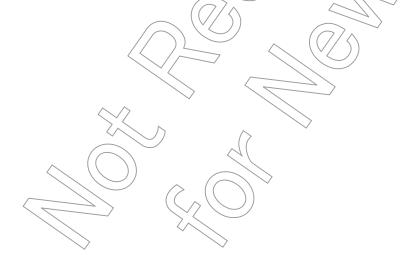
92CY23-5 2009-08-28

# 2.2 Pin Names and Functions

The following table shows the names and functions of the input/output pins.

Table 2.2.1 Pin Names and Functions (1/3)

| Pin name   | Number of Pin | I/O     | Function                                                                                   |
|------------|---------------|---------|--------------------------------------------------------------------------------------------|
| P00 to P07 | 8             | I/O     | Port 0: I/O port Input or output specifiable in units of bits                              |
| D0 to D7   |               | I/O     | Data: Data bus 0 to 7                                                                      |
| P10 to P17 | 8             | I/O     | Port 1: I/O port Input or output specifiable in units of bits                              |
| D8 to D15  |               | I/O     | Data: Data bus 8 to 15                                                                     |
| P40 to P47 | 8             | I/O     | Port 4: I/O port Input or output specifiable in units of bits                              |
| A0 to A7   |               | Output  | Address: Address bus 0 to 7                                                                |
| P50 to P57 | 8             | I/O     | Port 5: I/O port Input or output specifiable in units of bits                              |
| A8 to A15  |               | Output  | Address: Address bus 8 to 15                                                               |
| P60 to P67 | 8             | I/O     | Port 6: I/O port Input or output specifiable in units of bits                              |
| A16 to A23 |               | Output  | Address: Address bus 16 to 23                                                              |
| P70        | 1             | I/O     | Port 70: I/O port (Schmitt input, with pull-up resistor)                                   |
| RD         |               | Output  | Read: Outputs strobe signal for read external memory.                                      |
| P71        | 1             | I/O     | Port 71: I/O port (Schmitt input, with pull-up resistor)                                   |
| SRWR       |               | Output  | Write enable for SRAM: Strobe signal for wiriting data.                                    |
| P72        | 1             | I/O     | Port 72: I/O port (Schmitt input, with pull-up resistor)                                   |
| SRLLB      |               | Output  | Data enable for SRAM on pins D0 to D7                                                      |
| P73        | 1             | I/O     | Port 73: I/O port (Schmitt input, with pull-up resistor)                                   |
| SRLUB      |               | Output  | Data enable for SRAM on pins D8 to D15                                                     |
| P74        | 1             | Input   | Port 74: Input port (Schmitt input)                                                        |
| INT0       |               | Input   | Interrupt request pin 0: Interrupt request pin with programmable level/rising/falling edge |
| P76        | 1             | I/O     | Port 76: I/O port (Open drain output)                                                      |
| XT1        |               | Input   | Low-frequency oscillator connection Input pins                                             |
| P77        | 1             | I/O     | Port 77:1/O port (Open drain output)                                                       |
| XT2        |               | Output  | Low-frequency oscillator connection Output pins                                            |
| P80        | 1             | Output  | (Port 80) Output port                                                                      |
| CS0        |               | Output  | Chip select 0: Outputs "Low" when address is within specified address area                 |
| TA1OUT     |               | Output  | 8-bit timer 1 Output: Output pin of 8-bit timer TMRA0 or TMRA1                             |
| P81        | 1 /           | Output  | Port 81: Output port                                                                       |
| CS1        |               | Output  | Chip select 1: Outputs "Low" when address is within specified address area                 |
| TA3OUT     |               | Oûtput  | 8-bit timer 3 Output: Output pin of 8-bit timer TMRA2 or TMRA3                             |
| P82        | 1             | Output  | Port 82: Output port                                                                       |
| CS2        |               | Output  | Chip select 2: Outputs "Low" when address is within specified address area                 |
| P83        | $\searrow$    | I/O     | Port 83: I/O port (Schmitt input)                                                          |
| CS3        | 7/            | Output  | Chip select 3: Outputs "Low" when address is within specified address area                 |
| TA5OUT     |               | Output  | 8-bit/timer 5 Output: Output pin of 8-bit timer TMRA4 or TMRA5                             |
| WAIT       |               | Input   | Wait Signal used to request CPU bus wait                                                   |
| PC0        | (1)           | Input   | Port C0: Input port (Schmitt input)                                                        |
| TAOIN      |               | Input ( | 8-bit timer 0 input: Input pin of 8-bit timer TMRA0                                        |
| PC1        | <u> </u>      | Input   | Port C1: Input port (Schmitt input)                                                        |
| INT1       |               | Input   | Interrupt request pin 1: Interrupt request pin with programmable level/rising/falling edge |
| PC2        | 1             | Input   | Port C2: Input port (Schmitt input)                                                        |
| INT2       |               | Input   | Interrupt request pin 2: Interrupt request pin with programmable level/rising/falling edge |
| PC3        | 1             | Input   | Port C3: Input port (Schmitt input)                                                        |
| INT3       |               | Input   | Interrupt request pin 3: Interrupt request pin with programmable level/rising/falling edge |


Table 2.2.2 Pin Names and Functions (2/3)

| Pin name    | Number of Pin | I/O             | Function                                                                                    |
|-------------|---------------|-----------------|---------------------------------------------------------------------------------------------|
| PD0         | 1             | I/O             | Port D0: I/O port (Schmitt input)                                                           |
| TB0OUT0     |               | Output          | 16-bit timer 0 output 0: Output pin of 16-bit timer TMRB0                                   |
| INT4        |               | Input           | Interrupt request pin 4 : Interrupt request pin with programmable level/rising/falling edge |
| PD1         | 1             | Input           | Port D1: Input port (Schmitt input)                                                         |
| TB1IN0      |               | Input           | 16-bit timer 1 input 0: Input of count/capture trigger in 16-bit timer TMRB1                |
| INT5        |               | Input           | Interrupt request pin 5: Interrupt request pin with programmable level/rising/falling edge  |
| PD2         | 1             | I/O             | Port D2: I/O port (Schmitt input)                                                           |
| TB1IN1      |               | Input           | 16-bit timer 1 input 1: Input of count/capture trigger in 16-bit timer TMRB1                |
| TXD2        |               | Output          | Serial 2 send data: Open drain output programmable                                          |
| INT6        |               | Input           | Interrupt request pin 6: Interrupt request pin with programmable level/rising/falling edge  |
| PD3         | 1             | I/O             | Port D3: I/O port (Schmitt input)                                                           |
| TB1OUT0     |               | Output          | 16-bit timer 1 output 0: Output pin of 16-bit timer TMRB1                                   |
| RXD2        |               | Input           | Serial 2 receive data                                                                       |
| INT7        |               | Input           | Interrupt request pin 7: Interrupt request pin with programmable level/rising/falling edge  |
| PD4         | 1             | I/O             | Port D4: I/O port (Schmitt input)                                                           |
| TB1OUT1     |               | Output          | 16-bit timer 1 output 1: Output pin of 16-bit timer TMRB1                                   |
| SCLK2       |               | I/O             | Serial 2 clock I/O                                                                          |
| CTS2        |               | Input           | Serial 2 data send enable (Clear to send)                                                   |
| PF0         | 1             | I/O             | Port F0: I/O port (Schmitt input)                                                           |
| TXD0        |               | Output          | Serial 0 send data: Open drain output programmable                                          |
| PF1         | 1             | I/O             | Port F1: I/O port (Schmitt input)                                                           |
| RXD0        |               | Input           | Serial 0 receive data                                                                       |
| PF2         | 1             | I/O             | Port F2: I/Q port (Schmitt input)                                                           |
| SCLK0       |               | I/O             | Serial 0 clock I/Q                                                                          |
| CTS0        |               | Input           | Serial 0 data send enable (Clear to send)                                                   |
| CLK         |               | Output          | Clock: System Clock output                                                                  |
| PF3         | 1             | I/O             | Port F3: I/O port (Schmitt input)                                                           |
| TXD1        |               | Output          | Serial ( send data: Open drain output programmable                                          |
| HSSO        |               | Output          | High speed Serial send data (Note)                                                          |
| PF4         | 1             | 1/0             | Port F4: I/O port (Schmitt input)                                                           |
| RXD1        |               | Input (//       | Serial 1 receive data                                                                       |
| HSSI        |               | Input           | High speed Serial receive data (Note)                                                       |
| PF5         | 1/ <          | 1/0             | Port F5: I/O port (Schmitt input)                                                           |
| SCLK1       |               | \/\I/O          | Serial 1 clock I/O                                                                          |
| CTS1        |               | Input           | Serial 1 data send enable (Clear to send)                                                   |
| HSCLK       |               | Output          | High speed Serial clock output (Note)                                                       |
| PG0 to PG7  | (X)           | Input           | Port G: Input port (Schmitt input)                                                          |
| AN0 to AN7  |               | $\supset$       | Analog input 0 to 7: Pin used to input to AD conveter                                       |
| KI0 to KI7  |               | /               | Key input 0 to 7: Pin used for key-on wakeup 0 to 7                                         |
| PL0 to PL3  | 4)            | Input           | Port L: Input port (Schmitt input)                                                          |
| AN8 to AN11 |               | $\sim$ $\alpha$ | Analog input 8 to 11: Pin used for input to A/D conveter                                    |
| ADTRG       |               | (())            | A/D trigger: Signal used for request A/D start (Shared with PL3)                            |

Note: HSSO, HSSI and HSCLK functions are not built into TMP92CY23.

Table 2.2.3 Pin Names and Functions (3/3)

| Pin name     | Number of Pin | I/O    | Function                                                                                                                                             |
|--------------|---------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| PN0          | 1             | I/O    | Port N0: I/O port (Schmitt input)                                                                                                                    |
| SCK0         |               | I/O    | Serial bus interface 0 clock I/O data at SIO mode                                                                                                    |
| PN1          | 1             | I/O    | Port N1: I/O port (Schmitt input, Open drain output)                                                                                                 |
| SO0          |               | Output | Serial bus interface 0 send data at SIO mode                                                                                                         |
| SDA0         |               | I/O    | Serial bus interface 0 send/receive data at I <sup>2</sup> C mode                                                                                    |
| PN2          | 1             | I/O    | Port N2: I/O port (Schmitt input, Open drain output)                                                                                                 |
| SI0          |               | Input  | Serial bus interface 0 receive data at SIO mode                                                                                                      |
| SCL0         |               | I/O    | Serial bus interface 0 clock I/O data at I <sup>2</sup> C mode                                                                                       |
| PN3          | 1             | I/O    | Port N3: I/O port (Schmitt input)                                                                                                                    |
| SCK1         |               | I/O    | Serial bus interface 1 clock I/O data at SIO mode                                                                                                    |
| PN4          | 1             | I/O    | Port N4: I/O port (Schmitt input, Open drain output)                                                                                                 |
| SO1          |               | Output | Serial bus interface 1 send data at SIO mode                                                                                                         |
| SDA1         |               | I/O    | Serial bus interface 1 send/receive data at I <sup>2</sup> C mode                                                                                    |
| PN5          | 1             | I/O    | Port N5: I/O port (Schmitt input, Open drain output)                                                                                                 |
| SI1          |               | Input  | Serial bus interface 1 receive data at SIQ mode                                                                                                      |
| SCL1         |               | I/O    | Serial bus interface 1 clock I/O data at 120 mode                                                                                                    |
| NMI          | 1             | Input  | Non-maskable interrupt request pin: Interrupt request pin with programmable falling edge level or with both edge levels programmable (Schmitt input) |
| AMO, AM1     | 2             | Input  | Operation mode: Fixed to AM1 = "1" and AM0 = "1"                                                                                                     |
| X1 / X2      | 2             | I/O    | High-frequency oscillator connection I/O pins                                                                                                        |
| RESET        | 1             | Input  | Reset: Intializes_TMP92CY23/CD23A (Schmitt input, with pull-up resistor)                                                                             |
| AVCC / VREFH | 1             | Input  | Pin used for both power supply pin for AD converter and standard power supply for AD converter (H)                                                   |
| AVSS / VREFL | 1             | Input  | Pin used for both GND pin for AD converter (0 V) and standard power supply pin for AD converter (L)                                                  |
| DVCC         | 4             |        | Power supply pins (All DVCC pins should be connected to the power supply pin)                                                                        |
| DVSS         | 4             | _      | GND pins (0 V) (All DVSS pins shold be connected to GND(0V))                                                                                         |



92CY23-8 2009-08-28

# 3. Operation

This section describes the basic components, functions and operation of the TMP92CY23/CD23A

### 3.1 CPU

The TMP92CY23/CD23A contains an advanced high-speed 32-bit CPU (TLCS-900/H1 CPU)

#### 3.1.1 CPU Outline

The TLCS-900/H1 CPU is a high-speed, high-performance CPU based on the TLCS-900/L1 CPU. The TLCS-900/H1 CPU has an expanded 32-bit internal data bus to process instructions more quickly.

The following is an outline of the CPU:

Table 3.1.1 TMP92CY23/CD23A Outline

| TMP92CY23/CD23A                                        |
|--------------------------------------------------------|
| 24 bits                                                |
| 32 bits 🔾                                              |
| Max 20 MHz                                             |
| 1-clock access (50 ns at fsys = 20MHz)                 |
| 32-bit 1-clock access                                  |
| 32-bit interleave 2-1-1-1-clock access                 |
| 8-bit 2-clock access                                   |
| 8- or 16-bit 2-clock access<br>(waits can be inserted) |
| 1-clock (50 ns at f <sub>SYS</sub> =20MHz)             |
| 2-clock (100 ns at f <sub>SYS</sub> =20MHz)            |
| 12 bytes                                               |
| Compatible with TLCS-900/L1                            |
| (LDX instruction is deleted)                           |
| Maximum mode only                                      |
| 8 channels                                             |
|                                                        |

### 3.1.2 Reset Operation

When resetting the TMP92CY23/CD23A, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the  $\overline{\text{RESET}}$  input low for at least 20 system clocks (64  $\mu$ s at fc = 10 MHz).

At reset, since the clock doubler (PLL) is bypassed and the clock-gear is set to 1/16, the system clock operates at 312.5 kHz (fc = 10 MHz).

When the reset has been accepted, the CPU performs the following:

• Sets the program counter (PC) as follows in accordance with the reset vector stored at address FFFF00H to FFFF02H:

PC<7:0> ← da

← data in location FFFF00H

PC<15:8>

← data in location FFFF01H

PC<23:16>

← data in location FFFF02H

- Sets the stack pointer (XSP) to 00000000H.
- Sets bits <IFF2:0> of the status register (\$R) to 111 (thereby setting the interrupt level mask register to level 7).
- Clears bits <RFP1:0> of the status register to 00 (there by selecting register bank 0).

When the reset is released, the CPU starts executing instructions according to the program counter settings. CPU internal registers not mentioned above do not change when the reset is released.

When the reset is accepted, the CPU sets internal I/O, ports and other pins as follows.

- Initializes the internal I/O registers.
- Sets the port pins, including the pins that also act as internal I/O, to general-purpose input or output port mode.

A RESET input terminal becomes "High", if reset release is carried out, a built-in FlashROM warm-up circuit (notes) will start operation, and internal reset will be canceled after the end of the circuit of operation.

Memory controller operation cannot be ensured until the power supply becomes stable after power on reset. External RAM data provided before turning on the TMP92CY23/CD23A may be corrupted because the control signals are unstable until the power supply becomes stable after power-on reset.

Note: Although this product is a MaskROM product, in order to consider as the same operation as a FlashROM product, built-in FlashROM warm-up time enters. The warm-up time of build-in FlashROM into becomes it as follows.

at  $f_{OSCH} = 10 \text{ MHz}$ 409.6µs (2<sup>12</sup>/  $f_{OSCH}$ )

92CY23-10

Figure 3.1.1 shows the example of operating the reset timing of TMP92CY23/CD23A.

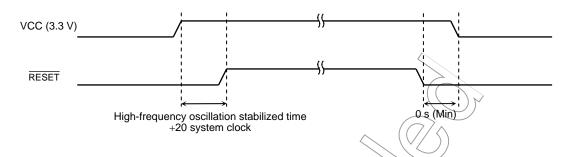



Figure 3.1.1 Power on Reset Timing Example

# 3.1.3 Setting of AM0 and AM1

Set AM1 and AM0 pins as shown in Table 3.4.2 according to system usage.

Table 3.1.2 Operation Mode Setup Table

|                       | . / _ \ | V .    | /~-           |     |
|-----------------------|---------|--------|---------------|-----|
| Operation Mode        | 4(      | > Mode | e Setup Input | Pin |
| Operation Mode        | R       | ESET   | AM1,          | AM0 |
| Internal ROM starting | _       |        |               | 1   |
|                       |         |        |               |     |

## 3.2 Memory Map

Figure 3.2.2 show the memory maps of the TMP92CY23, and Figure 3.2.2 show the memory maps of the TMP92CD23A respectively.

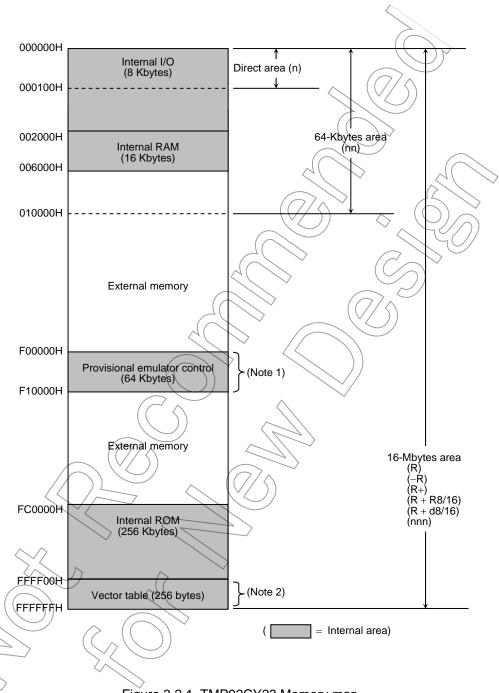



Figure 3.2.1 TMP92CY23 Memory map

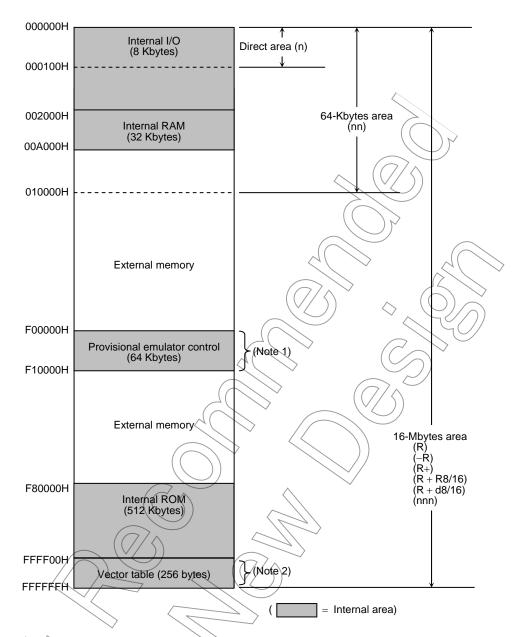



Figure 3.2.2 TMP92CD23A Memory Map

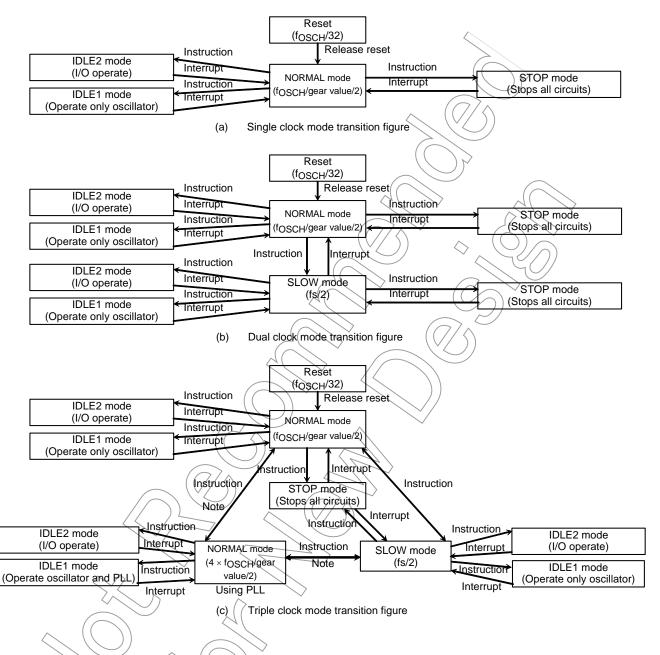
Note 1: The Provisional emulator control area, mapped F00000H to F0FFFFH after reset, is for emulator use and so is not available.

When emulator SRWR signal and RD signal are asserted, this area is accessed. Ensure external memory is used.

Note 2: Do not use the last 16 byte area (FEFFF0H to FFFFFFH). This area is reserved for an emulator.

# 3.3 Clock Function and Stand-by Function

The TMP92CY23/CD23A contains (1) clock gear, (2) clock doubler (PLL), (3) stand-by controller and (4) noise reduction circuits. They are used for low power, low noise systems.


This chapter is organized as follows:

- 3.3.1 Block diagram of system clock
- 3.3.2 SFR
- 3.3.3 System clock controller
- 3.3.4 Clock doubler (PLL)
- 3.3.5 Noise reduction circuits
- 3.3.6 Stand-by controller



The clock operating modes are as follows: (a) single clock mode (X1, X2 pins only), (b) dual clock mode (X1, X2, XT1 and XT2 pins) and (c) triple clock mode (X1, X2, XT1 and XT2 pins and PLL).

Figure 3.3.1 shows a transition figure.

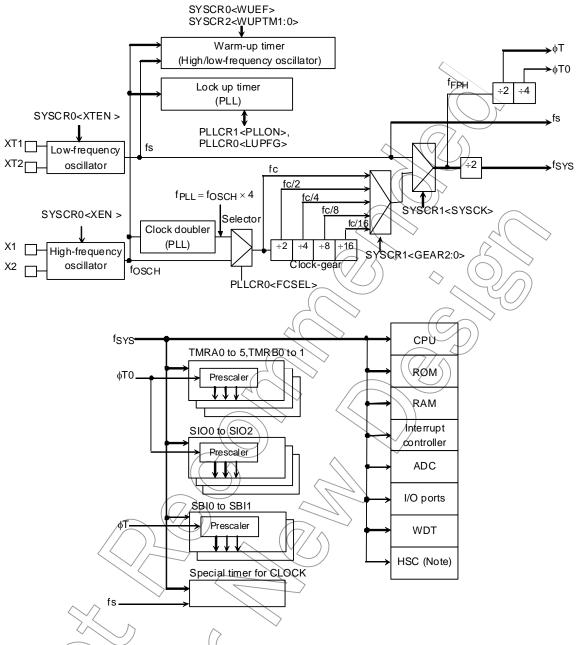


Note 1: It is not possible to control PLL in SLOW mode when shifting from SLOW mode to NORMAL mode with use of PLL. (PLL start up/stop/change write to PLLCR0<PLLON>, PLLCR1<FCSEL> register)

Note 2: When shifting from NORMAL mode with use of PLL to NORMAL mode, execute the following setting in the same order.

1) Change CPU clock (PLLCR0<FCSEL> ← "0")

2) Stop PLL circuit (PLLCR1<PLLON> ← "0")


Note 3: It is not possible to shift from NORMAL mode with use of PLL to STOP mode directly.

NORMAL mode should be set once before shifting to STOP mode. (Stop the high-frequency oscillator after stopping PLL.)

Figure 3.3.1 System Clock Block Diagram

The clock frequency input from the X1 and X2 pins is called  $f_{OSCH}$  and the clock frequency input from the XT1 and XT2 pins is called fs. The clock frequency selected by SYSCR1<SYSCK> is called the clock  $f_{FPH}$ . The system clock  $f_{SYS}$  is defined as the divided clock of  $f_{FPH}$ , and one cycle of  $f_{SYS}$  is defined as one state.

### 3.3.1 Block Diagram of System Clock



Note: This circuit is not built into TMP92CY23.

Figure 3.3 2 Block Diagram of System Clock

Frequency of external oscillator is 6 to 10MHz. Don't connect oscillator more than 10MHz. (TMP92CD23A only)

#### 3.3.2 SFR

| 3.3.    | .2 SFR      |                                                          |                                                                      |                                                                                         |                |                                                       |                                                                                                       |          |                                                   |
|---------|-------------|----------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------|
|         |             | 7                                                        | 6                                                                    | 5                                                                                       | 4              | 3                                                     | 2                                                                                                     | 1        | 0                                                 |
| SYSCR0  | Bit symbol  | XEN                                                      | XTEN                                                                 |                                                                                         |                |                                                       | WUEF                                                                                                  |          |                                                   |
| (10E0H) | Read/Write  | R/                                                       | W                                                                    |                                                                                         |                |                                                       | R/W                                                                                                   |          |                                                   |
|         | Reset State | 1                                                        | 0                                                                    |                                                                                         |                |                                                       | 0                                                                                                     |          |                                                   |
|         | Function    | High-frequency oscillator (fosch) 0: Stop 1: Oscillation | Low-<br>frequency<br>oscillator<br>(fs)<br>0: Stop<br>1: Oscillation |                                                                                         |                |                                                       | Warm-up timer 0: Write don't care 1: Write start timer 0: Read end warm-up 1: Read do not end warm-up |          |                                                   |
|         |             | 7                                                        | 6                                                                    | 5                                                                                       | 4 ((           | 7/3                                                   | 2 (                                                                                                   | 51>      | 0                                                 |
| SYSCR1  | Bit symbol  |                                                          |                                                                      |                                                                                         |                | SYSCK                                                 | GEAR2                                                                                                 | GEAR1    | GEAR0                                             |
| (10E1H) | Read/Write  |                                                          |                                                                      |                                                                                         |                |                                                       | R                                                                                                     | w        | I.                                                |
|         | Reset State |                                                          |                                                                      |                                                                                         |                |                                                       | (1 <sup>2</sup> )                                                                                     |          | 0                                                 |
|         | Function    |                                                          |                                                                      |                                                                                         |                | 1:-fs                                                 | 001: fc/2<br>010: fc/4<br>011: fc/8<br>100: fc/16<br>101: Reserve<br>110: Reserve                     | ed<br>ed |                                                   |
|         |             | 7                                                        | 6                                                                    | )) 5                                                                                    | 4              | 3                                                     | 2                                                                                                     | 1        | 0                                                 |
| SYSCR2  | Bit symbol  | -                                                        |                                                                      | WUPTM1                                                                                  | WALLWO         | HALTM1                                                | HALTM0                                                                                                |          | DRVE                                              |
| (10E2H) | Read/Write  | R/W                                                      | $\triangle$                                                          |                                                                                         |                | W                                                     |                                                                                                       |          | R/W                                               |
|         | Reset State | //0 ))                                                   |                                                                      | 1 (                                                                                     | (// Ø)         | 1                                                     | 1                                                                                                     |          | 0                                                 |
|         | Function    | Always<br>write "0"                                      | > <                                                                  | Warm-up tim<br>00: Reserve<br>01: 2 <sup>8</sup> /input f<br>10: 2 <sup>14</sup> /input | d<br>frequency | HALT mode<br>00: Reserve<br>01: STOP m<br>10: IDLE1 m | ode                                                                                                   |          | 1:<br>The inside of<br>STOP mode<br>also drives a |

Note 1: The unassigned registers SYSCR0<bit5:3>, SYSCR0<bit1:0>, SYSCR1<bit7:4>, and SYSCR2<bit7:6,1> are read as undefined value.

11: IDLE2 mode

Note 2: Low-frequency oscillator is enabled on reset.

Figure 3.3.3 SFR for System Clock

11: 2<sup>16</sup>/input frequency

pin

EMCCR0 (10E3H)

|             | 7            | 6 | 5 | 4 | 3 | 2           | 1            | 0              |
|-------------|--------------|---|---|---|---|-------------|--------------|----------------|
| Bit symbol  | PROTECT      |   |   |   |   | EXTIN(Note) | -            | DRVOSCL        |
| Read/Write  | R            |   |   |   |   |             | R/W          |                |
| Reset state | 0            |   |   |   |   | 0           | 1            | 1              |
| Function    | Protect flag |   |   |   |   | 1: External | Always write | fs oscillator  |
|             | 0: OFF       |   |   |   |   | clock       | "1"          | driver ability |
|             | 1: ON        |   |   |   |   |             |              | 1: Normal      |
|             |              |   |   |   |   |             |              | 0: Weak        |

Note: This register is a register for TMP92CY23. There is no <EXTIN> in TMP92CD23A. Please refer to the following for the register for TMP92CD23A.

EMCCR0 (10E3H)

|   |             | 7                      | 6 | 5 | 4 | 3 | 2                    | 1                   | 0                               |
|---|-------------|------------------------|---|---|---|---|----------------------|---------------------|---------------------------------|
| ) | Bit symbol  | PROTECT                |   |   |   |   | <u> </u>             | =                   | DRVOSCL                         |
|   | Read/Write  | R                      |   |   |   | 1 | )                    | RAW                 |                                 |
|   | Reset State | 0                      |   |   |   |   | 0                    | \(\lambda_1\)       | <u>)</u> 1                      |
|   | Function    | Protect flag<br>0: OFF |   |   |   |   | Always<br>write "0"  | Always<br>write "1" | fs oscillator<br>driver ability |
|   |             | 1: ON                  |   |   |   |   | $\Diamond$ $\langle$ | $2/\sqrt{n}$        | 1: Normal                       |
|   |             |                        |   |   |   | ) |                      | 5//                 | 0: Weak                         |

Note: This register is a register for TMP92CD23A.

Note1: When restarting the oscillator from the stop oscillation state (e.g. restarting the oscillator in STOP mode), set EMCCR0<DRVOSCL>= "1".

Note2: Do not write EMCCR0<EXTIN> = "1" when using external resonator.

2 7 4 3 1 6 5 0 EMCCR1 Bit symbol (10E4H) Read/Write Reset State Switch the protect ON/OFF by writing the following to 1st-KEY, 2nd-KEY Function st-KEY: write in sequence EMCCR1 = 5AH, EMCCR2 = A5H EMCCR2 Bit symbol 2nd-KEY: write in sequence EMCCR1 = A5H, EMCCR2 = 5AH (10E5H) Read/Write Reset State unction

Figure 3.3.4 SFR for System Clock

PLLCR0 (10E8H)

|             | 7 | 6                                         | 5                                           | 4 | 3 | 2 | 1              | 0 |
|-------------|---|-------------------------------------------|---------------------------------------------|---|---|---|----------------|---|
| Bit symbol  |   | FCSEL                                     | LUPFG                                       |   |   |   |                |   |
| Read/Write  |   | R/W                                       | R                                           |   |   |   |                |   |
| Reset State |   | 0                                         | 0                                           |   |   |   |                |   |
| Function    |   | Select fc<br>clock<br>0: fosch<br>1: fpLL | Lock up timer status flag 0: Not end 1: End |   |   |   | ) <del>r</del> |   |

Note: Ensure that the logic of PLLCR0<LUPFG> is different from 900/L1's DFM.

PLLCR1 (10E9H)

|             | 7                                    | 6 | 5 | 4 | 3             | 2                   | 1              | 0 |
|-------------|--------------------------------------|---|---|---|---------------|---------------------|----------------|---|
| Bit symbol  | PLLON                                |   |   |   | $\mathcal{A}$ | <del>}</del>        |                |   |
| Read/Write  | R/W                                  |   |   |   |               | $\int_{0}^{\infty}$ | $\int_{-}^{r}$ |   |
| Reset State | 0                                    |   |   |   |               |                     | 4              |   |
| Function    | Control<br>on/off<br>0: OFF<br>1: ON |   |   |   |               | \$\langle(()        |                |   |

Figure 3.3.5 SFR for PLL

### 3.3.3 System Clock Controller

The system clock controller generates the system clock signal (fsys) for the CPU core and internal I/O. It contains two oscillation circuits and a clock gear circuit for high-frequency (fc) operation. The register SYSCR1<SYSCK> changes the system clock to either fc or fs, SYSCR0<XEN> and SYSCR0<XTEN> control enabling and disabling of each oscillator, and SYSCR1<GEAR2:0> sets the high-frequency clock gear to either 1, 2, 4, 8 or 16 (fc, fc/2, fc/4, fc/8 or fc/16). These functions can reduce the power consumption of the equipment in which the device is installed.

The combination of settings  $\langle XEN \rangle = "1"$ ,  $\langle SYSCK \rangle = "0"$  and  $\langle GEAR2:0 \rangle = "100"$  will cause the system clock (fsys) to be set to fc/32 (fc/16  $\times$  1/2) after reset.

For example, fSYS is set to 0.3125 MHz when the 10 MHz oscillator is connected to the X1 and X2 pins.

### (1) Switching from normal mode to slow mode

When the resonator is connected to the X1 and X2 pins, or to the X11 and XT2 pins, the warm-up timer can be used to change the operation frequency after stable oscillation has been attained.

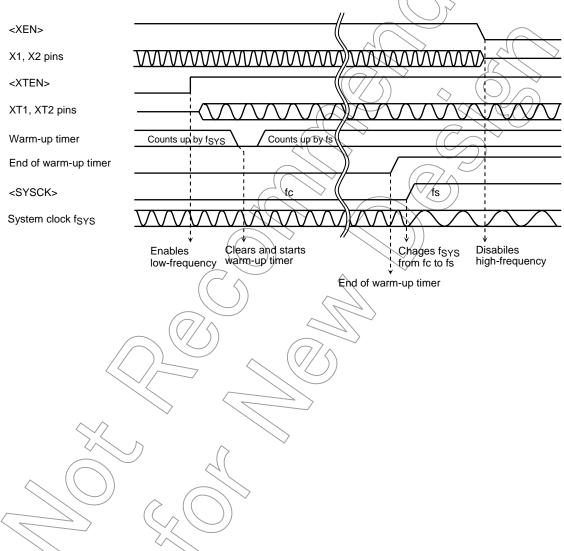
The warm-up time can be selected using SYSCR2<WUPTM1:0>,

This warm-up timer can be programmed to start and stop as shown in the following examples 1 and 2.

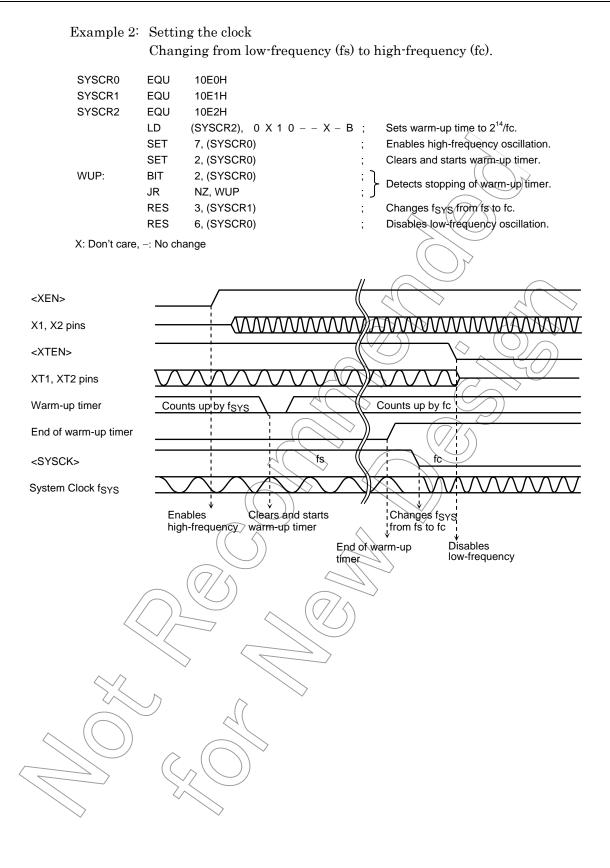
Table 3.3.1 shows the warm-up time.

Note 1: When using an oscillator (other than a resonator) with stable oscillation, a warm-up timer is not needed.

Note 2: The warm-up timer is operated by an oscillation clock. Hence, there may be some variation in warm-up time.


Table 3.3.1 Warm-up Times

|                                                 | . (0/1                   | at f <sub>OSCH</sub> = 10 MHz, fs = 32.768 kHz |
|-------------------------------------------------|--------------------------|------------------------------------------------|
| Warm-up Time<br>SYSCR2<br><wuptm1:0></wuptm1:0> | Change to<br>Normal Mode | Change to<br>Slow Mode                         |
| 01 (28/frequency)                               | 25.6 (μs)                | 7.8 (ms)                                       |
| 10 (2 <sup>14</sup> /frequency)                 | 1.638 (ms)               | 500 (ms)                                       |
| 11 (2 <sup>16</sup> /frequency)                 | 6.554 (ms)               | 2000 (ms)                                      |


Example 1: Setting the clock
Changing from high-frequency (fc) to low-frequency (fs).

SYSCR0 EQU 10E0H SYSCR1 EQU 10E1H SYSCR2 EQU 10E2H LD (SYSCR2),  $0 \times 1 \cdot 1 - X - B$ ; Sets warm-up time to 2<sup>16</sup>/fs. Enables low-frequency oscillation. SET 6, (SYSCR0) Clears and starts warm-up timer. SET 2, (SYSCR0) WUP: BIT 2, (SYSCR0) Detects stopping of warm-up timer. NZ, WUP JR 3, (SYSCR1) Changes fsys from fc to fs. SET Disables high-frequency oscillation. RES 7, (SYSCR0)

X: Don't care, -: No change



92CY23-21 2009-08-28



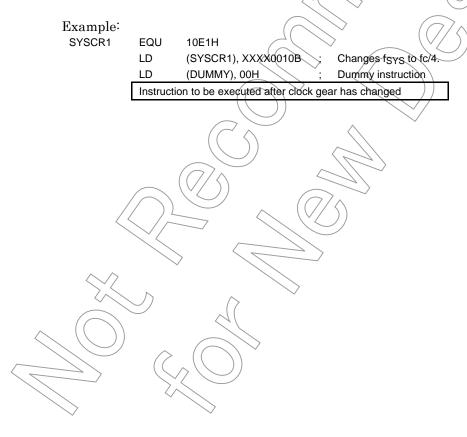
92CY23-22 2009-08-28

#### (2) Clock gear controller

fFPH is set according to the contents of the clock gear select register SYSCR1<GEAR2:0> to either fc, fc/2, fc/4, fc/8 or fc/16. Using the clock gear to select a lower value of fFPH reduces power consumption.

Example 3: Changing to a high-frequency gear

```
SYSCR1 EQU 10E1H


LD (SYSCR1), XXXX0001B ; Changes f<sub>SYS</sub> to fc/2.

X: Don't care
```

(High-speed clock gear changing)

To change the clock gear, write the register value to the SYSCR1<GEAR2:0> register. It is necessary for the warm-up time to elapse before the change occurs after writing the register value.

There is the possibility that the instruction following the clock gear changing instruction is executed by the clock gear before changing. To execute the instruction following the clock gear switching instruction by the clock gear after changing, input the dummy instruction as follows (instruction to execute the write cycle).



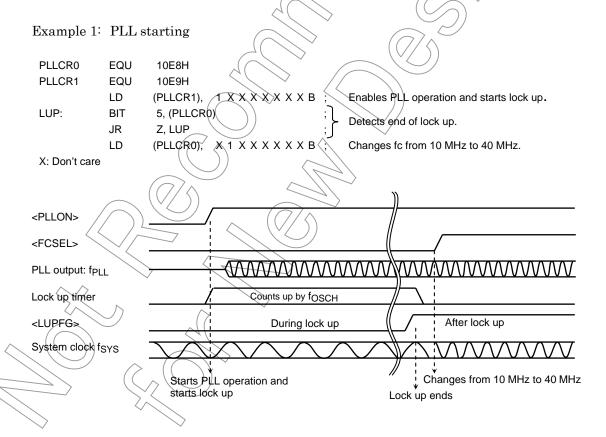
92CY23-23 2009-08-28

#### 3.3.4 Clock Doubler (PLL)

PLL outputs the fpLL clock signal, which is four times as fast as fosch. A low-speed-frequency oscillator can be used, even though the internal clock is high-frequency.

A reset initializes PLL to stop status, so setting to PLLCR0, PLLCR1 register is needed before use.

As with an oscillator, this circuit requires time to stabilize. This is called the lock up time and it is measured by a 16-stage binary counter. Lock up time is about 16 ms at fOSCH = 10 MHz


#### Note 1: Input frequency range for PLL

The input frequency range (High-frequency oscillation) for PLL is as follows:  $f_{OSCH} = 6$  to 10 MHz ( $V_{CC} = 3.0$  to 3.6 V)

#### Note 2: PLLCR0<LUPFG>

The logic of PLLCR0<LUPFG> is different from 900/L1's DFM. Exercise care in determining the end of lock up time.

The following is an example of settings for PLL starting and PLL stopping.



92CY23-24 2009-08-28

Example 2: PLL stopping

PLLCR0 EQU 10E8H PLLCR1 EQU 10E9H

LD (PLLCR0), X0XXXXXXB ; Changes fc from 40 MHz to10 MHz.

LD (PLLCR1), 0XXXXXXXB ; Stop PLL.

X: Don't care

<FCSEL>

<PLLON>

PLL output: fPLL

System clock f<sub>SYS</sub>

Changes from 40 MHz to 10 MHz Stops PLL operation

92CY23-25

2009-08-28

#### <u>Limitations on the use of PLL</u>

1. It is not possible to execute PLL enable/disable control in the SLOW mode (fs) (writing to PLLCR0 and PLLCR1).

PLL should be controlled in the NORMAL mode.

2. When stopping PLL operation during PLL use, execute the following settings in the same order.

```
LD (PLLCR0), 00H ; Change the clock f<sub>PLL</sub> to f<sub>OSCH</sub>
LD (PLLCR1), 00H ; PLL stop
```

3. When stopping the high-frequency oscillator during PLL use, stop PLL before stopping the high-frequency oscillator.

Examples of settings are shown below:

- (1) Start up/change control
  - (OK) Low-frequency oscillator operation mode (fs) (high-frequency oscillator STOP)

    → High-frequency oscillator start up → High-frequency oscillator operation mode (fosch) → PLL start up → PLL use mode (fpld)

```
High-frequency oscillator start/warm-up start
         LD
                   (SYSCR0),
                                                     ₿;
WUP:
         BIT
                  2, (SYSCR0)
                                                            Check for warm-up end flag
                  NZ. WUP
         JR
                                                     B :
         LD
                   (SYSCR1),
                                                            Change the system clock fs to fosch
                                                     В
                                                            PLL start-up/lock up start
         ΙD
                   (PLLCR1),
LUP:
         BIT
                  5, (PLLCR0)
                                                            Check for lock up end flag
         JR
                  Z. LUP
         LD
                   (PLLCR0),
                                                            Change the system clock fosch to fpll
```

(OK) Low-frequency oscillator operation mode (fs) (high-frequency oscillator Operate) High-frequency oscillator operation mode (fosch) → PLL start up → PLL use mode (fpLL)

```
LD
                   (SYSCR1),
                                                      В
                                                              Change the system clock fs to fosch
          LD
                   (PLLCR1),
                                                              PLL start-up/lock up start
LUP:
           BIT
                   5, (PLLCR0)
                                                              Check for lock up end flag
           JR
                   Z, LUP
           QJ
                   (PLLCR0),
                                                              Change the system clock fosch to fpll
```

(Error) Low-frequency oscillator operation mode (fs) (high-frequency oscillator STOP)  $\rightarrow$  High-frequency oscillator start up  $\rightarrow$  PLL start up  $\rightarrow$  PLL use mode (fpl.)

```
(SYSCRO),
          LD
                                                                High-frequency oscillator start/warm-up start
WUP:
          BIT
                   2, (SYSCR0)
                                                                Check for warm-up end flag
           JR
                   NZ, WUP
          LD
                   (PLLCR1),
                                                                PLL start-up/lock up start
LUP:
          BIT
                   5, (PLLCR0)
                                                                Check for lock up end flag
           JR
                   Z, LUP
          LD
                   (PLLCR0),
                                                                Change the internal clock fosch to fpll
           LD
                   (SYSCR1),
                                                                Change the system clock fs to fPLL
```

92CY23-26 2009-08-28

TOSHIBA

#### (2) Change/stop control

(OK) PLL use mode (f<sub>PLL</sub>)  $\rightarrow$  High-frequency oscillator operation mode (f<sub>OSCH</sub>)  $\rightarrow$  PLL Stop  $\rightarrow$  Low-frequency oscillator operation mode (fs)  $\rightarrow$  High-frequency oscillator stop

TMP92CY23/CD23A

```
LD
       (PLLCR0),
                      - 0 - - - - - B;
                                            Change the system clock fell to fosch
LD
       (PLLCR1),
                      0 - - - - - B:
                                             PLL stop
                            - 1 - - - B;
                                             Change the system clock fosch to fs
LD
       (SYSCR1),
                                 ---B:
LD
       (SYSCR0),
                                            High-frequency oscillator stop
```

(Error) PLL use mode (fpLL) → Low-frequency oscillator operation mode (fs) → PLL stop → High-frequency oscillator stop

```
LD (SYSCR1), ---- B; Change the system clock fpll to fs

LD (PLLCR0), -0---- B; Change the internal clock (fc) fpll to fosch

LD (PLLCR1), 0---- B; PLL stop

LD (SYSCR0), 0---- B; High-frequency oscillator stop
```

(OK) PLL use mode (fPLL) → Set the STOP mode → High frequency oscillator operation mode (fOSCH) → PLL stop → Halt (High frequency oscillator stop)

(Error) PLL use mode (fpll)  $\rightarrow$  Set the STOP mode  $\rightarrow$  Halt (High-frequency oscillator stop)

```
LD (SYSCR2), ---- 0 1 B: Set the STOP mode (This command can execute before use of PLL)
```



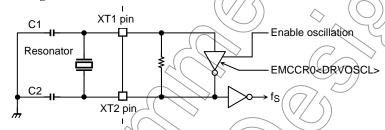
**TOSHIBA** 

#### 3.3.5 Noise Reduction Circuits

Noise reduction circuits are built-in, allowing implementation of the following features.

- (1) Reduced drivability for low-frequency oscillator
- (2) Reduced drivability for low-frequency oscillator (Note)
- (3) SFR protection of register contents

Note: This function can use only TMP92CY23.


These functions need a setup by EMCCR0, EMCCR1, and EMCCR2 register.

(1) Reduced drivability for low-frequency oscillator

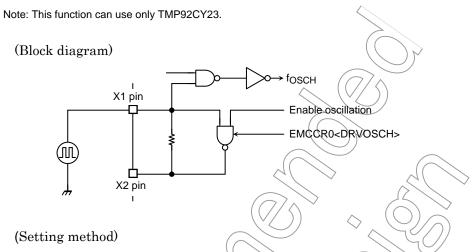
(Purpose)


Reduces noise and power for oscillator when a resonator is used.

(Block diagram)

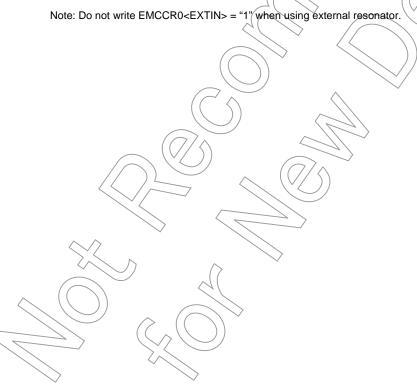


(Setting method)


The drive ability of the oscillator is reduced by writing "0" to the EMCCR0<DRVOSCL> register. At reset, <DRVOSCL> is initialized to "1" and the oscillator starts oscillation by normal drivability when the power-supply is on.



### (2) Single drive for high-frequency oscillator (Note)


#### (Purpose)

Remove the need for twin drives and prevent operational errors caused by noise input to X2 pin when an external oscillator is used.



The oscillator is disabled and starts operation as buffer by writing "1" to EMCCR0<EXTIN> register. X2 pin's output is always "1".)

At reset, <EXTIN> is imitialized to "0".



92CY23-29 2009-08-28

#### (2) Runaway prevention using SFR protection register

(Purpose)

Prevention of program runaway caused by introduction of noise.

Write operations to a specified SFR are prohibited so that the program is protected from runaway caused by stopping of the clock or by changes to the memory control register (memory controller) which prevent fetch operations.

Runaway error handling is also facilitated by INTPO interruption.

#### Specified SFR list

1. Memory controller
B0CSL/H, B1CSL/H, B2CSL/H, B3CSL/H, BEXCSL/H
MSAR0, MSAR1, MSAR2, MSAR3,
MAMR0, MAMR1, MAMR2, MAMR3, RMEMCR

- 2. Clock gear SYSCR0, SYSCR1, SYSCR2, EMCCR0
- 4. PLL PLLCR0, PLLCR1

#### (Operation explanation)

Execute and release of protection (write operation to specified SFR) becomes possible by setting up a double key to EMCCR1 and EMCCR2 registers.

#### (Double key)

1st KEY: writes in sequence, 5AH at EMCCR1 and A5H at EMCCR2 2nd KEY: writes in sequence, A5H at EMCCR1 and 5AH at EMCCR2

Protection state can be confirmed by reading EMCCRO<PROTECT>.

At reset, protection becomes OFF.

INTPO interruption also occurs when a write operation to the specified SFR is executed with protection in the ON state.



### 3.3.6 Stand-by Controller

(1) HALT modes and port drive register

When the HALT instruction is executed, the operating mode switches to IDLE2, IDLE1 or STOP mode, depending on the contents of the SYSCR2<HALTM1:0> register.

The subsequent actions performed in each mode are as follows:

1. IDLE2: only the CPU halts.

The internal I/O is available to select operation during IDLE2 mode by setting the following register.

Table 3.3.2 shows the register setting operation during IDLE2 mode.

Table 3.3.2 SFR Setting Operation during IDLE2 Mode

| Internal I/O | SFR                       |
|--------------|---------------------------|
| TMRA01       | TA01RUN <i2ta01></i2ta01> |
| TMRA23       | TA23RUN<12TA23>           |
| TMRA45       | TA45RUN < 12TA45>         |
| TMRB0        | TBORUN<12TBO>             |
| TMRB1        | TB1RUN<12TB1>             |
| SIO0         | SC0MOD1 <i2s0></i2s0>     |
| SIO1         | SC1MOD1 <i2s1></i2s1>     |
| SIO2         | SC2MOD1 <i2s2></i2s2>     |
| AD converter | ADMOD1 <i2ad></i2ad>      |
| WDT (        | WDMOD<12WDT>              |
| SBI0         | SBI0BR0 <i2sbi0></i2sbi0> |
| SBI1         | SBI1BR0 <i2sbi1></i2sbi1> |

- 2. IDLE1: Only the oscillator and the Special timer for CLOCK continue to operate.
- 3. STOP: All internal circuits stop operating.

The operation of each of the different HALT modes is described in Table 3.3.3.

Table 3.3.3 I/O Operation during HALT Modes

|  |                              | \ )                              |                                                                                                       |         |      |  |
|--|------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------|---------|------|--|
|  | HALT Mode                    |                                  | IDLE2                                                                                                 | IDLE1   | STOP |  |
|  | SYSCR2 <haltm1:0></haltm1:0> |                                  | <u> </u>                                                                                              | 10      | 01   |  |
|  |                              | CPU                              | Stop                                                                                                  |         |      |  |
|  | Block                        | I/O ports                        | The state at the time of "HALT"  Table 3.3.7 and Table 3.3.8 reference instruction execution is held. |         |      |  |
|  |                              | TMRA, TMRB SIO, SBI AD converter | Available to select operation block                                                                   | Stop    |      |  |
|  |                              | WDT                              | > spanning                                                                                            |         |      |  |
|  |                              | Interrupt controller             |                                                                                                       |         |      |  |
|  |                              | HSC (Note)                       | Operate                                                                                               |         |      |  |
|  |                              | Special timer for<br>CLOCK       | o político.                                                                                           | Operate |      |  |

Note: This circuit is not built into TMP92CY23.

#### (2) How to release the HALT mode

These halt states can be released by resetting or requesting an interrupt. The halt release sources are determined by the combination of the states of the interrupt mask register <IFF2:0> and the HALT modes. The details for releasing the halt status are shown in Table 3.3.4.

#### Release by interrupt requesting

The HALT mode release method depends on the status of the enabled interrupt. When the interrupt request level set before executing the HALT instruction exceeds the value of the interrupt mask register, the interrupt is processed depending on its status after the HALT mode is released, and the CPU status executing the instruction that follows the HALT instruction. When the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, HALT mode release is not executed. (in non-maskable interrupts, interrupt processing is processed after releasing the HALT mode regardless of the value of the mask register.) However only for INTO to INT7, INTRTC interrupts, even if the interrupt request level set before executing the halt instruction is less than the value of the interrupt mask register, HALT mode release is executed. In this case, the interrupt is processed, and the CPU starts executing the instruction following the HALT instruction, but the interrupt request flag is held at "1".

#### Release by resetting

Release of all half statuses is executed by resetting.

When the STOP mode is released by RESET, it is necessary to allow enough resetting time (see Table 3.3.5) for operation of the oscillator to stabilize.

When releasing the HALT mode by resetting, the internal RAM data keeps the state before the HALT instruction is executed. However the other settings contents are initialized. (Releasing due to interrupts keeps the state before the HALT instruction is executed.)

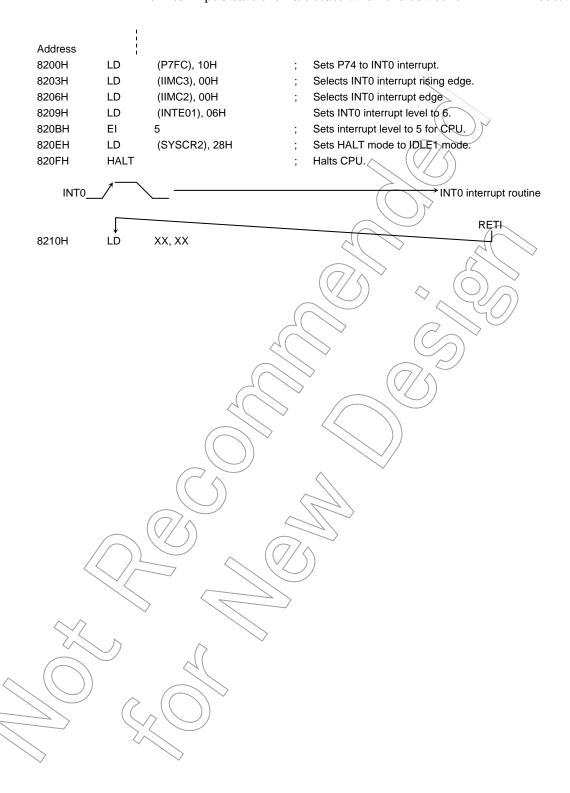

| Status of Received Interrupt |          |                                                     | Interrupt Enabled                         |       | Interrupt Disabled                   |         |                                        |      |
|------------------------------|----------|-----------------------------------------------------|-------------------------------------------|-------|--------------------------------------|---------|----------------------------------------|------|
|                              |          |                                                     | (Interrupt level) $\geq$ (Interrupt mask) |       | (Interrupt level) < (Interrupt mask) |         |                                        |      |
| HALT Mode                    |          |                                                     | IDLE2                                     | IDLE1 | STOP                                 | IDLE2   | IDLE1                                  | STOP |
|                              |          | NMI                                                 | •                                         | •     | <b>♦</b> *1                          | -//     | _                                      | _    |
|                              |          | INTWDT                                              | •                                         | ×     | ×                                    | - (     | -                                      | _    |
|                              |          | INT0 to INT4, INT7 (Note 1)                         | •                                         | •     | <b>♦</b> *1                          | 0       | ) / 0                                  | 0*1  |
| ø                            |          | INT5,INT6 (PORT) (Note 1)                           | •                                         | •     | <b>♦</b> *1                          | 600     | 0                                      | 0*1  |
| lanc                         |          | INT5,INT6 (TMRB1)                                   | •                                         | ×     | × <                                  | ( ( /×/ | ×                                      | ×    |
| lea                          |          | INTTA0 to INTTA5                                    | •                                         | ×     | ×                                    | )<br>)  | ×                                      | ×    |
| Halt State Clearance         | nterrupt | INTB00, INTTB01, INTTB10, INTTB11, INTTB00, INTTB01 | •                                         | ×     | × ((                                 | *       | ×                                      | ×    |
| of Halt S                    | Int      | INTRX0 to INTRX2,<br>INTTX0 to INTTX2               | •                                         | ×     |                                      | )<br>>  | *                                      | ×    |
| 9                            |          | INTAD                                               | •                                         | ×     | ×                                    | ×       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ×    |
| Source                       |          | KWI                                                 | •                                         | •     | <b>( /</b> */\                       | Δ       | $\Delta$                               | Δ    |
| S                            |          | INTRTC                                              | •                                         | •     | $( \times ( \times ) )$              | 0       |                                        | ×    |
|                              |          | INTSBE0 to INTSBE1                                  | •                                         | ×     | ×                                    | × <     | \(\x\)                                 | ×    |
|                              |          | INTHSC (Note4)                                      | •                                         | ×     | ×                                    | (%)     | $\searrow$                             | ×    |
|                              |          | RESET                                               | Initialize LSI                            |       |                                      |         |                                        |      |

Table 3.3.4 Source of Halt State Clearance and Halt Clearance Operation

- ♦: After clearing the HALT mode, CPU starts interrupt processing.
- o: After clearing the HALT mode, CPU resumes executing starting from the instruction following the HALT instruction.
- x: Cannot be used to release the HALT mode.
- -: The priority level (interrupt request level) of non-maskable interrupts is fixed to 7, the highest priority level. This combination is not available.
- Δ: Since KWI does not have a function as interruption, this combination does not exist.
- \*1: Release of the HALT mode is executed after warm up time has elapsed.
  - Note 1: When the HALT mode is cleared by an INTO to 7 interrupt of the level mode in the interrupt enabled status, hold level "H" until starting interrupt processing. If level "L" is set before holding level "L", interrupt processing is correctly started.
  - Note 2: Although a KWI can cancel all HALT mode states, the function as interruption does not have it.
  - Note 3: Specify the HSCSEL register when selecting INTTX1 or INTHSC interrupt with the same interrupt factor.
  - Note4: The INTHSC interrupt is not built into TMP92CY23.

Example: Releasing IDLE1 mode

An INT0 interrupt clears the halt state when the device is in IDLE1 mode.



92CY23-34 2009-08-28

## (3) Operation

### 1. IDLE2 mode

In IDLE2 mode only specific internal I/O operations, as designated by the IDLE2 setting register, can take place. Instruction execution by the CPU stops.

Figure 3.3.6 illustrates an example of the timing for clearance of the IDLE2 mode halt state by an interrupt.

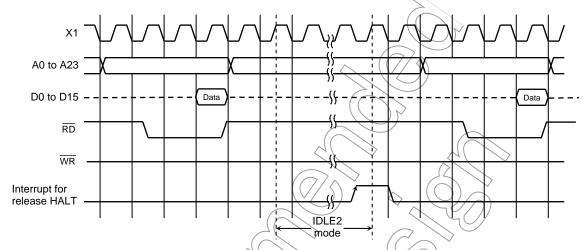



Figure 3.3.6 Timing Chart for IDLE2 Mode Halt State Cleared by Interrupt

### 2. IDLE1 mode

In IDLE1 mode, only the internal oscillator and Special timer for Clock continue to operate. The system clock stops.

In the halt state, the interrupt request is sampled asynchronously with the system clock; however, clearance of the halt state (e.g., restart of operation) is synchronous with it.

Figure 3.3.7 illustrates the timing for clearance of the IDLE1 mode halt state by an interrupt.

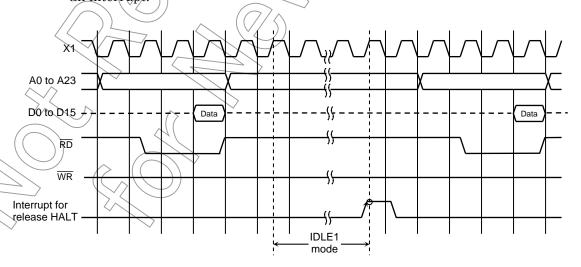



Figure 3.3.7 Timing Chart for IDLE1 Mode Halt State Cleared by Interrupt

### STOP mode

When STOP mode is selected, all internal circuits stop, including the internal oscillator.

After STOP mode has been cleared system clock output starts when the warm-up time by the counter for a warm-up of internal oscillator and built-in FlashROM warm-up time.

The example of a setting of the Warm-up time at the time of STOP mode release is shown in Table 3.3.5. The warm-up time of built-in FlashROM is shown in Table 3.3.6.

Note: Although this product is a MaskROM product; in order to consider as the same operation as a FlashROM product, built-in FlashROM warm-up time enters.

Figure 3.3.8 illustrates the timing for clearance of the STOP mode halt state by an interrupt.

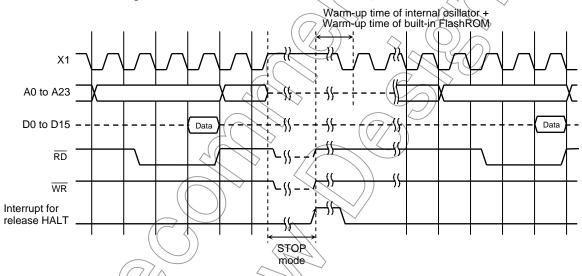



Figure 3.3.8 Timing Chart for STOP Mode Halt State Cleared by Interrupt

Table 3.3.5 Example of Warm-up Time after Releasing STOP Mode

at  $f_{OSCH} = 10 \text{ MHz}$ ,  $f_{SCH} = 32.768 \text{ kHz}$ 

| SY\$CR1         | SYSCR2 <wuptm1:0></wuptm1:0> |                       |                       |  |  |  |  |
|-----------------|------------------------------|-----------------------|-----------------------|--|--|--|--|
| <sysck></sysck> | 01 (28)                      | 10 (2 <sup>14</sup> ) | 11 (2 <sup>16</sup> ) |  |  |  |  |
| 0 (fc)          | 25.6 μs                      | 1.638 ms              | 6.554 ms              |  |  |  |  |
| (1 (fs) )       | 7.8 ms                       | 500 ms                | 2000 ms               |  |  |  |  |

Table 3.3.6 Example of Warm-up Time after Built-in FlashROM (at the time of STOP mode release)

at  $f_{OSCH} = 10$  MHz,  $f_{SCH} = 32.768$  kHz

2009-08-28

|        | 00011                                         |
|--------|-----------------------------------------------|
| 0 (fc) | 409.6 μs (2 <sup>12</sup> /f <sub>OSCH)</sub> |
| 1 (fs) | 125 ms (2 <sup>12</sup> /fs )                 |

Table 3.3.7 Input Buffer State Table

|           | Input Buffer State Input Buffer State |                 |                     |                      |              |                                                 |                                                                      |                             |                     |                      |  |  |
|-----------|---------------------------------------|-----------------|---------------------|----------------------|--------------|-------------------------------------------------|----------------------------------------------------------------------|-----------------------------|---------------------|----------------------|--|--|
|           |                                       |                 | 14/1                | - ODIII:-            | Inp          | out Buffer Sta                                  | ate                                                                  | I. IIAIT                    | (OTOD)              |                      |  |  |
|           | Input                                 |                 | When the oper       | e CPU is             | In HALT mod  | de (IDLE1/2)                                    | DD) "                                                                | <u>In HALT m</u><br>E = "1" | ode (STOP)          | "0"                  |  |  |
| Port      | Function                              | During          |                     |                      |              |                                                 |                                                                      |                             | DRVE                |                      |  |  |
| Name      | Name                                  | During<br>Reset | When                | When                 | When used as | When                                            | When used as                                                         | When                        | When                | When                 |  |  |
|           | Name                                  | Reset           | used as<br>Function | used as<br>Input pin | Function     | used as<br>Input pin                            | Function                                                             | used as<br>Input pin        | used as<br>Function | used as<br>Input pin |  |  |
|           |                                       |                 | pin                 | iliput pili          | pin          | input pin                                       | pin                                                                  | iliput pili                 | pin                 | iliput pili          |  |  |
| P00-P07   | D0-D7                                 |                 | ON upon             |                      | Piii         |                                                 | Piii                                                                 |                             | PIII                |                      |  |  |
|           |                                       |                 | external            |                      |              |                                                 |                                                                      |                             |                     |                      |  |  |
| P10-P17   | D8-D15                                |                 | read (*1)           |                      |              |                                                 |                                                                      | (( ))                       | >                   |                      |  |  |
| P40-P47   | _                                     | OFF             |                     |                      |              |                                                 |                                                                      |                             |                     |                      |  |  |
| P50-P57   | _                                     | 0.1             |                     |                      | OFF          |                                                 | OFF /                                                                | 7                           | OFF                 |                      |  |  |
| P60-P67   | _                                     |                 |                     | ON                   | 0            |                                                 |                                                                      | ( ))                        | 011                 |                      |  |  |
| P70(*2)   | _                                     |                 | OFF                 |                      |              |                                                 | ///                                                                  |                             |                     |                      |  |  |
| P71-P73   |                                       |                 |                     |                      |              |                                                 |                                                                      | >                           |                     |                      |  |  |
| (*2)      | _                                     | ON              |                     |                      |              |                                                 | $\backslash \backslash \backslash \backslash \backslash \backslash $ |                             |                     |                      |  |  |
| P74       | INT0                                  | OIV             |                     |                      |              |                                                 | ON                                                                   |                             | ON                  |                      |  |  |
| F74       | Oscillator                            |                 | ON                  | OFF                  | ON           | $\mathcal{A}($                                  | ON                                                                   | _                           |                     |                      |  |  |
| P76       | XT1                                   | OFF             | OFF                 | OFF                  | OFF          |                                                 | ŎFF                                                                  |                             | OFF                 |                      |  |  |
| D77       | Port                                  | OFF             |                     |                      |              |                                                 | $\rightarrow$                                                        | 14                          |                     |                      |  |  |
| P77       |                                       |                 | _                   |                      | -            | $( \langle //                                 $ | -                                                                    |                             | ×                   |                      |  |  |
| P83       | WAIT                                  |                 |                     |                      | OFF          |                                                 | OFF⇔                                                                 | 7                           | OFF                 |                      |  |  |
| PC0       | TA0IN                                 |                 |                     |                      |              |                                                 |                                                                      | ///                         | O/                  |                      |  |  |
| PC1       | INT1                                  |                 |                     |                      |              |                                                 |                                                                      |                             |                     |                      |  |  |
| PC2       | INT2                                  |                 |                     |                      | 4( /         |                                                 | ((                                                                   |                             |                     |                      |  |  |
| PC3       | INT3                                  |                 |                     |                      |              | ~                                               |                                                                      |                             | ON                  |                      |  |  |
| PD0       | INT4                                  |                 |                     | (                    |              |                                                 | (O/4)                                                                | \                           |                     |                      |  |  |
| PD1       | INT5                                  |                 | ON                  |                      |              |                                                 |                                                                      | )                           |                     |                      |  |  |
| PDI       | TB1IN0                                |                 | 0.1                 | 4(                   | QN           |                                                 |                                                                      | /                           | OFF                 |                      |  |  |
| DD2       | INT6                                  |                 |                     |                      | , ř          | //                                              |                                                                      |                             | ON                  |                      |  |  |
| PD2       | TB1IN1                                |                 |                     |                      | $\searrow$   |                                                 | ) )                                                                  |                             | OFF                 |                      |  |  |
| DDG       | INT7                                  | ON              |                     | (( ))                |              | OFF                                             | //                                                                   | OFF                         | ON                  | OFF                  |  |  |
| PD3       | RXD2                                  | ON              |                     | , )                  |              | _                                               | ✓ ON                                                                 |                             |                     |                      |  |  |
| DD4       | SCLK2,                                |                 |                     | $\wedge$             | <            |                                                 | ON                                                                   |                             |                     |                      |  |  |
| PD4       | CTS2                                  |                 |                     |                      |              |                                                 |                                                                      |                             |                     |                      |  |  |
| PF0       | -                                     |                 | OFF                 |                      | OFF          |                                                 |                                                                      |                             |                     |                      |  |  |
| PF1       | RXD0                                  |                 | ((// 1              | ON                   |              | 1/                                              |                                                                      |                             |                     |                      |  |  |
|           | SCLKO,                                |                 | ON                  |                      | (ON)         |                                                 |                                                                      |                             |                     |                      |  |  |
| PF2       | CTS0 /                                | / ) [           | )                   | $\wedge$             | (            |                                                 |                                                                      |                             | OFF                 |                      |  |  |
| PF3       | _                                     | $\mathcal{N}$   | OFF                 |                      | OFF          |                                                 |                                                                      |                             |                     |                      |  |  |
| 110       | RXD1,                                 |                 | 011                 |                      | 0.1          |                                                 |                                                                      |                             |                     |                      |  |  |
| PF4       | HSSI(*4)                              |                 | ON                  |                      | ON           |                                                 |                                                                      |                             |                     |                      |  |  |
| PF5       | SCLK1, CTS)                           |                 | 011                 |                      |              |                                                 |                                                                      |                             |                     |                      |  |  |
|           | AN0-AN7(*3)                           |                 | OFF ,               |                      | OFF          |                                                 |                                                                      |                             |                     |                      |  |  |
| PG0-PG7   |                                       | $\bigcirc$      | - /                 | >                    |              |                                                 | ONI                                                                  |                             | ON                  |                      |  |  |
| DI O DI O | KI0-KI7                               | OFF             | ON                  |                      | ON           |                                                 | ON                                                                   |                             | ON                  |                      |  |  |
| PL0-PL2   | AN8-AN10(*3)                          | OFF             | OFF                 |                      | OFF          |                                                 | OFF                                                                  |                             |                     |                      |  |  |
| PL3       | AN(1(*3)                              | ^               |                     |                      |              |                                                 |                                                                      |                             |                     |                      |  |  |
| Z         | ADTRG                                 | -(C             | ~ (( )              | )                    |              |                                                 |                                                                      |                             |                     |                      |  |  |
| PN0       | SCKO                                  |                 | //                  | /                    |              |                                                 |                                                                      |                             |                     |                      |  |  |
| PN1       | SDA0                                  | \<br>\          |                     |                      |              |                                                 |                                                                      |                             | OFF                 |                      |  |  |
| PN2       | SIO, SCLO                             |                 |                     |                      |              |                                                 |                                                                      |                             |                     |                      |  |  |
| PN3       | SCK1                                  |                 |                     |                      |              |                                                 | ON                                                                   |                             |                     |                      |  |  |
| PN4       | SDA1                                  | ON              | ON                  |                      | ON           |                                                 |                                                                      |                             |                     |                      |  |  |
| PN5       | SI1, SCL1                             | OIN             |                     |                      |              |                                                 |                                                                      |                             |                     |                      |  |  |
| NMI       | _                                     |                 |                     |                      |              |                                                 |                                                                      | -                           | ON                  |                      |  |  |
| AM0,AM1   | _                                     |                 |                     |                      |              |                                                 |                                                                      |                             | ON                  |                      |  |  |
| X1        | _                                     |                 |                     | _                    |              | _                                               | OFF                                                                  | _                           | OFF                 | _                    |  |  |
| RESET     | _                                     |                 |                     |                      |              |                                                 | ON                                                                   |                             | ON                  |                      |  |  |
|           |                                       | •               |                     |                      |              |                                                 |                                                                      |                             |                     |                      |  |  |

ON: The buffer is always turned on. A current flows through the input \*1: ON upon external read.

buffer if the input pin is not driven.

OFF: The buffer is always turned off.

-: Not applicable

- \*2: Port having a pull-up/pull-down resistor.
- $^{\star}3$ : AIN input does not cause a current to flow through the buffer.
- \*4: HSSI input function is not built into TMP92CY23.

Table 3.3.8 Output Buffer State Table

|         |                   |                 | 14510                              | 7 0.0.0 0 0                   |                                    | itput Buffer S                |                           |                                        |                           |                               |
|---------|-------------------|-----------------|------------------------------------|-------------------------------|------------------------------------|-------------------------------|---------------------------|----------------------------------------|---------------------------|-------------------------------|
|         |                   |                 | When th                            | e CPU is                      |                                    | T mode                        | late                      | In HALT mo                             | de (STOP)                 |                               |
| Port    | Output            |                 |                                    | ating                         |                                    | E1/2)                         | DRV                       | E = "1"                                |                           | E = "0"                       |
| Name    | Function<br>Name  | During<br>Reset | When<br>used as<br>Function<br>pin | When<br>used as<br>Output pin | When<br>used as<br>Function<br>pin | When used<br>as<br>Output pin | When used as Function pin | When used<br>as<br>Output pin          | When used as Function pin | When<br>used as<br>Output pin |
| P00-P07 | D0-D7             |                 | ON upon                            |                               |                                    |                               |                           | >/                                     |                           |                               |
| P10-P17 | D8-D15            | OFF             | external<br>write (*1)             |                               | OFF                                |                               | OFF                       | $(\bigcirc)$                           |                           |                               |
| P40-P47 | A0-DA7            |                 |                                    |                               |                                    |                               |                           |                                        |                           |                               |
| P50-P57 | A8-A15            | ON              |                                    | ON                            |                                    | ON (                          |                           | ( ) )                                  | 055                       |                               |
| P60-P67 | A16-A23           | ON              |                                    | ON                            |                                    | ON                            | >//                       | ÓN                                     | OFF                       |                               |
| P70(*2) | RD                |                 | ON                                 |                               | ON                                 |                               | ON                        | >                                      |                           |                               |
| P71(*2) | SRWR              |                 |                                    |                               |                                    |                               |                           |                                        |                           |                               |
| P72(*2) | SRLLB             | OFF             |                                    |                               |                                    |                               |                           | (                                      |                           |                               |
| P73(*2) | SRLUB             |                 |                                    |                               |                                    | 4/                            | $\searrow$                | . ~                                    |                           |                               |
| P76     | -                 |                 | ı                                  | ON(*3)                        | _                                  | ON(*3)                        |                           | ON(*3)                                 | 1                         |                               |
| P77     | XT2 Oscillator    | OFF             | ON                                 | OFF                           | ON                                 | (OFF)                         | OFF \                     | OFF)                                   |                           |                               |
|         | Port              |                 |                                    | ON(*3)                        | OFF                                | ON(*3)                        |                           | ON(*3)                                 |                           |                               |
| P80     | CSO,              |                 |                                    |                               |                                    |                               |                           | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                           |                               |
| 1 00    | TA1OUT            |                 |                                    |                               | 4( /                               |                               | ((                        |                                        |                           |                               |
| P81     | CS1,              |                 |                                    | /                             |                                    | ~                             |                           |                                        |                           |                               |
| 101     | TA3OUT            | ON              |                                    |                               |                                    | 7                             | (7/4)                     |                                        |                           |                               |
| P82     | CS2               |                 |                                    |                               |                                    |                               |                           |                                        |                           |                               |
| P83     | CS3,              |                 | OFF                                |                               | $\rightarrow$                      |                               |                           |                                        | OFF                       | OFF                           |
|         | TA5OUT            |                 |                                    |                               | ON                                 |                               | ON                        |                                        |                           | OFF                           |
| PD0     | TB0OUT0           |                 |                                    | (())                          |                                    |                               | <b>//</b>                 |                                        |                           |                               |
| PD2     | TXD2              |                 |                                    | , )                           |                                    | ^                             | <b>\</b>                  |                                        |                           |                               |
| PD3     | TB1OUT0           |                 |                                    | $\wedge$                      |                                    |                               |                           |                                        |                           |                               |
| PD4     | TB1OUT1,<br>SCLK2 |                 |                                    |                               | (                                  |                               |                           |                                        |                           |                               |
| PF0     | TXD0              |                 | ((/// )                            | ON                            |                                    | 2/011                         |                           | ON                                     |                           |                               |
| PF1     | -                 |                 | · ()                               | ON                            | (7)                                | NO                            | ı                         | ON                                     | _                         |                               |
| PF2     | SCLK0, CLK/       |                 |                                    |                               | $(\sqrt{2})$                       | )                             |                           |                                        |                           |                               |
| PF3     | TXD1,             | OFF             | ON                                 |                               | ON                                 |                               | ON                        |                                        | OFF                       |                               |
| PF4     | HSSO(*4)          | OFF             | >                                  |                               |                                    |                               |                           |                                        |                           |                               |
| FF4     | SCLK1,            |                 | _                                  |                               | _                                  |                               | _                         |                                        | _                         |                               |
| PF5     | HSCLK(*4)         | $\setminus D$   | /                                  |                               | <i>\</i>                           |                               |                           |                                        |                           |                               |
| PN0     | SCK0              |                 | $\langle$                          |                               |                                    |                               |                           |                                        |                           |                               |
| PN1(*3) | SO0, SDA0         |                 |                                    |                               |                                    |                               | 011                       |                                        |                           |                               |
| PN2(*3) | ŞCL0              | $\wedge$        | QN                                 |                               | ON                                 |                               | ON                        |                                        | OFF                       |                               |
| PN3_    | SCK1              | ((              |                                    | )                             |                                    |                               |                           |                                        |                           |                               |
| PN4(*3) | SO1, SDA1         |                 |                                    |                               |                                    |                               |                           |                                        |                           |                               |
| PN5(*3) | ŞCL1              |                 |                                    |                               |                                    |                               |                           |                                        |                           |                               |
| X2      | _                 | ON              | ~                                  | _                             |                                    | _                             | OFF                       | _                                      |                           | _                             |

ON: The buffer is always turned on. When the bus is released, however, output buffers for some pins are turned off.

OFF: The buffer is always turned off.

-: Not applicable

- \*1: ON upon external write.
- \*2: Port having a pull-up resistor (programmable)
- \*3: Open-Drain output pin.
- \*4: HSSO and HSCLK output functions are not built into TMP92CY23.

# 3.4 Interrupts

Interrupts are controlled by the CPU Interrupt mask register <IFF2:0> and by the built-in interrupt controller.

The TMP92CY23 has a total of 50 interrupts, TMP92CD23A has a total of 51 interrupts.

Interrupts generated by CPU: 9 sources

Software interrupts: 8 sources

Illegal instruction interrupt: 1 source

Internal interrupts: TMP92CY23: 32 sources, TMP92CD23A: 33 sources

Internal I/O interrupts: TMP92CY23: 24 sources, TMP92CD23A: 25 sources

Micro DMA transfer end interrupts: 8 sources

External interrupts: 9 sources

Interrupts on external pins (INT0 to INT7, NMI)

A fixed individual interrupt vector number is assigned to each interrupt source.

Any one of six levels of priority can also be assigned to each maskable interrupt. Non-maskable interrupts have a fixed priority level of 7, the highest level.

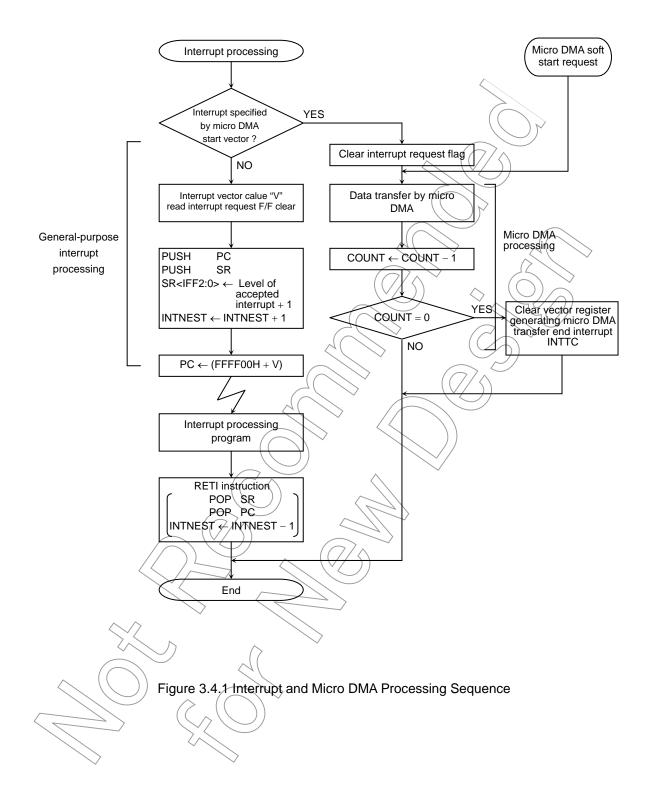
When an interrupt is generated, the interrupt controller sends the priority of that interrupt to the CPU. When more than one interrupt is generated simultaneously, the interrupt controller sends the priority value of the interrupt with the highest priority to the CPU. (The highest priority level is 7, the level used for non-maskable interrupts.)

The CPU compares the interrupt priority level which it receives with the value held in the CPU interrupt mask register <IFF2:0>. If the priority level of the interrupt is greater than or equal to the value in the interrupt mask register, the CPU accepts the interrupt.

However, software interrupts and illegal instruction interrupts generated by the CPU are processed irrespective of the value in <IFF2:0>.

The value in the interrupt mask register <IFF2:0> can be changed using the EI instruction (EI num sets <IFF2:0> to num). For example, the command EI 3 enables the acceptance of all non-maskable interrupts and of maskable interrupts whose priority level, as set in the interrupt controller, is 3 or higher. The commands EI and EI 0 enable the acceptance of all non-maskable interrupts and of maskable interrupts with a priority level of 1 or above (hence both are equivalent to the command EI 1).

The DI instruction (sets <IFF2:0> to 7) is exactly equivalent to the EI 7 instruction. The DI instruction is used to disable all maskable interrupts (since the priority level for maskable interrupts ranges from 1 to 6). The EI instruction takes effect as soon as it is executed.


In addition to the general purpose interrupt processing mode described above, there is also a micro DMA processing mode.

In micro DMA mode the CPU automatically transfers data in one-byte, two-byte or four-byte blocks; this mode allows high speed data transfer to and from internal and external memory and internal I/O ports.

In addition, the TMP92CY23/CD23A also has a software start function in which micro DMA processing is requested in software rather than by an interrupt.

Figure 3.4.1 is a flowchart showing overall interrupt processing.

**TOSHIBA** 



## 3.4.1 General-purpose Interrupt Processing

When the CPU accepts an interrupt, it usually performs the following sequence of operations. However, in the case of software interrupts and illegal instruction interrupts generated by the CPU, the CPU skips steps (1) and (3), and executes only steps (2), (4) and (5).

(1) The CPU reads the interrupt vector from the interrupt controller.

When more than one interrupt with the same priority level has been generated simultaneously, the interrupt controller generates an interrupt vector in accordance with the default priority and clears the interrupt requests.

(The default priority is determined as follows: the smaller the vector value, the higher the priority.)

- (2) The CPU pushes the program counter (PC) and status register (SR) onto the top of the stack (pointed to by XSP).
- (3) The CPU sets the value of the CPU's interrupt mask register <IFF2:0> to the priority level for the accepted interrupt plus 1. However, if the priority level for the accepted interrupt is 7, the register's value is set to 7.
- (4) The CPU increments the interrupt nesting counter INTNEST by 1.
- (5) The CPU jumps to the address given by adding the contents of address FFFF00H + the interrupt vector, then starts the interrupt processing routine.

On completion of interrupt processing, the RETI instruction is used to return control to the main routine. RETI restores the contents of the program counter and the status register from the stack and decrements the interrupt nesting counter INTNEST by 1.

Non-maskable interrupts cannot be disabled by a user program. Maskable interrupts, however, can be enabled or disabled by a user program. A program can set the priority level for each interrupt source. A priority level setting of 0 or 7 will disable an interrupt request.)

If an interrupt request is received for an interrupt with a priority level equal to or greater than the value set in the CPU interrupt mask register <IFF2:0>, the CPU will accept the interrupt. The CPU interrupt mask register <IFF2:0> is then set to the value of the priority level for the accepted interrupt plus 1.

If during interrupt processing, an interrupt is generated with a higher priority than the interrupt currently being processed, or if, during the processing of a non-maskable interrupt processing, a non-maskable interrupt request is generated from another source, the CPU will suspend the routine which it is currently executing and accept the new interrupt. When processing of the new interrupt has been completed, the CPU will resume processing of the suspended interrupt.

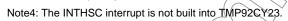
If the CPU receives another interrupt request while performing processing steps (1) to (5), the new interrupt will be sampled immediately after execution of the first instruction of its interrupt processing routine. Specifying DI as the start instruction disables nesting of maskable interrupts.

A reset initializes the interrupt mask register  $\langle IFF2:0 \rangle$  to "111", disabling all maskable interrupts.

Table 3.4.1 shows the TMP92CY23/CD23A interrupt vectors and micro DMA start vectors. FFFF00H to FFFFFFH (256 bytes) is designated as the interrupt vector area.

Table 3.4.1 TMP92CY23/CD23A Interrupt Vectors and Micro DMA Start Vectors

| Default<br>Priority | Туре       | Interrupt Source and Source of Micro DMA Request                          | Vector<br>Value | Address Refer<br>to Vector | Micro DMA<br>Start<br>Vector |
|---------------------|------------|---------------------------------------------------------------------------|-----------------|----------------------------|------------------------------|
| 1                   |            | Reset or [SWI0] instruction                                               | 0000H           | FFFF00H                    | 700101                       |
|                     |            |                                                                           |                 |                            |                              |
| 2                   |            | [SWI1] instruction                                                        | 0004H           | FFFF04H                    |                              |
| 3                   |            | Illegal instruction or [SWI2] instruction                                 | H8000           | FFFF08H                    |                              |
| 4                   | Non-       | [SWI3] instruction                                                        | 000CH           | FFFF0CH                    |                              |
| 5                   | maskable   | [SWI4] instruction                                                        | 0010H           | FFFF10H                    |                              |
| 6                   | IIIaskable | [SWI5] instruction                                                        | 0014H           | FFFF14H                    |                              |
| 7                   |            | [SWI6] instruction                                                        | ⟨0018H \        | FFFF18H                    |                              |
| 8                   |            | [SWI7] instruction                                                        | 001CH           | FFFF1CH                    |                              |
| 9                   |            | NMI: External interrupt input pin                                         | 0020H           | FFFF20H                    |                              |
| 10                  |            | INTWD: Watchdog Timer                                                     | 0024H           | FFFF24H                    |                              |
| -                   |            | Micro DMA                                                                 |                 | -                          | - (Note1)                    |
| 11                  |            | INTO: INTO pin input                                                      | 0028H           | FFFF28H                    | 0AH (Note 2)                 |
| 12                  |            | INT1: INT1 pin input                                                      | 002CH           | FFFF2CH                    | OBH (Note 2)                 |
| 13                  |            | INT2: INT2 pin input                                                      | 0030H           | FFF30H                     | OCH (Note 2)                 |
| 14                  |            | INT3: INT3 pin input                                                      | 0034H           | FFEE34H                    | 0DH (Note 2)                 |
| 15                  |            | INT4: INT4 pin input                                                      | 0038H           | FFFF38H                    | 0EH (Note 2)                 |
| 16                  |            | INT5: INT5 pin input                                                      | 003CH           | FFFF3CH                    | 0FH (Note 2)                 |
| 17                  |            | INT6: INT6 pin input                                                      | 0040H           | FFFF40H                    | 10H (Note 2)                 |
| 18                  |            | INT7: INT7 pin input                                                      | 0044H           | FFFF44H                    | 11H (Note 2)                 |
| 19                  |            | INTTA0: 8-bit timer 0                                                     | 0048H           | FFFF48H                    | 12H                          |
| 20                  |            | INTTA1: 8-bit timer 1                                                     | 004CH           | FFFF4CH                    | 13H                          |
| 21                  |            | INTTA2: 8-bit timer 2                                                     | 0050H           | FFFF50H                    | 14H                          |
| 22                  |            | INTTA3: 8-bit timer 3                                                     | 0054H           | FFFF54H                    | 15H                          |
| 23                  |            | INTTA4: 8-bit timer 4                                                     | 0058H           | FFFF58H                    | 16H                          |
| 24                  |            | INTTA5: 8-bit timer 5                                                     | 005CH           | FFFF5CH                    | 17H                          |
| 25                  |            | (Reserved)                                                                | 0060H           | FFFF60H                    | 18H                          |
| 26                  |            | (Reserved)                                                                | 0064H           | FFFF64H                    | 19H                          |
| 27                  |            | INTRX0: Serial receive (Channel 0)                                        | 0068H           | FFFF68H                    | 1AH (Note 2)                 |
| 28                  |            | INTTX0: Serial transmission (Channel 0)                                   | 006CH           | FFFF6CH                    | 1BH                          |
| 29                  |            | INTRX1: Serial receive (Channel 1)                                        | 0070H           | FFFF70H                    | 1CH (Note 2)                 |
| 30                  | Maskable   | (NTTX1: Serial transmission (Channel 1) INTHSC: High speed serial (Note4) | 0074H           | FFFF74H                    | 1DH                          |
| 31                  |            | INTRX2: Serial receive (Channel 2)                                        | 0078H           | FFFF78H                    | 1EH (Note 2)                 |
| 32                  | ^          | INTTX2: Serial transmission (Channel 2)                                   | 007CH           | FFFF7CH                    | 1FH                          |
| 33                  |            | (Reserved)                                                                | 0080H           | FFFF80H                    | 20H                          |
| 34                  | <u> </u>   | (Reserved)                                                                | 0084H           | FFFF84H                    | 21H                          |
| 35                  |            | INTNSBE0: SBI0 I2Cbus transfer end                                        | 0088H           | FFFF88H                    | 22H                          |
| 36                  |            | (Reserved)                                                                | 008CH           | FFFF8CH                    | 23H                          |
| 37                  |            | INTNSBE1: SBI1 (2Cbus transfer end                                        | 0090H           | FFFF90H                    | 24H                          |
| 38.                 |            | (Reserved)                                                                | 0094H           | FFFF94H                    | 25H                          |
| 39                  |            | (Reserved)                                                                | 0098H           | FFFF98H                    | 26H                          |
| 40                  |            | (Reserved)                                                                | 009CH           | FFFF9CH                    | 27H                          |
| 41                  | ~          | (Reserved)                                                                | 00A0H           | FFFFA0H                    | 28H                          |
| 42                  |            | (Reserved)                                                                | 00A011<br>00A4H | FFFFA4H                    | 29H                          |
| 43                  |            | INTTB00: 16-bit timer 0                                                   | 00A411          | FFFFA8H                    | 2AH                          |
| 43                  |            | INTTB00: 16-bit timer 0                                                   | 00A6H           | FFFFACH                    | 2BH                          |
|                     |            |                                                                           | 00ACH<br>00B0H  | FFFFB0H                    | 2CH                          |
| 45                  |            | INTTB00: 16-bit timer 0 (Overflow)                                        |                 |                            |                              |
| 46                  |            | INTTB44: 46 bit timer 1                                                   | 00B4H           | FFFFB4H                    | 2DH                          |
| 47                  |            | INTTB04 40 hit is and 40 and and                                          | 00B8H           | FFFFB8H                    | 2EH                          |
| 48                  |            | INTTBO1: 16-bit timer 1 (Overflow)                                        | 00BCH           | FFFFBCH                    | 2FH                          |
| 49                  |            | INTAD: AD conversion end                                                  | 00C0H           | FFFFC0H                    | 30H                          |


| Default<br>Priority | Type     | Interrupt Source and Source of Micro DMA Request | Vector<br>Value | Address Refer<br>to Vector | Micro DMA<br>Start<br>Vector |
|---------------------|----------|--------------------------------------------------|-----------------|----------------------------|------------------------------|
| 50                  |          | INTP0: Protect 0 (Write to SFR)                  | 00C4H           | FFFFC4H                    | 31H                          |
| 51                  |          | INTRTC: Special timer for CLOCK                  | 00C8H           | FFFFC8H                    | 32H                          |
| 52                  |          | (Reserved)                                       | 00CCH           | FFFFCCH                    | 33H                          |
| 53                  |          | INTTC0: Micro DMA end (Channel 0)                | 00D0H           | FFFFD0H                    | 34H                          |
| 54                  |          | INTTC1: Micro DMA end (Channel 1)                | 00D4H           | FFFFD4H                    | 35H                          |
| 55                  |          | INTTC2: Micro DMA end (Channel 2)                | 00D8H           | FFFFD8H                    | 36H                          |
| 56                  | Maskable | INTTC3: Micro DMA end (Channel 3)                | 00DCH           | FFEFDCH                    | 37H                          |
| 57                  | Washabic | INTTC4: Micro DMA end (Channel 4)                | 00E0H           | FFFE0H                     | 38H                          |
| 58                  |          | INTTC5: Micro DMA end (Channel 5)                | Q0E4H√          | FFFE4H                     | 39H                          |
| 59                  |          | INTTC6: Micro DMA end (Channel 6)                | 00È8H           | FFFFE8H                    | 3AH                          |
| 60                  |          | INTTC7: Micro DMA end (Channel 7)                | 00€CH           | FFFFECH                    | 3BH                          |
| -                   |          |                                                  | 00F0H           | FFFFF0H                    | _                            |
| to<br>–             |          | (Reserved)                                       | 00FCH           | FFFFCH                     | to –                         |

Note 1: When initiating micro DMA, set at edge detect mode.

Note 2: Micro DMA default priority.

Micro DMA initiation takes priority over other maskable interrupts.

Note 3: Specify the HSCSEL register when selecting INTTX1 or INTHSC that have the same interrupt factor in the default priority 30.



## 3.4.2 Micro DMA Processing

In addition to general purpose interrupt processing, the TMP92CY23/CD23A also includes a micro DMA function. Micro DMA processing for interrupt requests set by micro DMA is performed at the highest priority level for maskable interrupts (level 6), regardless of the priority level of the interrupt source.

Because the micro DMA function is implemented through the CPU, when the CPU is placed in a stand-by state by a Halt instruction, the requirements of the micro DMA will be ignored (pending).

Micro DMA supports 8 channels and can be transferred continuously by specifying the micro DMA burst function as below.

### (1) Micro DMA operation

When an interrupt request is generated by an interrupt source specified by the micro DMA start vector register, the micro DMA triggers a micro DMA request to the CPU at interrupt priority level 6 and starts processing the request. The eight micro DMA channels allow micro DMA processing to be set for up to eight types of interrupt at once.

When micro DMA is accepted, the interrupt request flip-flop assigned to that channel is cleared. Data in one-byte, two-byte or four-byte blocks, is automatically transferred at once from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decremented by 1. If the value of the counter after it has been decremented is not 0, DMA processing ends with no change in the value of the micro DMA start vector register. If the value of the decremented counter is 0, a micro DMA transfer end interrupt (INTTC0 to INTTC7) is sent from the CPU to the interrupt controller. In addition, the micro DMA start vector register is cleared to "0", the next micro DMA operation is disabled and micro DMA processing terminates.

If micro DMA requests are set simultaneously for more than one channel, priority is not based on the interrupt priority level but on the channel number; the lower the channel number, the higher the priority (channel 0 thus has the highest priority and channel 7 the lowest).

If an interrupt request is triggered for the interrupt source in use during the interval between the time at which the micro DMA start vector is cleared and the next setting, general purpose interrupt processing is performed at the interrupt level set. Therefore, if the interrupt is only being used to initiate micro DMA (and not as a general-purpose interrupt), the interrupt level should first be set to 0 (i.e., interrupt requests should be disabled).

If using micro DMA and general-purpose interrupts together, first set the level of the interrupt used to start micro DMA processing lower than all the other interrupt levels. (Note) In this case, the cause of general interrupt is limited to the edge interrupt.

The priority of the micro DMA transfer end interrupt (INTTC0 to INTTC3) is defined by the interrupt level and the default priority as the same as the other maskable interrupt.

Note: If the priority level of micro DMA is set higher than that of other interrupts, CPU operates as follows. In case INTxxx interrupt is generated first and then INTyyy interrupt is generated between checking "Interrupt specified by micro DMA start vector" (in the Figure 3.4.1) and reading interrupt vector with setting below. The vector shifts to that of INTyyy at the time.

This is because the priority level of INTyyy is higher than that of INTxxx.

In the interrupt routine, CPU reads the vector of INTyyy because cheking of micro DMA has finished. And INTyyy is generated regardless of transfer counter of micro DMA.

INTxxx: level 1 without micro DMA INTyyy: level 6 with micro DMA

If micro DMA and general purpose interrupts are being used together as described above, the level of the interrupt which is being used to initiate micro DMA processing should first be set to a lower value than all the other interrupt levels. In this case, edge triggered interrupts are the only kinds of general interrupts which can be accepted.

Although the control registers used for setting the transfer source and transfer destination addresses are 32 bits wide, this type of register can only output 24-bit addresses. Accordingly, micro DMA can only access 16 Mbytes.

Three micro DMA transfer modes are supported: one byte transfers, two-byte transfer and four-byte transfer. After a transfer in any mode, the transfer source and transfer destination addresses will either be incremented or decremented, or will remain unchanged. This simplifies the transfer of data from memory to memory, from I/O to memory, from memory to I/O, and from I/O to I/O. For details of the various transfer modes, see section 3.4.2 (4), detailed description of the transfer mode register.

Since a transfer counter is a 16-bit counter, up to 65536 micro DMA processing operations can be performed per interrupt source (provided that the transfer counter for the source is initially set to 0000H).

Micro DMA processing can be initiated by any one of 40 different interrupts – the 39 interrupts shown in the micro DMA start vectors in Table 3.4.1 and a micro DMA soft start.

Figure 3.4.2 shows a 2-byte transfer carried out using a micro DMA cycle in transfer destination address INC mode (micro DMA transfers are the same in every mode except counter mode). (The conditions for this cycle are as follows: this cycle is based on an external 8-bit bus, 0 waits, source/transfer destination addresses both even-numbered values.)

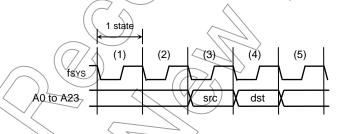



Figure 3.4.2 Timing for Micro DMA Cycle

State (1), (2): Instruction fetch cycle (Prefetches the next instruction code)

If the instruction queue buffer is FULL, this cycle becomes a dummy cycle.

State (3): Micro DMA read cycle

State (4): Micro DMA write cycle

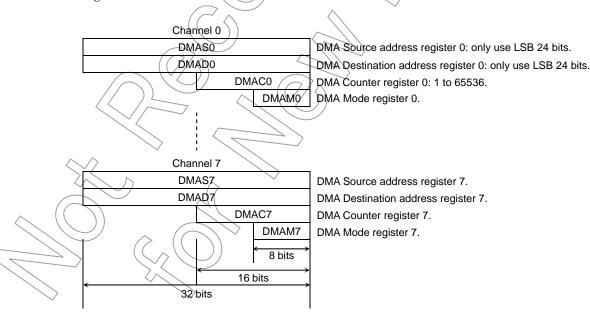
State (5): (The same as in state (1), (2))

#### (2) Soft start function

The TMP92CY23/CD23A can initiate micro DMA either with an interrupt or by using the micro DMA soft start function, in which micro DMA is initiated by a write cycle which writes to the register DMAR.

Writing "1" to any bit of the register DMAR causes micro DMA to be performed once (If write "0" to each bit, micro DMA doesn't operate). On completion of the transfer, the bits of DMAR which support the end channel are automatically cleared to "0".

Only one channel can be set for DMA request at once. (Do not write "1" to plural bits)


When writing again "1" to the DMAR register, check whether the bit is 0 before writing 1. If read "1", micro DMA transfer isn't started yet.

When a burst is specified by the register DMAB, data is transferred continuously from the initiation of micro DMA until the value in the micro DMA transfer counter is "0" after start up of the micro DMA. If execute soft start during micro DMA transfer by interrupt source, micro DMA transfer counter doesn't change. Don't use Read-modify-write instruction to avoid writing to other bits by mistake.

| Symbol  | Name    | Address           | 7     | 6     | 5     | ((4/5)      | 3 <           | , 20   | ) (1  | 0     |  |
|---------|---------|-------------------|-------|-------|-------|-------------|---------------|--------|-------|-------|--|
|         |         | 40011             | DREQ7 | DREQ6 | DREQ5 | DREQ4       | DREQ3         | QREQ2  | DREQ1 | DREQ0 |  |
| DMAR    | DMA     | 109H              | RW    |       |       |             |               |        |       |       |  |
| DIVIAIX | Request | (Prohibit<br>RMW) | 0     | 0     | 0     | 0           | 0 ((          | 9      | 0     | 0     |  |
|         |         | ,                 | ·     |       |       | : DMA reque | est in softwa | re /// | •     | ·     |  |

### (3) Transfer control registers

The transfer source address and the transfer destination address are set in the following registers. An instruction of the form LDC cr, r can be used to set these registers.



# (4) Detailed description of the transfer mode register

| 0 0 | ı <sup>0</sup> | Mode | DMAM0 to DMAM7 |
|-----|----------------|------|----------------|
|     |                |      | <del>.</del>   |

| DMAMn[4:0] | Mode Description                                                                                 | Execution<br>State Number |
|------------|--------------------------------------------------------------------------------------------------|---------------------------|
| 0 0 0 z z  | Destination INC mode (DMADn+) ← (DMASn) DMACn ← DMACn − 1 If DMACn = 0 then INTTCn               | 5 states                  |
| 0 0 1 z z  | Destination DEC mode (DMADn-) ← (DMASn) DMACn ← DMACn - 1 If DMACn = 0 then INTTCn               | 5 states                  |
| 0 1 0 z z  | Source INC mode (DMADn) ← (DMASn+) DMACn ← DMACn − 1 If DMACn = 0 then INTTCn                    | 5 states                  |
| 0 1 1 z z  | Source DEC mode<br>(DMADn) ← (DMASn-)<br>DMACn ← DMACn - 1<br>If DMACn = 0 then INTTCn           | 5 states                  |
| 100zz      | Source and destination INC mode (DMADn+) ← (DMASn+)  DMACn ← DMACn − 1  If DMACn = 0 then INTTCn | 6 states                  |
| 101zz      | Source and destination DEC mode (DMADn-) ← (DMASn-)  DMACn ← DMACn - 1  If DMACn = 0 then INTTCn | 6 states                  |
| 1 1 0 z z  | Source and destination Fixed mode (DMADn) (DMASn)  DMACn (DMACn - 1  If DMACn = 0 then INTTCn    | 5 states                  |
| 11100      | Counter mode  DMASn ← DMASn + 1  DMACn ← DMACn ← 1  If DMACn = 0 then INTICn                     | 5 states                  |

ZZ: 00 = 1-byte transfer

01 = 2-byte transfer

10 = 4-byte transfer

11 = (Reserved)

Note1: The execution state number shows number of best case (1-state memory access). 1state = 50ns at fsys = 20MHz

Note2: N stands for the micro DMA channel number (0 to 7)

DMADn+/DMASn+: Post-increment (register value is incremented after transfer)

DMADn-/DMASn-: Post-decrement (register value is decremented after transfer)

"I/O" signifies fixed memory addresses; "memory" signifies incremented or decremented memory addresses.

Note3: The transfer mode register should not be set to any value other than those listed above.

## 3.4.3 Interrupt Controller Operation

The block diagram in Figure 3.4.3 shows the interrupt circuits. The left hand side of the diagram shows the interrupt controller circuit. The right hand side shows the CPU interrupt request signal circuit and the halt release circuit.

For each of the 50 interrupts channels there is an interrupt request flag (consisting of a flip-flop), an interrupt priority setting register and a micro DMA start vector register.

The interrupt request flag latches interrupt requests from the peripherals. The flag is cleared to "0" in the following cases: when a reset occurs, when the CPU reads the channel vector of an interrupt it has received, when the CPU receives a micro DMA request (when micro DMA is set), when a micro DMA burst transfer is terminated, and when an instruction that clears the interrupt for that channel is executed by writing a micro DMA start vector to the INTCLR register).

An interrupt priority can be set independently for each interrupt source by writing the priority to the interrupt priority setting register (e.g., INTEPAD or INTEO1). 6 interrupt priorities levels (1 to 6) are provided. Setting an interrupt source's priority level to 0 (or 7) disables interrupt requests from that source. The priority of non-maskable interrupt (watchdog timer interrupts) is fixed at 7.

If more than one interrupt request with a given priority level are generated simultaneously, the default priority (the interrupt with the lowest priority or, in other words, the interrupt with the lowest vector value) is used to determine which interrupt request is accepted first.

The 3rd and 7th bit of the interrupt priority setting register indicate the state of the interrupt request flag and thus whether an interrupt request for a given channel has occurred.

If several interrupts are generated simultaneously, the interrupt controller sends the interrupt request for the interrupt with the highest priority and the interrupt's vector address to the CPU. The CPU compares the mask value set in <IFF2:0> of the status register (SR) with the priority level of the requested interrupt; if the latter is higher, the interrupt is accepted. Then the CPU sets SR<IFF2:0> to the priority level of the accepted interrupt + 1. Hence, during processing of the accepted interrupt, new interrupt requests with a priority value equal to or higher than the value set in SR<IFF2:0> (e.g., interrupts with a priority higher than the interrupt being processed) will be accepted.

When interrupt processing has been completed (e.g., after execution of a RETI instruction), the CPU restores to SR<IFF2:0> the priority value which was saved on the stack before the interrupt was generated.

The interrupt controller also includes eight registers which are used to store the micro DMA start vector. Writing the start vector of the interrupt source for the micro DMA processing (see Table 3.4.1), enables the corresponding interrupts to be processed by micro DMA processing. The values must be set in the micro DMA parameter registers (e.g., DMAS and DMAD) prior to micro DMA processing.

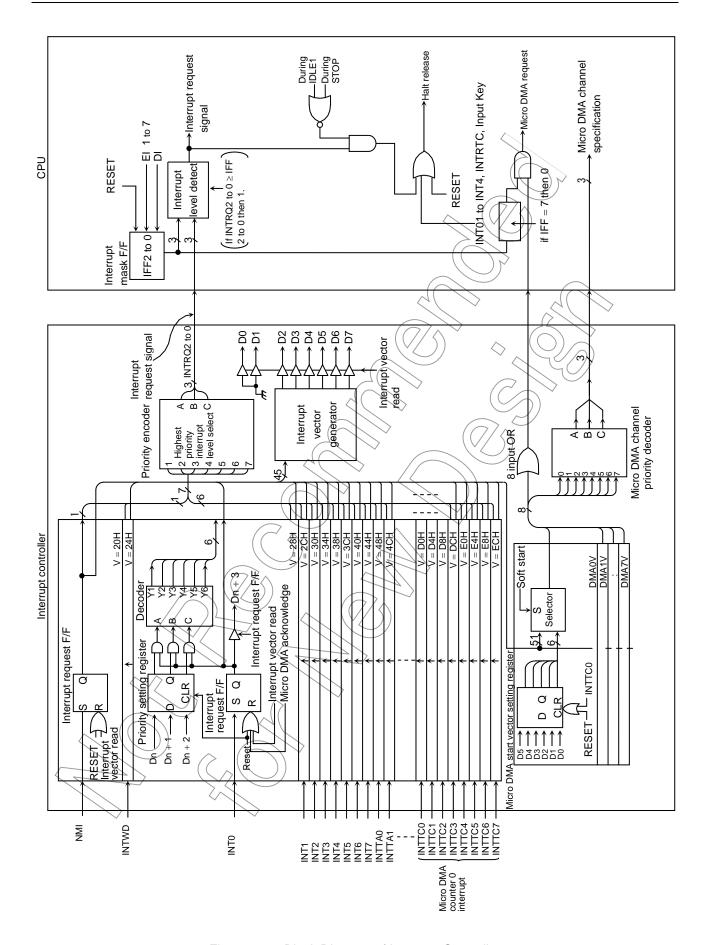



Figure 3.4.3 Block Diagram of Interrupt Controller

# (1) Interrupt level setting registers

| Symbol   | Name                    | Address  | 7          | 6                       | 5            | 4        | 3                              | 2                              | 1            | 0      |  |
|----------|-------------------------|----------|------------|-------------------------|--------------|----------|--------------------------------|--------------------------------|--------------|--------|--|
| -,       |                         |          |            | IN'                     | T1           |          | -                              | IN <sup>-</sup>                | TO           |        |  |
|          | INT0 &                  |          | I1C        | I1M2                    | I1M1         | I1M0     | IOC                            | IOC IOM2                       |              | IOMO   |  |
| INTE01   | INT1                    | 00D0H    | R          | 111112                  | R/W          |          | R                              | IOIVIZ                         | I0M1<br>R/W  | 101010 |  |
|          | Enable                  |          | 0          | 0                       | 0            | 0        | 0 /                            | 0                              | 0            | 0      |  |
|          |                         |          | 1:INT1     | -                       | rupt request |          | 1:INT0                         |                                | rupt request |        |  |
|          |                         |          |            | IN'                     |              |          |                                | N.                             |              |        |  |
|          | INT2&                   |          | I3C        | I3M2                    | I3M1         | I3M0     | I2C                            | 12M2                           | I2M1         | I2M0   |  |
| INTE23   | INT3                    | 00D1H    | R          |                         | R/W          |          | R                              |                                | R/W          |        |  |
|          | Enable                  |          | 0          | 0                       | 0            | 0 <      | 0(//                           | ( ) o                          | 0            | 0      |  |
|          |                         |          | 1:INT3     | Interrupt request level |              |          | 1:INT2                         | Inter                          | rupt request | level  |  |
|          |                         |          |            | IN'                     | T5           |          |                                | , IN                           | T4           |        |  |
| INT48    | INT4&                   |          | I5C        | I5M2                    | I5M1         | I5M0     | 14C                            | I4M2                           | I4M1         | I4M0   |  |
| INTE45   | INT5                    | 00D2H    | R          |                         | R/W          |          | R                              |                                | R/W          |        |  |
|          | Enable                  |          | 0          | 0                       | 0            | 6        | ò                              | 0 0                            | 8            | 0      |  |
|          |                         |          | 1:INT5     | Inter                   | rupt request | leye     | 1:INT4 Interrupt request level |                                |              |        |  |
|          | INT6&<br>INT7<br>Enable | 00D3H    |            | IN <sup>.</sup>         | Т7           | ( // )   | $\wedge$                       | ( )IŅ.                         | T6~          |        |  |
|          |                         |          | I7C        | I7M2                    | I7M1         | 17M0     | I6C                            | /I6M2                          | /)6M1        | I6M0   |  |
| INTE67   |                         |          | R          |                         |              |          |                                | 7//7                           | √R/W         |        |  |
|          |                         |          | 0 0 0      |                         |              |          | 0 ((                           |                                | 0            | 0      |  |
|          |                         |          | 1:INT7     | Inter                   | rupt request | level    | 1:INT6                         | 1:INT6 Interrupt request level |              |        |  |
|          |                         |          |            | INTTA1(                 | TMRA1)       | >        | INTTA0(TMRA0)                  |                                |              |        |  |
|          | INTTA0 &                |          | ITA1C      | ITA1M2                  | (ITA1M1)     | ITA1M0   | ITAOC )                        | ) ITA0M2                       | ITA0M1       | ITA0M0 |  |
| INTETA01 | INTTA1                  | 00D4H    | R          | 4(                      | R/W          |          | R                              | <u></u>                        | R/W          |        |  |
|          | Enable                  |          | 0          | 0                       | Ō            | <u> </u> | /0                             | 0                              | 0            | 0      |  |
|          |                         |          | 1: INTTA1  | Inter                   | rupt request | level    | 1:JNTTA0                       | Inter                          | rupt request | level  |  |
|          |                         |          |            | \INTTA3(                | ,            |          |                                | INTTA2(                        | TMRA2)       | ·      |  |
|          | INTTA2 &                |          | ITA3C      | TA3M2                   | ITA3M1       | ✓TA3M0   | TA2C                           | ITA2M2                         | ITA2M1       | ITA2M0 |  |
| INTETA23 | INTTA3                  | 00D5H    | R (\       |                         | R/W _        |          | R                              | -                              | R/W          |        |  |
|          | Enable                  |          | 0          | <u></u>                 | 0 /          | 0        | 0                              | 0                              | 0            | 0      |  |
|          |                         |          | 1 (INTTA3) |                         | rupt request | lèvel    | 1:INTTA2                       | Inter                          | rupt request | level  |  |
|          |                         |          | 1.0        | ,                       | TMRA5)       | <b>\</b> |                                | INTTA4(                        |              |        |  |
| <br>     | INTTA4 &                | ( )      | ITA5C      | ITA5M2                  | ITA5M1       | ITA5M0   | ITA4C                          | ITA4M2                         | ITA4M1       | ITA4M0 |  |
| INTETA45 | INTTA5                  | 00D6H    | R          |                         | RAW          |          | R                              | 1                              | R/W          |        |  |
|          | Enable                  |          | 0          | 0                       | 70           | 0        | 0                              | 0                              | 0            | 0      |  |
|          |                         | $\wedge$ | 1: INTTA5  | Inter                   | rupt request | level    | 1: INTTA4                      | Inter                          | rupt request | level  |  |
|          | $\sim$                  | ζ . ·    |            |                         | $\supset$    |          | <u> </u>                       |                                |              |        |  |



| \ | lxxM2 | lxxM1 | lxxM0 | Function (Write)                   |  |  |  |  |
|---|-------|-------|-------|------------------------------------|--|--|--|--|
|   | 0     | 0     | 0     | Disables interrupt requests        |  |  |  |  |
|   | 0     | 0     | 1     | Sets interrupt priority level to 1 |  |  |  |  |
|   | 0     | 1     | 0     | Sets interrupt priority level to 2 |  |  |  |  |
|   | 0     | 1     | 1     | Sets interrupt priority level to 3 |  |  |  |  |
|   | 1     | 0     | 0     | Sets interrupt priority level to 4 |  |  |  |  |
|   | 1     | 0     | 1     | Sets interrupt priority level to 5 |  |  |  |  |
|   | 1     | 1     | 0     | Sets interrupt priority level to 6 |  |  |  |  |
|   | 1     | 1     | 1     | Disables interrupt requests        |  |  |  |  |

| Symbol     | Name           | Address       | 7                | 6                                | 5                 |           | 4                           | 3                                  | 2                                                                   | 1            | 0        |  |
|------------|----------------|---------------|------------------|----------------------------------|-------------------|-----------|-----------------------------|------------------------------------|---------------------------------------------------------------------|--------------|----------|--|
| Symbol     | INAITIC        | Addiess       | ,                |                                  | _                 |           | -                           | 3                                  | 1                                                                   |              | U        |  |
|            | INITENZA A     |               | IT)(0.0          | INT                              | 1                 |           | T)(01.40                    | IDVOO                              | INTE                                                                | 1            | IDVOLIO  |  |
| INITECO    | INTRX0 &       | 000011        | ITX0C            | ITX0M2                           | ITX0              | -         | TX0M0                       | IRX0C                              | IRX0M2                                                              | IRX0M1       | IRX0M0   |  |
| INTES0     | INTTX0         | 00D8H         | R                |                                  | R/V               |           |                             | R                                  |                                                                     | R/W          |          |  |
|            | Enable         |               | 0                | 0                                | 0                 |           | 0                           | 0                                  | 0                                                                   | 0            | 0        |  |
|            |                |               | 1:INTTX0         | •                                |                   | uest lev  | el                          | 1:INTRX0                           | 1:INTRX0 Interrupt request level                                    |              |          |  |
|            | INTRX1 &       |               |                  | INTTX1/INT                       |                   |           |                             |                                    | INTI                                                                | 1            |          |  |
|            | INTTX1/        | 000011        | ITX1C            | ITX1M2                           | ITX1              |           | TX1M0                       | IRX1C                              | (RX1M2                                                              | IRX1M1       | IRX1M0   |  |
| INTES1HSC  | INTHSC         | 00D9H         | R                |                                  | R/V               |           |                             | R                                  |                                                                     | R/W          |          |  |
|            | Enable         |               | 0                | 0                                | 0                 |           | 0                           | 0                                  | 0                                                                   | 0            | 0        |  |
|            |                |               | 1:INTTX1         | •                                |                   |           |                             | 1:INTRX1/                          | _ /                                                                 | rupt request | level    |  |
|            |                |               | IT) (0.0         | INT                              | 1                 |           | <b></b>                     | (2)                                | INTI                                                                | i e          | IBV(0140 |  |
| INITEOO    | INTRX2 &       | 000011        | ITX2C            | ITX2M2                           | ITX2              |           | TX2M0                       | IRX2C                              | IRX2M2                                                              | IRX2M1       | IRX2M0   |  |
| INTES2     | INTTX2         | 00DAH         | R                |                                  | R/V               |           |                             | R                                  |                                                                     | R/W          |          |  |
|            | Enable         |               | 0                | 0                                | 0                 | - 1       | 0 (                         | 0<br>1:INTRX2                      | 0                                                                   | 0            | 0        |  |
|            |                |               | 1:INTTX2         | 1:INTTX2 Interrupt request level |                   |           |                             |                                    |                                                                     | rupt request | level    |  |
|            |                |               |                  | -                                | -<br>             | - (       | $\overline{O} \wedge$       | V                                  | INTS                                                                |              | 1        |  |
|            | INTSBE0        |               | _                | -                                | _                 |           | $\times \to$                | ISBE0C                             | ISBEOM2                                                             | /SBE0M1      | ISBE0M0  |  |
| INTESB0    | Enable         | 00DCH         | _                |                                  | _                 |           | $\overline{}$               | R                                  |                                                                     | /R/W         | i        |  |
|            |                |               | _                | _                                | _                 | 4(1)      | \ <del>\</del>              | 0                                  | 0                                                                   | 0            | 0        |  |
|            |                |               | Always write "0" |                                  |                   |           |                             | 1:INTSBE0                          |                                                                     | rupt request | level    |  |
|            |                | 00DDH         |                  |                                  |                   |           |                             |                                    | // INTS                                                             | 1            | 1        |  |
|            | INTSBE1        |               | _                | -                                | 10-               |           | _                           | ISBE1C                             | SBE1M2                                                              | ISBE1M1      | ISBE1M0  |  |
| INTESB1    | Enable         |               | _                | ((                               | <del>-</del>      | <u> </u>  |                             | \R/                                |                                                                     | R/W          | i        |  |
|            |                |               | _                | _<_(                             |                   | . /       | /_                          | 0                                  | 0                                                                   | 0            | 0        |  |
|            |                |               |                  | Always                           | $\sim$            |           | 1:INTSBE1                   |                                    | rupt request                                                        | level        |          |  |
|            |                |               |                  | (INTTB01)                        | ì                 |           |                             | \ <u>/</u>                         | INTTB00                                                             | ì            | l        |  |
|            | INTTB00 &      | %<br>00E0H    | ITB01C           | ITB01M2                          | ITB01             |           | ΓB01M0                      | ITB00C                             | ITB00M2                                                             | ITB00M1      | ITB00M0  |  |
| INTETB0    |                |               | R (              | $\sim$                           | R/V               |           |                             | R                                  |                                                                     | R/W          | i        |  |
|            | Enable         |               | 0                | ) ø                              | 0                 | (         | /0                          | 0                                  | 0                                                                   | 0            | 0        |  |
|            |                |               | 1:INTTB01        | Inter                            | rupt req          | uest lev  | el                          | 1:INTTB00                          | •                                                                   | rupt request | level    |  |
|            |                |               | $(\mathcal{A})$  | _                                |                   |           | $\rightarrow$               |                                    | INTTBO0                                                             | †            | l        |  |
| IN ITETO O | INTTBO0        | 605411        |                  | _                                | $-(\overline{C})$ | //        | _                           | ITBO0C                             | ITBO0M2                                                             | ITBO0M1      | ITBO0M0  |  |
| INTETBO0   | (Overflow)     | 00E1H         |                  |                                  | / \ <u>^</u>      |           |                             | R                                  | _                                                                   | R/W          | i .      |  |
|            | Enable         | \ \ \         | _                | _                                | // -              |           | _                           | 0                                  | 0                                                                   | 0            | 0        |  |
|            |                |               | $\rightarrow$    | Always v                         |                   |           |                             | 1:INTTBO0                          |                                                                     | rupt request | level    |  |
|            |                | $\rightarrow$ | JT5 4 4 5        | INTERIO                          |                   |           | FD 4 4 5                    | JT5                                | INTTB10                                                             | 1            | ITC : CT |  |
| INITETS!   | INTTB10 &      |               | ITB11C           | ITB11M2                          | )TB11             |           | ΓΒ11M0                      | ITB10C                             | ITB10M2                                                             | ITB10M1      | ITB10M0  |  |
| INTETB1    | INTTB11        | 00E2H         | R                | <u> </u>                         | R/V               |           |                             | R                                  | _                                                                   | R/W          | l .      |  |
| ^          | Enable         |               | 0                | 0                                | 0                 |           |                             | 0                                  | 0                                                                   | 0            | 0        |  |
|            |                |               | 1:INTTB11        | Inter                            | rupt rec          | quest lev | 'el                         | 1:INTTB10                          | Inter                                                               | rupt request | level    |  |
|            |                |               | > (              | ))                               |                   |           |                             |                                    |                                                                     |              |          |  |
| 1          |                | (             |                  |                                  | •                 |           |                             |                                    |                                                                     |              |          |  |
|            |                |               | $\checkmark$     | Г                                | <u></u>           |           |                             |                                    |                                                                     | -            |          |  |
|            | $\rightarrow$  |               |                  | lxxM2   lxxM1   lxx              |                   | lxxN      | <b>ЛО</b>                   | Function                           | on (Write)                                                          |              |          |  |
|            |                |               |                  | 0 (                              |                   | 0         | 0                           | Disables interrupt requests        |                                                                     |              |          |  |
|            |                |               |                  | (                                | 0                 | 0         | 1                           |                                    |                                                                     |              |          |  |
| lotore: ·  | t roquest fi-: |               |                  |                                  | 0                 | 1         | 0                           |                                    |                                                                     |              |          |  |
| interrup   | t request flaç | J             |                  | (                                | 0                 | 1         | 1                           |                                    | Sets interrupt priority level to 3                                  |              |          |  |
|            |                |               |                  | '                                | 1                 | 0         | 0                           | Sets interrupt priority level to 4 |                                                                     |              |          |  |
|            |                |               |                  |                                  | 1                 | 0         | 1                           |                                    | ets interrupt priority level to 5 ets interrupt priority level to 6 |              |          |  |
|            |                |               |                  |                                  | 1                 | 1         | 0                           |                                    |                                                                     |              |          |  |
|            |                |               | '                | 1                                | 1                 | 1         | Disables interrupt requests |                                    |                                                                     |              |          |  |

Note: INTHSC interrupt is not built into TMP92CY23.

| Symbol    | Name                           | Address       | 7         | 6      |             | 5              | 4             |                                                                                                    | 3                 | 2                   | 1             | 0         |
|-----------|--------------------------------|---------------|-----------|--------|-------------|----------------|---------------|----------------------------------------------------------------------------------------------------|-------------------|---------------------|---------------|-----------|
| _,        |                                |               | •         |        |             | -              | •             | +                                                                                                  | -                 | INTTBO1(            |               |           |
|           | INITTOO                        |               | _         | _      | _           |                | _             | ITD                                                                                                | O1C               | ,                   |               | ITBO1M0   |
| INTETBO1  | (Overflow)                     | 00E3H         |           | _      |             |                |               |                                                                                                    |                   | ITBO1M2             | ITBO1M1       | TIBOTIVIO |
| INTERBOT  | Enable                         | UUESH         | _         |        |             | _              |               |                                                                                                    | <u>R</u>          | 0                   | R/W           | _         |
|           | Lilable                        |               | _         |        |             |                |               |                                                                                                    | 0                 | 0                   | 0             | 0         |
|           |                                |               |           | Alw    | ays write   | 0              |               | 1:IN                                                                                               | TBO1              | 7                   | upt request l | evel      |
|           |                                |               |           |        | INTP0       |                |               |                                                                                                    |                   | INTA                |               |           |
| ===       | INTP0 &                        |               | IP0C      | IPON   | -           | POM1           | IP0M0         |                                                                                                    | DC                | \\\\ADM2\\/         | IADM1         | IADM0     |
| INTEPAD   | INTAD                          | 00E4H         | R         |        | R           | /W             |               |                                                                                                    | R                 | $\rightarrow$       | R/W           |           |
|           | Enable                         |               | 0         | 0      |             | 0              | 0             |                                                                                                    | 0 (/              | / ) 0               | 0             | 0         |
|           |                                |               | 1:INTP0   | I      | nterrupt re | equest le      | evel          | 1:10                                                                                               | TAD               |                     | upt request l | evel      |
|           |                                |               |           | l      |             | 1              |               | + ((                                                                                               | 1                 | INTR'               |               |           |
|           | INTRTC                         |               | _         | _      |             | -              |               |                                                                                                    | ₹C / )            | IRM2                | IRM1          | IRM0      |
| INTERTC   | Enable                         | 00E5H         | _         |        |             | <u> </u>       |               |                                                                                                    | R                 | - (                 | R/W           |           |
|           |                                |               | -         | _      |             | -              | -<            |                                                                                                    | 0>                | 0 1                 | (0)           | 0         |
|           |                                |               |           | Alwa   | ays write " | 0"             |               | 1:4V.                                                                                              | TRTC              |                     | upt request l | evel      |
|           | N 18 42 C                      |               | 11.01.77  |        | NMI         |                |               | ))                                                                                                 |                   | (INTW               | DT *          |           |
|           | NMI &                          | 005511        | INCNM     | _      |             | -              | $\overline{}$ | 4                                                                                                  | CMD ~             |                     | <u> </u>      | _         |
| INTNMWDT  | INTWDT                         | 00EFH         | R         |        |             | <del>-</del> ( |               |                                                                                                    | R                 | -> //-(             | <u> </u>      |           |
|           | Enable                         |               | 0         | _      |             | 1              |               | _                                                                                                  | 0 (               |                     |               | _         |
|           |                                |               | 1: NMI    |        | Always      | 1              | <i>"</i>      | 1:IN                                                                                               | TWDT/             | $\sim$ 7            | ways write 0  |           |
|           |                                |               | 1770.40   |        | TC1(DMA     |                | )<br>         | (                                                                                                  |                   | WITTCO(I            | 1             | 1700110   |
| INITETCOA | INTTC0 &  <br>NTETC01   INTTC1 | NTTC1 00F0H   | ITC1C     | ITC1I  |             | C1M1           | ITC1M0        | /                                                                                                  | 20¢/              | ITC0M2              | ITC0M1        | ITC0M0    |
| INTETCOT  | Enable                         | UUFUH         | R         | -      | 4 6         | W              | -/            |                                                                                                    | Ř                 |                     | R/W           |           |
|           | Lilable                        |               | 0         | 0      |             | Ŏ              | 0             | _                                                                                                  | 0                 | 0                   | 0             | 0         |
|           |                                |               | 1:INTTC1  |        | nterrupt re |                | evei          | 1:IN                                                                                               | TTC0              |                     | upt request l | evei      |
|           | INITTOO                        |               | ITOOO     | / /    | C3(DMA      |                | ITOOMA        | 1                                                                                                  | 200               | INTTC2(I            | ,             | ITOOMO    |
| INTETC23  | INTTC2 & INTTC3                | 3 00F1H       | ITC3C     | _)TC3f | •           | C3M1           | 1ТСЗМО        |                                                                                                    | C2C               | ITC2M2              | ITC2M1        | ITC2M0    |
| INTETC23  | Enable                         |               | R ((      |        | K.          | /W<br>0        | 1             |                                                                                                    | R<br>0            | 0                   | R/W<br>0      | 0         |
|           | Lilabio                        |               | 1;/NT7Ç3/ |        | nterrupt re | - 1            | 1             |                                                                                                    | TTC2              |                     | upt request l |           |
|           |                                |               | ( \ \ / ) |        | C5(DMA      |                |               | 1.110                                                                                              | 1102              | INTTC4(I            |               | GVGI      |
|           | INTTC4 &                       |               | ITC5C     | ITC5/  |             | 25M1           | ITC5M0        | IT/                                                                                                | C4C               | ITC4M2              | ITC4M1        | ITC4M0    |
| INTETC45  | INTTC4 &                       | 00F2H         | R         | 1103   | . \         | AV             | TTCSIVIO      |                                                                                                    | R                 | 11041012            | R/W           | 11041010  |
|           | Enable                         | 00.12.7       | 0         | 0      |             | 9              | 0             |                                                                                                    | 0                 | 0                   | 0             | 0         |
|           |                                |               | 1:/INTTC5 | (      | nterrupt re | <u> </u>       |               |                                                                                                    | TTC4              | Interrupt request I |               |           |
|           | ^/                             | $\rightarrow$ | RIIVITOS  | ,      | CZ(DMA      |                | 3401          | 1.114                                                                                              | 1104              | INTTC6(I            |               | CVCI      |
|           | INTTC6 &                       |               | ITC7C     | √TC7I  |             | 7)<br>C7M1     | ITC7M0        | IT                                                                                                 | C6C               | ITC6M2              | ITC6M1        | ITC6M0    |
| INTETC67  | INTTE7                         | 00F3H         | R         | ( (    |             | /W             | 11071110      |                                                                                                    | R                 | 11001112            | R/W           | 11001110  |
| ^         | Enable                         |               | 0         | 0      |             | 0              | 0             |                                                                                                    | 0                 | 0                   | 0             | 0         |
|           |                                | <i>)</i>      | 1:INTTE7  | ///    | nterrupt re |                |               |                                                                                                    | TTC6              |                     | upt request l |           |
|           |                                |               |           | -      |             | 1              |               |                                                                                                    |                   | _                   | 1             |           |
| 1         |                                |               |           |        |             |                |               |                                                                                                    |                   |                     |               |           |
|           |                                |               |           |        |             | <b>—</b>       |               |                                                                                                    |                   |                     |               |           |
|           |                                |               |           |        |             |                |               |                                                                                                    |                   |                     |               |           |
|           |                                |               |           | Γ      | ha-140      | ¥<br>  1. •    | 44 .          |                                                                                                    | 1                 | F C                 | m /\A/m!+ - \ |           |
|           |                                |               |           | -      | lxxM2       | lxxl           |               | xM0                                                                                                | <u> </u>          |                     | n (Write)     |           |
|           |                                |               |           |        | 0           | 0              |               | 0                                                                                                  |                   | es interrupt re     |               |           |
|           |                                |               |           |        | 0           | 0              |               | 1                                                                                                  |                   | nterrupt priority   |               |           |
|           |                                |               |           |        | 0           | 1              |               | 0                                                                                                  |                   | nterrupt priority   |               |           |
| Interrupt | Interrupt request flag         |               |           |        | 0<br>1      | 1 0            |               | <ul> <li>Sets interrupt priority level to 3</li> <li>Sets interrupt priority level to 4</li> </ul> |                   |                     |               |           |
|           |                                |               |           | 1      | 0           |                | 1             |                                                                                                    | nterrupt priority |                     |               |           |
|           |                                |               |           | 1      | 1           |                | 0             |                                                                                                    | nterrupt priority |                     |               |           |
|           |                                |               |           |        | 1           | 1              |               | 1                                                                                                  |                   | es interrupt re     |               |           |
|           |                                |               |           |        |             | <u> </u>       |               |                                                                                                    |                   |                     |               |           |

# (2) External interrupt control

| Symbol | Name      | Address   | 7          | 6             | 5            | 4                                                                                                                                                                                   | 3            | 2           | 1               | 0          |
|--------|-----------|-----------|------------|---------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-----------------|------------|
|        |           |           |            |               |              |                                                                                                                                                                                     |              |             |                 | NMIREE     |
|        |           |           |            |               |              |                                                                                                                                                                                     |              |             |                 | W          |
|        | Interrupt | 00F6H     |            |               |              |                                                                                                                                                                                     |              | /           |                 | 0          |
| IIMC   | Input     | (Prohibit |            |               |              |                                                                                                                                                                                     |              | 7           |                 | NMI        |
|        | mode      | RMW)      |            |               |              |                                                                                                                                                                                     |              |             |                 | 0:Falling  |
|        | Control   | ,         |            |               |              |                                                                                                                                                                                     |              |             | ~               | 1:Falling  |
|        |           |           |            |               |              |                                                                                                                                                                                     |              | 77/         |                 | and        |
|        |           |           |            |               |              | $\langle \langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle \rangle \rangle = \langle \langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$ | <b>/</b>     |             | Rising          |            |
|        |           |           | I7LE       | I6LE          | I5LE         | I4LE                                                                                                                                                                                | 13LE         | J2LE        | I1LE            | IOLE       |
|        | Interrupt | 00FAH     |            |               |              | \                                                                                                                                                                                   | N( )         | >           |                 |            |
| IIMC2  | Input     | (Prohibit | 0          | 0             | 0            | 0                                                                                                                                                                                   |              | 0           | 0               | 0          |
|        | mode      |           | INT7       | INT6          | INT5         | INT4                                                                                                                                                                                | INT3         | INT2        | JAT1            | INT0       |
|        | Control2  |           | 0:Edge     | 0:Edge        | 0:Edge       | 0:Edge                                                                                                                                                                              | 0:Edge       | 0:Edge <    | 0:Edge          | 0:Edge     |
|        |           |           | 1:Level    | 1:Level       | 1:Level      | 1:Level                                                                                                                                                                             | 1;Level      | 1:Level     | 1:Level         | 1:Level    |
|        |           |           | 17EDGE     | I6EDGE        | 15EDGE       | 14EDGE                                                                                                                                                                              | I3EDGE_      | 12EDGE      | 11EDGE          | 10EDGE     |
|        |           |           |            | W Y           |              |                                                                                                                                                                                     |              |             |                 |            |
|        | Interrupt | 00FBH     | 0          | 0             | 0_(          | /0                                                                                                                                                                                  | 0            | 0           | $\smile$ 6      | 0          |
| IIMC3  | Input     | (Prohibit | INT7       | INT6          | INT5         | NT4                                                                                                                                                                                 | INT3         | INT2        | INT1            | INT0       |
|        | mode      | RMW)      | 0: Rising  | 0: Rising     | 0: Rising    | 0: Rising                                                                                                                                                                           | 0: Rising    | 0: Rising   | 0: Rising       | 0: Rising  |
|        | Control3  |           | /High      | /High         | High         | > /High                                                                                                                                                                             | /High        | /High       | /High           | /High      |
|        |           |           | 1: Falling | 1: Falling    | / /          | 1: Falling                                                                                                                                                                          | 1: Falling   | 1: Falling  | 1: Falling      | 1: Falling |
|        |           |           | /Low       | /Low          | √Low         | /Low                                                                                                                                                                                | \Fom_        | //Low       | /Low            | /Low       |
|        | Interrupt | 00F8H     | CLRV7      | CLRV6         | CLRV5        | CLRV4                                                                                                                                                                               | CLRV3        | CLRV2       | CLRV1           | CLRV0      |
| INTCLR | Clear     | (Prohibit |            |               | $\vee$       | ///                                                                                                                                                                                 | v ))         |             |                 |            |
|        | Control   | RMW)      | 0          | (0)           | 0            | 0                                                                                                                                                                                   | <u>/</u> 0   | 0           | 0               | 0          |
|        |           | KMW)      |            | lear the inte | rrupt reques | t flag by the                                                                                                                                                                       | writing of a | micro DMA : | starting vector | or         |

Note 1: Disable INTO to INT/ requests before changing INTO to INT7 pins mode from level sense to edge sense.

Setting example for case of INTO:

ח

LD (IIMC2) ,XXXXXX0-B

Change from "level" to "edge".

LD (INTCLR), 0AH

Clear interrupt request flag.

Wait EI execution.

NOP,

NOP)

VOF

NOP

X: Don't care, -: No change

Note 2: See electrical characteristics in section 4 for external interrupt input pulse width.

Note 3: In a setup of a port, when choosing a 16-bit timer input and performing capture control, INT5 and INT6 operate not according to a setup of IIMC2 and IIMC3 register but according to a setup of TB1MOD<TB1CPM1:0>.

**TOSHIBA** 

Table 3.4.2 Settings of External Interrupt Pin Function

| Interrupt Pin | Shared Pin | Mode         | Setting Method                                          |
|---------------|------------|--------------|---------------------------------------------------------|
|               |            |              | IIMC2 <i0le> = "0", IIMC3<i0edge> = "0"</i0edge></i0le> |
| INT0          | D74        | Falling edge | IIMC2 <i0le> = "0", IIMC3<i0edge> = "1"</i0edge></i0le> |
| IINTO         | P74        | High level   | IIMC2 <i0le> = "1", IIMC3<i0edge> = "0"</i0edge></i0le> |
|               |            | ☐ Low level  | IIMC2 <i0le> = "1", IIMC3<i0edge> = "1"</i0edge></i0le> |
|               |            | Rising edge  | IIMC2 <i1le> = "0", HMC3<i1edge> = "0"</i1edge></i1le>  |
| INT1          | PC1        | Falling edge | IIMC2 <i1le> = "0"/IIMC3<i1edge> = "1"</i1edge></i1le>  |
| IINT          | FOI        | High level   | IIMC2 <i1le>="1", IIMC3<i1edge> = "0"</i1edge></i1le>   |
|               |            | Low level    | IIMC2 <i1le>= "1", IIMC3<i1edge> = "1"</i1edge></i1le>  |
|               |            | Rising edge  | IIMC2 <i2le>="0", IIMC3<i2edge>="0"</i2edge></i2le>     |
| INT2          | PC2        | Falling edge | IMC2< 2LE> = "0",   MC3< 2EDGE > = "1"                  |
| 11112         | 102        | High level   | UMC2<12LE> = "1", UMC3<12EDGE > = "0"                   |
|               |            | Low level    | IIMC2 <i2le> = "1", IIMC3<i2edge> = "1"</i2edge></i2le> |
|               |            | Rising edge  | IIMC2 <i3le> = "0", IIMC3<i3edge> = "0"</i3edge></i3le> |
| INT3          | PC3        | Falling edge | IIMC2 <i3le> = "0", IIMC3<i3edge> = "1"</i3edge></i3le> |
| 11413         |            | High level   | IIMC2 <i3le> = "1", IIMC3<i3edge> = "0"</i3edge></i3le> |
|               |            | Low level    | IJMC2<13LE> = "1", HMC3<13EDGE > = "1"                  |
|               |            |              | HMC2 <i4le>= "0", IIMC3<i4edge> = "0"</i4edge></i4le>   |
| INT4          | PD0        | Falling edge | IIMC2 <i4le>= "0", IIMC3<i4edge> = "1"</i4edge></i4le>  |
| 11414         | 1 50       | High level   | NMC2 <i4le> = "1", IIMC3<i4edge> = "0"</i4edge></i4le>  |
|               |            | Low level    | HMC2 <i4le> = "1", IIMC3<i4edge> = "1"</i4edge></i4le>  |
|               |            | Rising edge  | IIMC2 <i5le> = "0", IIMC3<i5edge> = "0"</i5edge></i5le> |
| INT5          | PD1        | Falling edge | IIMC2 <i5le> = "0", IIMC3<i5edge> = "1"</i5edge></i5le> |
| 11113         | 151        | High level   | IIMC2 <i5le> = "1", IIMC3<i5edge> = "0"</i5edge></i5le> |
|               |            | Lowtevel     | IIMC2 <i5le> = "1", IIMC3<i5edge> = "1"</i5edge></i5le> |
|               |            | Rising edge  | IIMC2 <i6le> = "0", IIMC3<i6edge> = "0"</i6edge></i6le> |
| INT6          | PD2        | Falling edge | IIMC2 <i6le> = "0", IIMC3<i6edge> = "1"</i6edge></i6le> |
| . (           |            | High level   | IIMC2 <i6le> = "1", IIMC3<i6edge> = "0"</i6edge></i6le> |
|               |            | Low level    | IIMC2 <i6le> = "1", IIMC3<i6edge> = "1"</i6edge></i6le> |
|               |            | Rising edge  | IIMC2 <i7le> = "0", IIMC3<i7edge> = "0"</i7edge></i7le> |
| INT7          | DD3        | Falling edge | IIMC2 <i7le> = "0", IIMC3<i7edge> = "1"</i7edge></i7le> |
| IINI / V      | PD3        | High level   | IIMC2 <i7le> = "1", IIMC3<i7edge> = "0"</i7edge></i7le> |
|               |            | Low level    | IIMC2 <i7le> = "1", IIMC3<i7edge> = "1"</i7edge></i7le> |

**TOSHIBA** 

(3) SIO receive interrupt control

| ool Name      |           |           | 00 00110101 |                         |                   |      |              |              |              |
|---------------|-----------|-----------|-------------|-------------------------|-------------------|------|--------------|--------------|--------------|
|               | Address   | 7         | 6           | 5                       | 4                 | 3    | 2            | 1            | 0            |
|               |           | _         |             |                         |                   |      | IR2LE        | IR1LE        | IR0LE        |
|               |           | W         |             |                         |                   |      |              | W            |              |
| SIO           | F5H       | 0         |             |                         |                   |      | 1            | 1            | 1            |
| c interrupt   | (Prohibit | Always    |             |                         |                   |      | 0: INTRX2    | 0: INTRX1    |              |
| mode          | RMW)      | write "1" |             |                         |                   |      | edge<br>mode | edge<br>mode | edge<br>mode |
| control       | , , , ,   | (Note)    |             |                         |                   |      | 1: INTRX2    | _            |              |
|               |           |           |             |                         |                   |      | level        | level        | level        |
|               |           |           |             |                         |                   |      | mode         | mode         | mode         |
| (2 level enat | ole       |           |             |                         |                   |      |              |              | >            |
|               | ect INTRX | .2        |             |                         |                   |      |              |              |              |
| "H" level     |           |           |             |                         | ((//<             | \ \  |              |              |              |
|               |           |           |             |                         |                   | /    |              |              |              |
| (1 level enat |           | 7.4       |             | (                       | $\longrightarrow$ |      |              |              |              |
|               | ect INTRX | .1        |             | $-\langle \cap \rangle$ | ~                 | (    |              | /            |              |
| "H" level     | INTRX1    |           |             |                         |                   |      |              |              |              |
| (0 rising edg | e enable  |           |             |                         | ✓ ←               | -(7/ |              |              |              |
|               | ect INTRX | .0        | (           |                         |                   |      |              |              |              |
| "H" level     |           |           |             | $\overline{}$           |                   |      |              |              |              |
|               |           |           |             |                         |                   |      |              |              |              |

### (4) Interrupt request flag clear register

The interrupt request flag is cleared by writing the appropriate micro DMA start vector, as given in Table 3.4.1, to the register INTCLR.

For example, to clear the interrupt flag INTO, perform the following register operation after execution of the DI instruction.

 $INTCLR \leftarrow 0AH$  Clears interrupt request flag INTO.

| Symbol               | Name        | Address  | 7         | 6     | 5     | 4        | 3        | (2)   | √ 1   | 0 |
|----------------------|-------------|----------|-----------|-------|-------|----------|----------|-------|-------|---|
| INTCLR clear control |             | CLRV7    | CLRV6     | CLRV5 | CLRV4 | CLRV3    | CLRV2    | CLRV1 | CLRV0 |   |
|                      | clear (Proh | F8H      | w ((// \) |       |       |          |          |       |       |   |
|                      |             | RMW)     | 0         | 0     | 0     | 0        | 9        | O     | 0     | 0 |
|                      |             | TXIVIVV) | •         | •     | •     | Interrup | t vector |       |       |   |

### (5) Micro DMA start vector registers

These registers assign micro DMA processing to sets which source corresponds to DMA. The interrupt source whose micro DMA start vector value matches the vector set in one of these registers is designated as the micro DMA start source.

When the micro DMA transfer counter value reaches "0", the micro DMA transfer end interrupt corresponding to the channel is sent to the interrupt controller, the micro DMA start vector register is cleared, and the micro DMA start source for the channel is cleared. Therefore, in order for micro DMA processing to continue, the micro DMA start vector register must be set again during processing of the micro DMA transfer end interrupt.

If the same vector is set in the micro DMA start vector registers of more than one channel, the lowest numbered channel takes priority.

Accordingly, if the same vector is set in the micro DMA start vector registers for two different channels, the interrupt generated on the lower numbered channel is executed until micro DMA transfer is complete. If the micro DMA start vector for this channel has not been set in the channel's micro DMA start vector register again, micro DMA transfer for the higher-numbered channel will be commenced. (This process is known as micro DMA chaining.)



| Symbol     | Name          | Address | 7                         | 6             | 5      | 4             | 3                                      | 2          | 1      | 0      |
|------------|---------------|---------|---------------------------|---------------|--------|---------------|----------------------------------------|------------|--------|--------|
|            | DMAG          |         |                           |               | DMA0V5 | DMA0V4        | DMA0V3                                 | DMA0V2     | DMA0V1 | DMA0V0 |
| DMA0V      | DMA0<br>start | 100H    |                           |               |        |               | R/                                     | W          |        |        |
| Divin to v | vector        | 10011   |                           |               | 0      | 0             | 0                                      | 0          | 0      | 0      |
|            |               |         |                           |               |        |               | DMA0/sta                               | art vector |        |        |
|            | DMA1          |         |                           |               | DMA1V5 | DMA1V4        | DMA1V3                                 | DMA1V2     | DMA1V1 | DMA1V0 |
| DMA1V      | start         | 101H    |                           |               |        | 1             | R/                                     | W          | T      |        |
|            | vector        |         |                           |               | 0      | 0             | 0                                      | 0) /       | 0      | 0      |
|            |               |         |                           |               |        | 1             | DMA1 st                                | art vector | 1      | 1      |
|            | DMA2          |         |                           |               | DMA2V5 | DMA2V4        | DMA2V3                                 | DMA2V2     | DMA2V1 | DMA2V0 |
| DMA2V      | start         | 102H    |                           |               |        |               | N/R/                                   | W          | T      |        |
|            | vector        |         |                           |               | 0      | 0 (           | (0)                                    | 0          | 0      | 0      |
|            |               |         |                           |               |        | \             | DMA2 st                                | art vector |        |        |
|            | DMA3          |         |                           |               | DMA3V5 | DMA3V4        | DMA3V3                                 | DMA3V2     | DMA3V1 | DMA3V0 |
| DMA3V      | start         | 103H    |                           |               |        | (1)           | V R/                                   |            |        |        |
| vector     |               |         |                           | 0             | 0      | > 0           | 0                                      | 0          | 0      |        |
|            |               |         |                           |               |        | (//)          | DMA3 sta                               |            |        |        |
|            | DMA4          |         |                           | /             | DMA4V5 | DMA4V4        | DMA4V3                                 |            | DMA4V1 | DMA4V0 |
| DMA4V      | start         | 104H    |                           | /             | 1(     |               | (~)                                    | W          |        |        |
|            | vector        |         |                           |               | (0)    | 0             | 0 0                                    | 0          | 0      | 0      |
|            |               |         |                           |               |        | /             | DMA4-st                                |            |        |        |
|            | DMA5          |         |                           | +             | DMA5V5 | DMA5V4        | DMA5V3                                 | DMA5V2     | DMA5V1 | DMA5V0 |
| DMA5V      | start         | 105H    |                           |               |        |               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | İ          |        |        |
|            | vector        |         |                           |               | > 0    | 0             | 0                                      | 0          | 0      | 0      |
|            |               |         | /                         |               | `      |               | DMA5 sta                               | art vector | ı      | ı      |
|            | DMA6          |         | $\rightarrow$             | $\mathcal{A}$ | DMA6V5 | DMA6V4        | DMA6V3                                 | DMA6V2     | DMA6V1 | DMA6V0 |
| DMA6V      | start         | 106H    | $\rightarrow$             |               | ^      |               |                                        | W          | ı      | 1      |
|            | vector        |         |                           |               | 0      | 0             | 0                                      | 0          | 0      | 0      |
|            |               |         |                           | //            |        | 7//           | DMA6 st                                | art vector |        | T      |
|            | DMA7          |         |                           |               | DMA7V5 | DMA7V4        | DMA7V3                                 | DMA7V2     | DMA7V1 | DMA7V0 |
| DMA7V      | start         | 107H    | $\langle \rangle \rangle$ |               |        | $\rightarrow$ | R/                                     | W          | 1      | 1      |
|            | vector        |         |                           | $\rightarrow$ | (//0   | 0             | 0                                      | 0          | 0      | 0      |
|            | <             |         |                           |               |        |               | DMA7 sta                               | art vector |        |        |

**TOSHIBA** 

# (6) Specification of a micro DMA burst

Specifying the micro DMA burst function causes micro DMA transfer, once started, to continue until the value in the transfer counter register reaches "0". Setting any of the bits in the register DMAB which correspond to a micro DMA channel (as shown below) to 1 specifies that any micro DMA transfer on that channel will be a burst transfer.

| Symbol         | Name  | Address | 7     | 6     | 5     | 4         | 3           | (2)   | <u>&gt;</u> 1 | 0     |
|----------------|-------|---------|-------|-------|-------|-----------|-------------|-------|---------------|-------|
| DMAB DMA burst |       | I 108H  | DBST7 | DBST6 | DBST5 | DBST4     | DBST3       | DBST2 | DBST1         | DBST0 |
|                | DMA   |         |       |       |       | R/        | w ((        | 7/^   |               |       |
|                | burst |         | 0     | 0     | 0     | 0         | \Q \        | (0)   | 0             | 0     |
|                |       |         |       |       |       | 1: DMA bu | rst request |       |               |       |



### (7) Notes

The instruction execution unit and the bus interface unit in this CPU operate independently. Therefore, immediately before an interrupt is generated, if the CPU fetches an instruction which clears the corresponding interrupt request flag, the CPU may execute this instruction in between accepting the interrupt and reading the interrupt vector. In this case, the CPU will read the default vector 0004H and jump to interrupt vector address FFFF04H.

To avoid this, an instruction which clears an interrupt request flag should always be placed after a DI instruction. And in the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing and more than 3-instructions (e.g., "NOP" > 3 times).

If it placed EI instruction without waiting NOP instruction after execution of clearing instruction, interrupt will be enabled before request flag is cleared.

In the case of changing the value of the interrupt mask register <IFF2:0> by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction.

In addition, please note that the following two circuits are exceptional and demand special attention.

|                         | <i>(</i> ( \)                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INT0 to INT7 level mode | In level mode INTO is not an edge trigg mode the interrupt request flip-flop for In peripheral interrupt request passes thro and becomes the Q output. If the interrupt edge mode to level mode, the interrupt automatically.                                                                                                                                                                                                   | NTO does not function. The ugh the S input of the flip-flop of input mode is changed from                                                                                                                                                                        |
|                         | If the CPU enters the interrupt response going from "0" to "1", INTO must then be response sequence has been complete level mode so as to release a halt state, the time INTO changes from "0" to "1" ur (Hence, it is necessary to ensure that in a "0", causing INTO to revert to "0" befor released.)  When the mode changes from level morequest flags which were set in level more interrupt request flags must be cleared | Ne)d at "1" until the interrupt<br>d. If INT0 to INT7 are set to<br>INT0 must be held at "1" from<br>ntil the halt state is released.<br>put noise is not interpreted as<br>re the halt state has been<br>de to edge mode, interrupt<br>ode will not be cleared. |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                 | om level to edge.                                                                                                                                                                                                                                                |
| $\langle \cdot \rangle$ | LD (INTCLR), 0AH; Clears inter                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                |
|                         | NOP ; Wait EI exe                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · ·                                                                                                                                                                                                                                                        |
|                         | NOP                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
|                         | EÌ                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |
| INTRX0 to INTRX2        | In level mode (the register SIMC <irx a="" be="" buffer.="" by="" can="" cannot="" channel="" cleared="" flip-flop="" it="" only="" receive="" request="" sterils.<="" td=""><td>a reset or by reading the serial</td></irx>                                                                                                                                                                                                    | a reset or by reading the serial                                                                                                                                                                                                                                 |

Note: The following instructions or pin input state changes are equivalent to instructions which clear the interrupt request flag.

INTO to INT7: Instructions which switch to level mode after an interrupt request has been generated in edge mode.

The pin input changes from "high to low" and "low to high" after an interrupt request has been generated in level mode. ("H"  $\rightarrow$  "L", "L"  $\rightarrow$  "H")

INTRX0 to INTRX2: Instructions which read the receive buffer.

# 3.5 Function of Ports

The TMP92CY23/CD23A I/O port pins are shown in Table 3.5.1. In addition to functioning as general-purpose I/O ports, these pins are also used by the internal CPU and I/O functions. Table 3.5.2 to Table 3.5.4 list the I/O registers and their specifications.

Table 3.5.1 Port Functions

(R: PU = with programmable pull-up resistor, U = with pull-up resistor)

| Port Name | Pin Name   | Number of Pins | I/O                                    | R                   | I/O Setting | Pin Name for Built-in Function |
|-----------|------------|----------------|----------------------------------------|---------------------|-------------|--------------------------------|
| Port 0    | P00 to P07 | 8              | I/O                                    | -                   | Bit         | D0 to D7                       |
| Port 1    | P10 to P17 | 8              | I/O                                    | -                   | Bit C       | D8 to D15                      |
| Port 4    | P40 to P47 | 8              | I/O                                    | -                   | Bit         | Ap to A7                       |
| Port 5    | P50 to P57 | 8              | I/O                                    | _                   | Bit         | A8 to A15                      |
| Port 6    | P60 to P67 | 8              | I/O                                    | -                   | Bit         | A16 to A23                     |
| Port 7    | P70        | 1              | I/O                                    | PU                  | Bit         | RD                             |
|           | P71        | 1              | I/O                                    | PU                  | (           | SRWR                           |
|           | P72        | 1              | I/O                                    | PU                  | Bit         | SRLLB                          |
|           | P73        | 1              | I/O                                    | PU                  | Bit         | SRLUB                          |
|           | P74        | 1              | Input                                  | 1                   | (Fixed)     | INTO                           |
|           | P76        | 1              | I/O <                                  | 1(-/                | Bit         | XT1                            |
|           | P77        | 1              | 1/0                                    |                     | Bit         | XT2                            |
| Port 8    | P80        | 1              | Output                                 |                     | (Fixed)     | CSO, TA1OUT                    |
|           | P81        | 1              | Output                                 | >                   | (Fixed)     | CS), TA3OUT                    |
|           | P82        | 1              | Output                                 | <u> </u>            | (Fixed)     | CS2                            |
|           | P83        | 1              | TO                                     | Î                   | Bit         | CS3, WAIT, TA5OUT              |
| Port C    | PC0        | 1              | Input                                  | Î                   | (Fixed)     | TAOIN                          |
|           | PC1        | 1 _            | Input                                  | Î                   | (Fixed)     | INT1                           |
|           | PC2        | 1 ((           | ⟨Input                                 | -                   | (Fixed)     | INT2                           |
|           | PC3        | 1              |                                        | -(,                 | (Fixed)     | INT3                           |
| Port D    | PD0        | (A)            | 1/0                                    |                     | Bit         | INT4,TB0OUT0                   |
|           | PD1        | ((1/ ))        | Input                                  |                     | (Fixed)     | INT5,TB1IN0                    |
|           | PD2        |                | I/O (                                  | 7/^                 | Bit         | INT6,TB1IN1,TXD2               |
|           | PD3 < < /  | 17             | \\O\                                   | $\langle - \rangle$ | Bit         | INT7,TB1OUT0,RXD2              |
|           | PD4        | 1              |                                        | $\overline{}$       | Bit         | TB1OUT1,SCLK2, CTS2            |
| Port F    | PF0        | ) 1            | 1/0                                    |                     | Bit         | TXD0                           |
|           | PF1        | 1              | VO.                                    | -                   | Bit         | RXD0                           |
|           | PF2        | 1              | 1/0                                    | -                   | Bit         | SCLK0, CTS0, CLK               |
|           | PF3        | 1 (            | ) I/O                                  | -                   | Bit         | TXD1, HSSO                     |
| . (       | PF4        | 1              | \ I/O                                  | -                   | Bit         | RXD1, HSSI                     |
|           | PF5))      | 1              | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | -                   | Bit         | SCLK1, CTS1, HSCLK             |
| Port G    | PG0 to PG7 | > (8(          | Input                                  | -                   | (Fixed)     | AN0 to AN7,KI0 to KI7          |
| PortL     | PL0 to PL3 | $\checkmark$   | Input                                  | -                   | (Fixed)     | AN8 to AN11, ADTRG (PL3)       |
| Port N    | PN0        |                | I/O                                    | -                   | Bit         | SCK0                           |
|           | PN1        | $\rightarrow$  | I/O                                    | -                   | Bit         | SO0,SDA0                       |
|           | PN2        | 1              | I/O                                    | -                   | Bit         | SI0,SCL0                       |
|           | PN3        | 1              | I/O                                    | -                   | Bit         | SCK1                           |
|           | PN4        | 1              | I/O                                    | -                   | Bit         | SO1,SDA1                       |
|           | PN5        | 1              | I/O                                    |                     | Bit         | SI1,SCL1                       |

Note: HSSO,HSSI and HSCLK functions are not built into TMP92CY23.

Table 3.5.2 I/O Registers and Specifications (1/3)

X: Don't care

|          |                           |                              |                        |       | I/O Regi      |            | on't care |
|----------|---------------------------|------------------------------|------------------------|-------|---------------|------------|-----------|
| Port     | Pin Name                  | Specification                | Pn                     | PnCR  | PnFC          | PnFC2      | PnODE     |
| Port 0   | P00 to P07                | Input port                   | Х                      | 0     | <u> </u>      |            |           |
|          |                           | Output port                  | Х                      | 1     | 0             | None       | None      |
|          |                           | D0 to D7 bus                 | Х                      | Х     | (1            |            |           |
| Port 1   | P10 to P17                | Input port                   | Х                      | 0     |               | ) ) ′      |           |
|          |                           | Output port                  | Х                      | 1/    | $\rightarrow$ | None       | None      |
|          |                           | D8 to D15 bus                | x <                    | x ( V | <b>/</b> )    |            |           |
| Port 4   | P40 to P47                | Input port                   | Х                      | >0/   |               |            |           |
|          |                           | Output port                  | Х                      | 1     | 0             | None       | None      |
|          |                           | A0 to A7 output              | Χ                      | X     | 1             |            |           |
| Port 5   | P50 to P57                | Input port                   | (X)                    | 0     | _             |            |           |
|          |                           | Output port                  | X                      | Ì     | 0             | None       | None      |
|          |                           | A8 to A15 output             | X.                     | > x   | 1 /           |            |           |
| Port 6   | P60 to P67                | Input port                   | //x)                   | 0 ^   | ((            |            |           |
|          |                           | Output port                  | $\langle \chi \rangle$ | 1     | 0             | (None)     | None      |
|          |                           | A16 to A23 output            | X                      | Х     | _1/           |            |           |
| Port 7   | P70                       | Input port (Without pull-up) | 0                      | 0 (   | 0             | $\Diamond$ |           |
|          |                           | Input port (With pull-up)    | 1                      | 0     | (0)           |            |           |
|          |                           | Output port                  | Х                      | (1)   | , G           |            |           |
|          |                           | RD output                    | Х                      | (X/   | )) 1          |            |           |
|          | P71                       | Input port (Without pull-up) | 0                      | 0     | 0             |            |           |
|          |                           | Input port (With pull-up)    | 1                      | 10    | 0             |            |           |
|          |                           | Output port                  | X                      | ) 1   | 0             |            |           |
|          |                           | SRWR ( ))                    | X                      | √/x   | 1             |            |           |
|          | P72                       | Input port (Without pull-up) | 0                      | 0     | 0             |            |           |
|          |                           | Input port (With pull-up)    | 1                      | 0     | 0             |            |           |
|          |                           | Output port                  | $x^{/\mathscr{L}}$     | 1     | 0             |            |           |
|          |                           | SRLLB                        | X                      | Х     | 1             |            |           |
|          | P73                       | Input port (Without pull-up) | 0                      | 0     | 0             | Maria      | Mana      |
|          |                           | Input port (With pull-up)    | 1                      | 0     | 0             | None       | None      |
|          |                           | Output port                  | Х                      | 1     | 0             |            |           |
|          |                           | SRLUB                        | Х                      | Х     | 1             |            |           |
|          | P74                       | Input port                   | Х                      | 0     | 0             |            |           |
|          | $\langle \rangle \rangle$ | INT0                         | Х                      | 0     | 1             |            |           |
|          | P76                       | Input port                   | Х                      | 0     |               |            |           |
|          |                           | Output port ("0" output )    | 0                      | 1     | None          |            |           |
| $\wedge$ |                           | Output port ("HZ" output )   | 1                      | 1     | INUITE        |            |           |
|          |                           | XT1 input                    | Х                      | Х     |               |            |           |
|          | P77 (                     | Input port                   | Х                      | 0     |               |            |           |
|          | +/                        | Output port ("0" output )    | 0                      | 1     | None          |            |           |
|          |                           | Output port ("HZ" output )   | 1                      | 1     | None          |            |           |
|          | 7                         | XT2 output                   | Х                      | Х     |               |            |           |

Table 3.5.3 I/O Registers and Specifications (2/3)

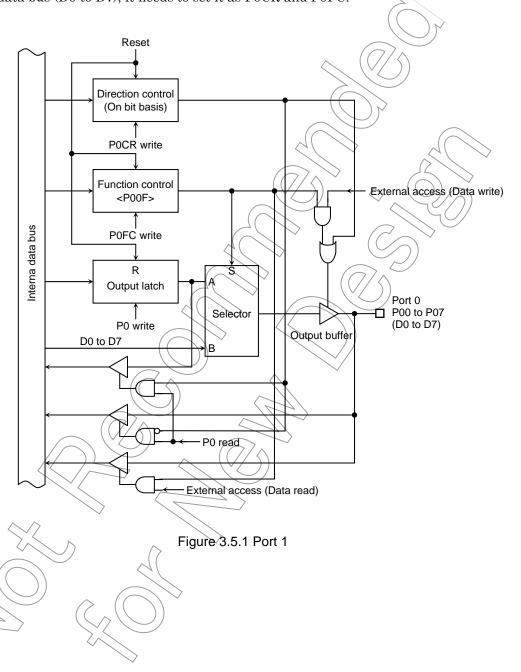
X: Don't care

|          |                   |                         |                            |                                           | /O Daa!- |            | n't care  |
|----------|-------------------|-------------------------|----------------------------|-------------------------------------------|----------|------------|-----------|
| Port     | Pin Name          | Specification           |                            | 1                                         | O Regis  |            |           |
|          |                   | •                       | Pn                         | PnCR                                      | PnFC     | PnFC2      | PnODE     |
| Port 8   | P80 to P81        | Output port             | Х                          | <                                         | 0        | 0          |           |
|          | P80               | CS0 output              | Х                          |                                           | <u>1</u> | 0          |           |
|          |                   | TA1OUT                  | Х                          |                                           | (X)      | <b>)</b> 1 |           |
|          | P81               | CS1 output              | Х                          | None                                      |          | ) o        |           |
|          |                   | TA3OUT                  | Х                          |                                           | $\times$ | 1          |           |
|          | P82               | Output port             | x <                        | $\setminus \setminus \setminus \setminus$ | ) 0      | None       | None      |
|          |                   | CS2 output              | X                          | >//                                       | 1        | None       | None      |
|          | P83               | Input port              | x (                        | (0)                                       | > 0      | 0          |           |
|          |                   | Output port             | X                          | 1                                         | 0        | 0          |           |
|          |                   | WAIT input              | X                          | 0                                         | 1        | 0          |           |
|          |                   | CS3 output              | X                          | 1                                         | 1 💉      | 4(0)       | $\supset$ |
|          |                   | TA5OUT (                | $\overline{}$ $\mathbf{x}$ | 1                                         | 0/4      |            |           |
| Port C   | PC0               | Input port              | // x)                      | $\wedge$                                  | ( C      |            |           |
|          |                   | TA0IN input             | $\searrow$                 |                                           | ~1       |            |           |
|          | PC1               | Input port              | X                          |                                           | 0        |            |           |
|          |                   | INT1 input              | ×                          | Na. ((                                    |          |            | Nama      |
|          | PC2               | Input port              | Х                          | None                                      | (g)      | None       | None      |
|          |                   | INT2 input              | Х                          |                                           | 1        |            |           |
|          | PC3               | Input port              | X                          |                                           | ) o      |            |           |
|          |                   | INT3 input              | X                          |                                           | 1        |            |           |
| Port D   | PD0               | Input port              | < x                        | //0                                       | 0        |            |           |
|          |                   | Output port             | X                          | ) /1                                      | 0        | Nana       |           |
|          |                   | INT4 input              | X                          | // 0                                      | 1        | None       |           |
|          |                   | TB0OUT0                 | Х                          | 1                                         | 1        |            |           |
|          | PD1               | Input port              | X                          |                                           | 0        | 0          |           |
|          |                   | INT5Input               | <u> </u>                   | None                                      | 0        | 1          |           |
|          |                   | TBOINO                  | X                          |                                           | 1        | 0          |           |
|          | PD2               | Input port              | У X                        | 0                                         | 0        | 0          |           |
|          |                   | Output port             | Х                          | 1                                         | 0        | 0          |           |
|          |                   | INT6-input              | Х                          | 0                                         | 0        | 1          |           |
|          |                   | TB0IN1 input            | Х                          | 0                                         | 1        | 0          |           |
|          | ì                 | TXD2 output (3-state)   | X                          | 1                                         | 1        | 0          | None      |
|          | $\langle \rangle$ | TXD2 (Open drain)output | Х                          | 1                                         | 1        | 1          |           |
|          | PD3               | Input port              | Х                          | 0                                         | 0        | 0          |           |
|          |                   | Output port             | Х                          | 1                                         | 0        | 0          |           |
| $\wedge$ | $((\ ))$          | INT7 input              | Х                          | 0                                         | 0        | 1          |           |
|          |                   | RXD2 input              | Х                          | 0                                         | 1        | 0          |           |
|          |                   | TB1QUT0 output          | Х                          | 1                                         | 1        | 0          |           |
|          | PD4               | Input port              | Х                          | 0                                         | 0        | 0          |           |
|          |                   | Output port             | Х                          | 1                                         | 0        | 0          |           |
|          | 1                 | SCLK2 input, CTS2 input | Х                          | 0                                         | 0        | 1          |           |
|          |                   | SCLK2 output            | Х                          | 1                                         | 0        | 1          |           |
|          | 1                 | TB1OUT1                 | Х                          | 1                                         | 1        | 0          |           |

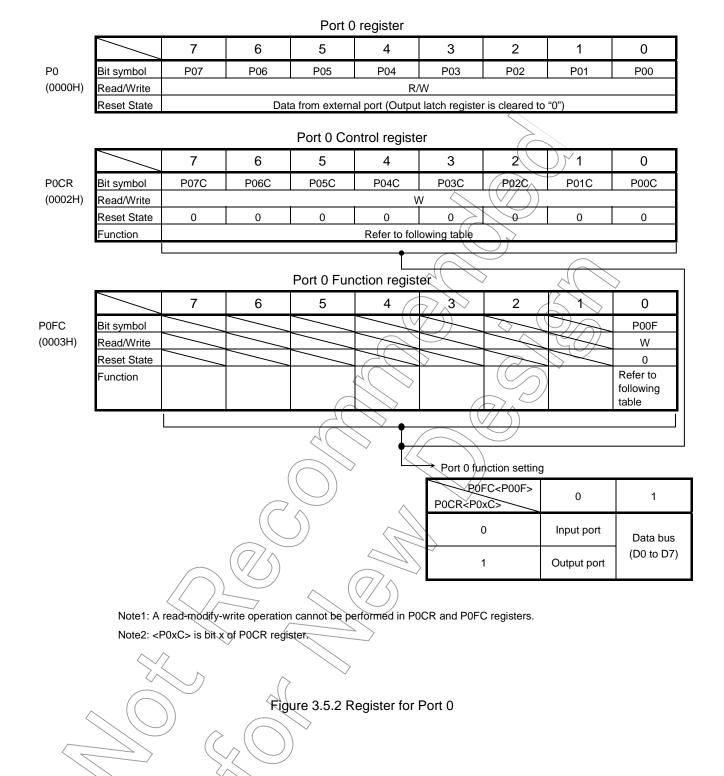
Table 3.5.4 I/O Registers and Specifications (3/3)

X: Don't care

|              |              |                                  |                     |                   | I/O I             | Register     |          | on Care |
|--------------|--------------|----------------------------------|---------------------|-------------------|-------------------|--------------|----------|---------|
| Port         | Pin Name     | Specification                    | Pn                  | PnCR              | PnFC              | PnFC2        | SIOCNT   | PnODE   |
| Port F       | PF0          | Input port                       | Х                   | 0                 | 0 (               |              |          |         |
|              |              | Output port                      | X                   | 1                 | 0                 |              |          |         |
|              |              | TXD0 output (Open drain output ) | X                   | 0                 | 1                 | None         |          |         |
|              |              | TXD0 output (3-state)            | X                   | 1                 | 1                 | $(\bigcirc)$ | /        |         |
|              | PF1          | Input port                       | X                   | 0                 | Ø                 | >^           |          |         |
|              |              | Output port                      | Х                   | 1                 | 0                 | None         |          |         |
|              |              | RXD0 input                       | Х                   | 0                 |                   |              | None     |         |
|              | PF2          | Input port                       | Х                   | 0 (               | 0)                | 0            |          |         |
|              |              | Output port                      | Х                   | 1                 | 0)                | 0            |          |         |
|              |              | SCLK0 input, CTS0 input          | Х                   | (0                | 1                 | 0            |          |         |
|              |              | SCLK0 output                     | Х                   | <1                | 1                 | 0 <          |          |         |
|              |              | CLK output                       | X /                 | 1                 | 0                 | 1/2          |          |         |
|              | PF3          | Input port                       | x((                 | // o              | 0 ^               |              | ) O      |         |
|              |              | Output port                      | X                   | $\mathcal{L}_{1}$ | 0                 | 7            | //)0     | None    |
|              |              | TXD1 output (Open drain output ) | $\langle x \rangle$ | 0                 | 1 _               | None         | <b>0</b> |         |
|              |              | TXD1 output (3-state)            | X                   | 1                 | 1((               |              | 0        |         |
|              |              | HSSO output (3-state) (Note)     | X                   | 1                 | 1                 | ()           | 1        |         |
|              | PF4          | Input port                       | X                   | 0                 | $\sqrt{0}$        |              | 0        |         |
|              |              | Output port                      | $\searrow$ X        | _1                | (V <sub>0</sub> ) | )            | 0        |         |
|              |              | RXD1 input                       | X /                 | 0                 | Y                 | None         | 0        |         |
|              |              | HSSI input (Note)                | X                   | 0                 | 1                 |              | 1        |         |
|              | PF5          | Input port                       |                     | 0                 | ) /               |              | 0        |         |
|              | 113          | Output port                      | X                   |                   | / / 0             |              |          |         |
|              |              | SCLK1 input , CTS1 input         | X                   | 1                 | 0                 | Nicos        | 0        |         |
|              |              |                                  | X                   | 0                 | 1                 | None         | 0        |         |
|              |              | SCLK1 output                     | X                   | 1                 | 1                 |              | 0        |         |
| <b>D</b> . O |              | HSCLK output (Note)              | X                   | 1                 | 1                 |              | 1        |         |
| Port G       | PG0 to PG7   | Input port                       | X                   | 1                 | 0                 |              |          |         |
|              |              | ANO to AN7 input                 | /                   | None              | 1                 | None         | None     | None    |
| Devil        | DI O to DI O | KIO to KI7 input                 | √x                  |                   | Х                 |              |          |         |
| Port L       | PL0 to PL3   | Input port                       | X                   | l                 | 0                 |              |          |         |
|              | DI 0         | AN8 to AN11 input                | X                   | None              | 1                 | None         | None     | None    |
| Dest M       | PL3          | ADTRG                            | X                   |                   | 0                 |              |          |         |
| Port N       | PN0 to PN5   | Input port                       | X                   | 0                 | 0                 |              |          |         |
|              | PNO          | Output port                      | X                   | 1                 | 0                 |              |          |         |
| $\wedge$     | PINO         | SCK0 input SCK0 output           | X                   | 0                 | 1                 |              |          |         |
|              | PM           | SQ0 output                       | X                   | 1                 | 1                 |              |          |         |
|              | 1-141        | SDA0 input/output                | X                   | 0                 | 1                 |              |          |         |
|              | PN2          | SIO input                        | X                   | 1                 | 1                 |              |          |         |
|              | I IVZ        | SCL0 input/output                | X                   | 0                 | 1                 | None         | None     | None    |
|              | PN3          | SCK1 input                       | X                   | 1                 | 1                 |              |          |         |
|              | INO          | SCK1 input                       | X                   | 0                 | 1                 |              |          |         |
|              | PN4          | SO1 output                       | X                   | 1                 | 1                 |              |          |         |
|              | I-1N4        | SDA1 input/output                | X                   | 0                 | 1                 |              |          |         |
|              | PN5          | SI1 input                        | X                   | 1                 | 1                 |              |          |         |
|              | LINO         | ·                                | X                   | 0                 | 1                 |              |          |         |
|              |              | SCL1 Input/output                | X                   | 1                 | 1                 |              |          |         |


Note: HSSO, HSSI and HSCLK functions are not built into TMP92CY23.

# 3.5.1 Port 0 (P00 to P07)


Port 0 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P0CR and function register P0FC.

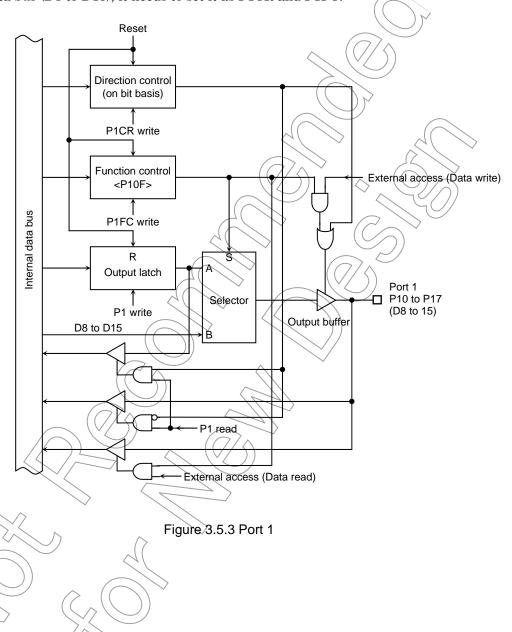
In addition to functioning as a general-purpose I/O port, port 0 can also function as a data bus (D0 to D7).

Moreover, after reset release, since a device is set as an input port, when using it as a data bus (D0 to D7), it needs to set it as P0CR and P0FC.



TOSHIBA




92CY23-65 2009-08-28

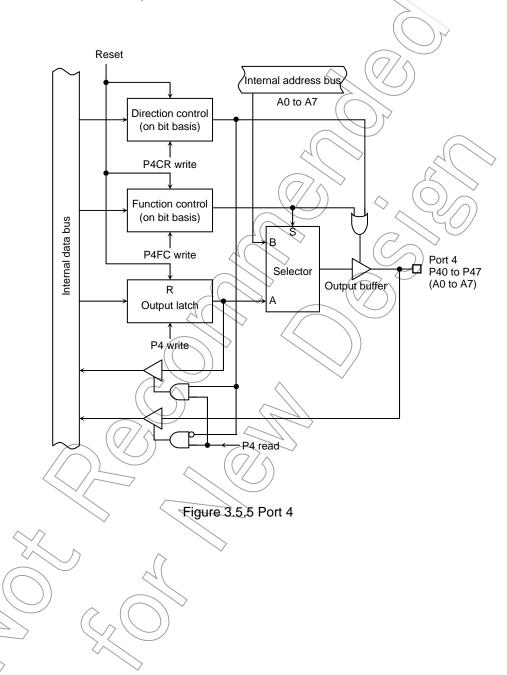
# 3.5.2 Port 1 (P10 to P17)

Port 1 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P1CR and function register P1FC.

In addition to functioning as a general-purpose I/O port, port1 can also function as a data bus (D8 to D15).

Moreover, after reset release, since a device is set as an input port, when using it as a data bus (D8 to D15), it needs to set it as P1CR and P1FC.




**TOSHIBA** 

Port 1 register 7 6 5 4 3 2 1 0 Bit symbol P17 P16 P15 P14 P13 P12 P11 P10 (0004H)Read/Write Reset State Data from external port (Output latch register is cleared to "0") Port 1 Control register 2 7 6 5 3 ) 1 0 P1CR P17C P16C P15C P14C P10C Bit symbol P13C P12C P11C (0006H)Read/Write W 0 0 0 0 Reset State 0 0 0 0 Function Refer to following table Port 1 Function register 7 6 3 2 0 1 P1FC Bit symbol P10F (0007H) Read/Write W Reset State 0 Function Refer to following table Port 1 function setting P1FC<P10F> 0 1 P1CR<P1xC> 0 Input port Data bus (D8 to D15) 1 Output port Note1: A read-modify-write operation cannot be performed in P1CR and P1FC registers. Note2: <P1xC> is bit x of P1CR register. Figure 3.5.4 Register for Port 1

## 3.5.3 Port 4 (P40 to P47)

Port4 is 8-bit general-purpose I/O ports. Bits can be individually set as either inputs or outputs by control register P4CR and function register P4FC. In addition to functioning as a general-purpose I/O port, port4 can also function as an address bus (A0 to A7).

Moreover, after reset release, since a device is set as an input port, when using it as an address bus (A0 to A7), it needs to set it as P4CR and P4FC.



Port 4 register

P4 (0010H)

|             | 7                                                                 | 6   | 5   | 4   | 3   | 2   | 1   | 0   |  |
|-------------|-------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|--|
| Bit symbol  | P47                                                               | P46 | P45 | P44 | P43 | P42 | P41 | P40 |  |
| Read/Write  | R/W                                                               |     |     |     |     |     |     |     |  |
| Reset State | Data from external port (Output latch register is cleared to "0") |     |     |     |     |     |     |     |  |

Port 4 Control register

P4 (0012H)

| Total Control Togloton |                    |      |      |      |      |        |            |      |
|------------------------|--------------------|------|------|------|------|--------|------------|------|
|                        | 7                  | 6    | 5    | 4    | 3    | 2      | <u>)</u> 1 | 0    |
| Bit symbol             | P47C               | P46C | P45C | P44C | P43C | (P42C) | P41C       | P40C |
| Read/Write             | W                  |      |      |      |      |        |            |      |
| Reset State            | 0                  | 0    | 0    | 0    | 0    | 0      | 0          | 0    |
| Function               | 0: Input 1: Output |      |      |      |      |        |            |      |

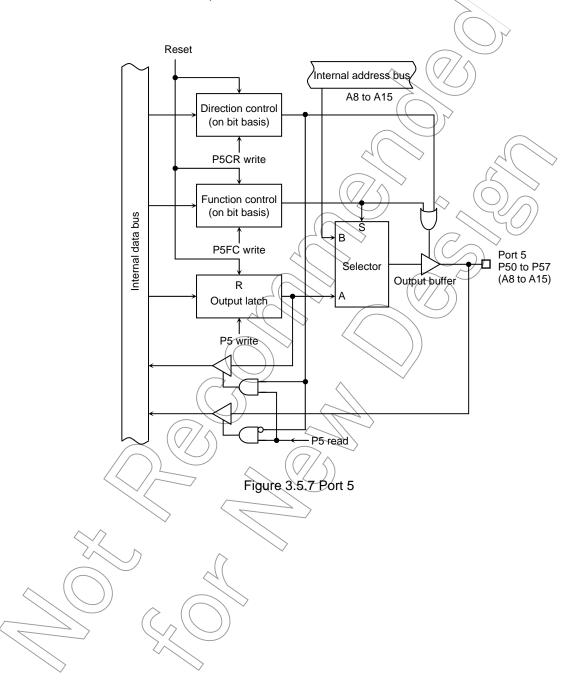
Port 4 Function register

P4FC (0013H)

|             |                                   |      |      | 101101110910101 | / // / |      |  |
|-------------|-----------------------------------|------|------|-----------------|--------|------|--|
|             | 7                                 | 6    | 5    | 4 3             | 2      | 0    |  |
| Bit symbol  | P47F                              | P46F | P45F | P44F / P43F     | P41F   | P40F |  |
| Read/Write  |                                   |      |      | W               | ~~~~   |      |  |
| Reset State | 0                                 | 0    | 0    | 0 0             | 0      | 0    |  |
| Function    | 0: Port 1: Address bus (A0 to A7) |      |      |                 |        |      |  |

Note1: A read-modify-write operation cannot be performed in P4CR and P4FC registers.

Note2: When using as address bus A0 to A7, set P4FC after set P4CR.


Figure 3.5.6 Register for Port 4



## 3.5.4 Port 5 (P40 to P47)

Port5 is 8-bit general-purpose I/O ports. Bits can be individually set as either inputs or outputs by control register P5CR and function register P5FC. In addition to functioning as a general-purpose I/O port, port 5 can also function as an address bus (A8 to A15).

Moreover, after reset release, since a device is set as an input port, when using it as an address bus (A8 to A15), it needs to set it as P5CR and P5FC.



Port 5 register

P5 (0014H)

|             |     |                                                                   |     | - 0 |     |     |     |     |  |  |
|-------------|-----|-------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|--|--|
|             | 7   | 6                                                                 | 5   | 4   | 3   | 2   | 1   | 0   |  |  |
| Bit symbol  | P57 | P56                                                               | P55 | P54 | P53 | P52 | P51 | P50 |  |  |
| Read/Write  |     | R/W                                                               |     |     |     |     |     |     |  |  |
| Reset State |     | Data from external port (Output latch register is cleared to "0") |     |     |     |     |     |     |  |  |

Port 5 Control register

P5 (0016H)

|             |      |                    |      |      |      | -    |        |      |  |  |
|-------------|------|--------------------|------|------|------|------|--------|------|--|--|
|             | 7    | 6                  | 5    | 4    | 3    | 2    | ) 2    | 0    |  |  |
| Bit symbol  | P57C | P56C               | P55C | P54C | P53C | P52C | ✓ P51C | P50C |  |  |
| Read/Write  |      |                    |      | V    | V <  |      |        |      |  |  |
| Reset State | 0    | 0                  | 0    | 0    | 0    | 9    | 0      | 0    |  |  |
| Function    |      | 0: Input 1: Output |      |      |      |      |        |      |  |  |

Port 5 Function register

P5FC (0017H)

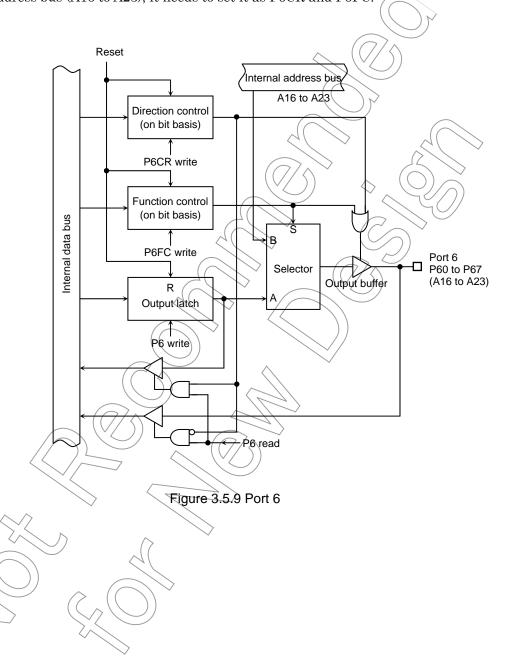
|             | 7    | 6    | 5    | 4             | 7/3            | 2          | <u></u> | > o  |
|-------------|------|------|------|---------------|----------------|------------|---------|------|
| Bit symbol  | P57F | P56F | P55F | P54F          | P53F           | P52F       | P51F    | P50F |
| Read/Write  |      |      |      | ( \           | (v ))          | $\Diamond$ |         |      |
| Reset State | 0    | 0    | 0    | 0             | $\Big) \Big)$  | 0          |         | 0    |
| Function    |      |      | 0: P | ort 1: Addres | s bus (A8 to A | A15)       |         |      |

Note1: A read-modify-write operation cannot be performed in P5CR and P5FC registers.

Note2: When using as address bus A8 to A15, set P5FC after set P5CR.

Figure 3.5.8 Register for Port 5

92CY23-71




# 3.5.5 Port 6 (P60 to P67)

Port 6 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P6CR and function register P6FC.

In addition to functioning as a general-purpose I/O port, port 6 can also function as an address bus (A16 to A23).

Moreover, after reset release, since a device is set as an input port, when using it as a address bus (A16 to A23), it needs to set it as P6CR and P6FC.



92CY23-72 2009-08-28

# Port 6 register

P6 (0018H)

|             | 7   | 6   | 5             | 4              | 3                | 2               | 1    | 0   |
|-------------|-----|-----|---------------|----------------|------------------|-----------------|------|-----|
| Bit symbol  | P67 | P66 | P65           | P64            | P63              | P62             | P61  | P60 |
| Read/Write  |     |     |               | R/             | W                |                 |      |     |
| Reset State |     | Dat | a from extern | al port (Outpu | t latch register | r is cleared to | "0") |     |

Port 6 Control register

P6CR (001AH)

|             | 7    | 6                  | 5    | 4    | 3    | 2     | <u>ال</u> 1 | 0    |  |  |
|-------------|------|--------------------|------|------|------|-------|-------------|------|--|--|
| Bit symbol  | P67C | P66C               | P65C | P64C | P63C | P62C\ | P61C        | P60C |  |  |
| Read/Write  |      | -                  | _    | V    | v \\ |       | -           | -    |  |  |
| Reset State | 0    | 0                  | 0    | 0    | 0    | )0    | 0           | 0    |  |  |
| Function    |      | 0: Input 1: Output |      |      |      |       |             |      |  |  |

Port 6 Function register

P6FC (001BH)

|             |      |                                     | 1 011 0 1 011 | otion rogiotal | V // //                               |      |  |  |  |  |
|-------------|------|-------------------------------------|---------------|----------------|---------------------------------------|------|--|--|--|--|
|             | 7    | 6                                   | 5             | 4 3            | 2                                     | 0    |  |  |  |  |
| Bit symbol  | P67F | P66F                                | P65F          | P64F / P63F    | P62F ( ) P61F                         | P60F |  |  |  |  |
| Read/Write  |      | -                                   | -             | W              | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |      |  |  |  |  |
| Reset State | 0    | 0                                   | 0             | 0              |                                       | 0    |  |  |  |  |
| Function    |      | 0: Port 1: Address bus (A16 to A23) |               |                |                                       |      |  |  |  |  |

Note1: A read-modify-write operation cannot be performed in P6CR and P6FC registers.

Note2: When using as address bus A16 to A23, set P6FC after set P6CR.

Figure 3.5.10 Register for Port 6



2009-08-28

#### 3.5.6 Port 7 (P70 to P74, P76, P77)

As for a port7, P70 to P73, and P76 and P77 are general-purpose I/O ports, and P74 is a port only for inputs.

P76 and P77 become an open drain output, when it is set as an output port. Moreover, P70 to P73 are ports with pull-up resistance. Bits can be individually set as either inputs or outputs by control register P7CR and function register P7FC.

In addition to functioning as a general-purpose I/O port, port7 can also function as a CPU's control. P70 to P73 has the function of RD strobe signal output as an object for external memory connection, and the output for SRAM control (SRWR, SRLLB and SRLUB). P74 has the function of an external interrupt input (INTO). P76 and P77 have the function of a low-frequency resonator connection (XT1, XT2). These setups become effective by setting "1" as the applicable bit of P7CR and a P7FC register. The edge of the external interruption INTO and level selection are set up in IIMC2 and IIMC3 registers in an interruption controller. P70 to P74 become input mode by the reset action, and P76 and P77 become output mode (high impedance output).

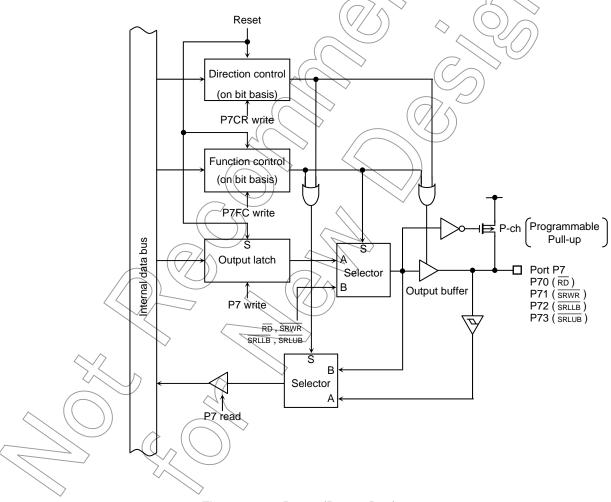
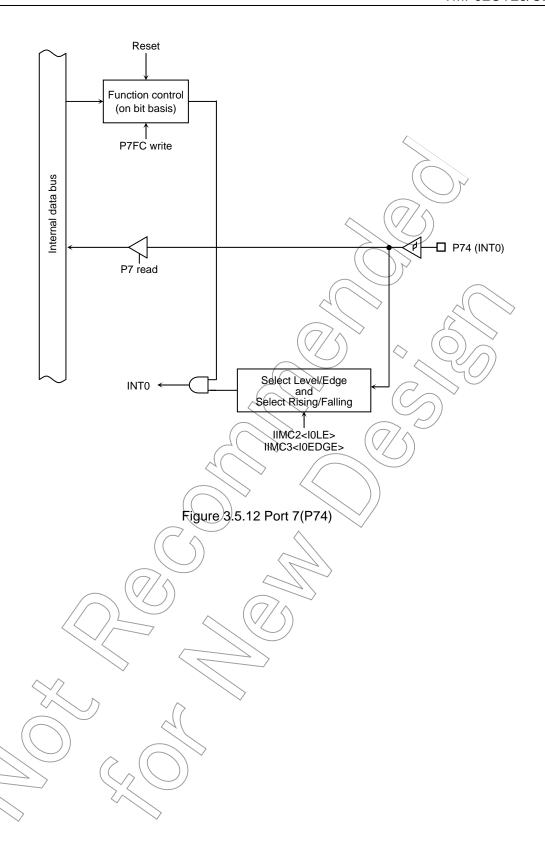
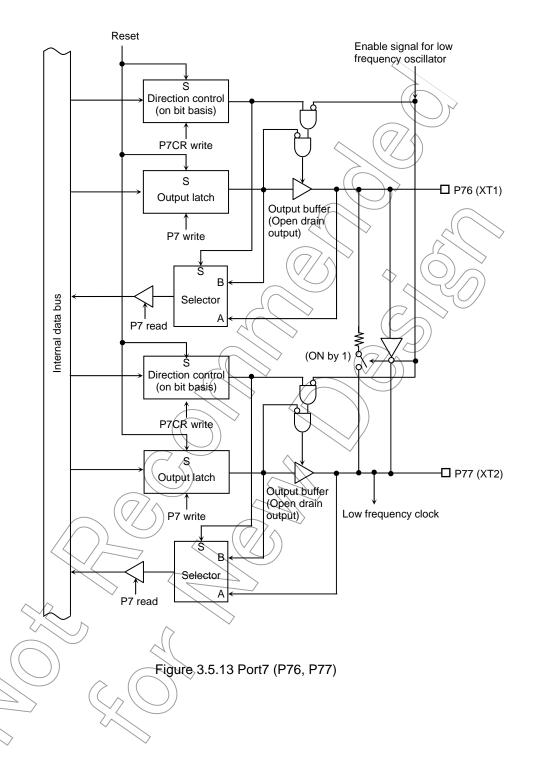





Figure 3.5.11 Port 7 (P70 to P73)





P7 (001CH)

|             |                                                                     |     | Por | t 7 registe             | r                                                             |     |                                   |      |  |
|-------------|---------------------------------------------------------------------|-----|-----|-------------------------|---------------------------------------------------------------|-----|-----------------------------------|------|--|
|             | 7                                                                   | 6   | 5   | 4                       | 3                                                             | 2   | 1                                 | 0    |  |
| Bit symbol  | P77                                                                 | P76 |     | P74                     | P73                                                           | P72 | P71                               | P70  |  |
| Read/Write  | R/                                                                  | W   |     | R                       | R/W                                                           |     |                                   |      |  |
| Reset State | Data from external port<br>(Output latch register is<br>set to "1") |     |     | Data from external port | Data from external port (Output latch register is set to "1") |     |                                   | "1") |  |
| Function    | -                                                                   | -   |     | -                       |                                                               | _   | r): Pull-up res<br>r): Pull-up re |      |  |

Port 7 Control register

P7CR (001EH)

|             | 7        | 6         | 5 | 4 | 3    | 2            | 1         | 0    |
|-------------|----------|-----------|---|---|------|--------------|-----------|------|
| Bit symbol  | P77C     | P76C      |   |   | P73C | P72C         | P71C      | P70C |
| Read/Write  | V        | ٧         |   |   |      |              | V (       |      |
| Reset State | 1        | 1         |   |   | Q'   | $\searrow_0$ | 0 0/      | 0    |
| Function    | 0: Input | 1: Output |   | · |      | > 0: Input   | 1: Output |      |

Port 7 Function register

P7FC (001FH)

|             | 7 | 6 | 5      | 4       | 3        | 2                       | 1       | 0       |
|-------------|---|---|--------|---------|----------|-------------------------|---------|---------|
| Bit symbol  |   |   |        | ₹74F    | > P73F   | P72F                    | P71F    | P70F    |
| Read/Write  |   |   |        |         | ~        | ₩ .                     |         |         |
| Reset State |   |   | $\int$ |         | 0        | $( \emptyset / \land )$ | 0       | 0       |
| Function    |   |   |        | 0: Port | 0: Port  | 0: Port                 | 0: Port | 0: Port |
|             |   |   | 4      | 1: INT0 | 1: SKLUB | 1: SRLLB                | 1: SRWR | 1: RD   |

Note 1: When port P70 to P73 is used in the input mode, P7 register controls the built-in pull-up resistor.

Read-modify-write is prohibited in the input mode or the I/O mode. Setting the built-in pull-up resistor may be depended on the states of the input-pin.

Note 2: A read-modify-write operation cannot be performed in P7CR and P7FC registers.

Note 3: On using low-frequency resonator to P76, P77, it is necessary to set the following procedures to reduce the consumption power supply:

·connecting to a resonator

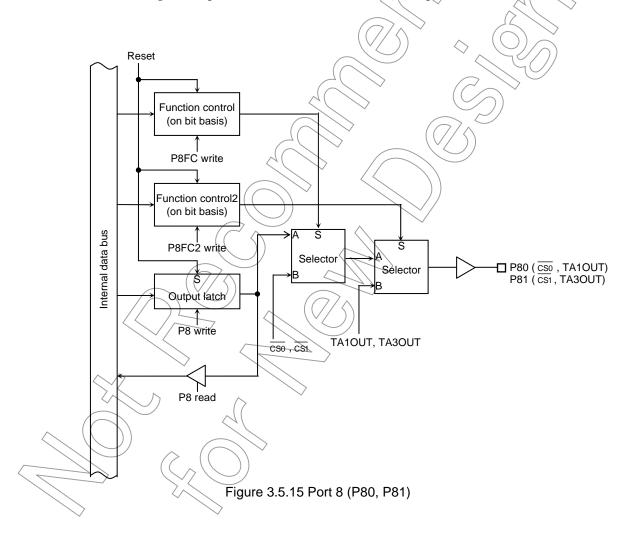
P7CR <P76C,P77C> = "11", P7 <P76,P77>=/"00"

·connecting an oscillator

P7CR <P76C,P77C> = "11", P7 <P76,P77> = "10"

Figure 3.5.14 Register for Port 7

#### 3.5.7 Port 8 (P80 to P83)

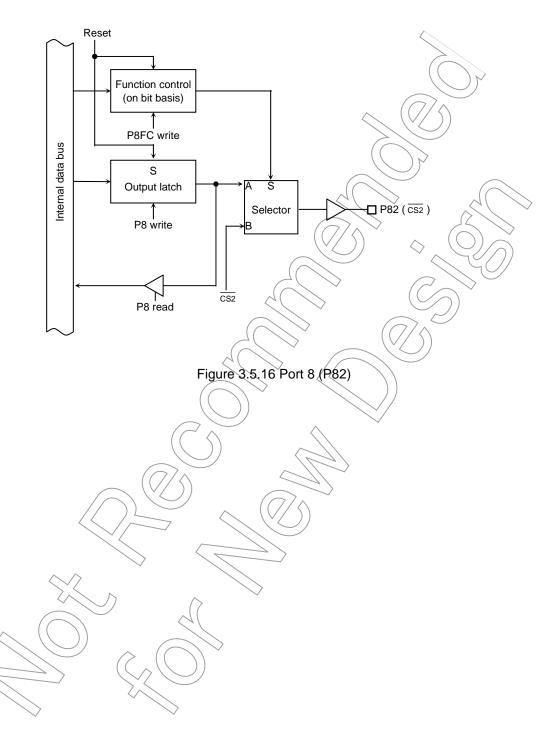

Ports 80 to 82 are 3-bit output ports, and Port 83 is 1-bit I/O port.

In addition to an output and an I/O port function, as for P80 and P81, a standard chip select signal output ( $\overline{\text{CS0}}$ ,  $\overline{\text{CS1}}$ ) and a 8-bit timer output (TA1OUT, TA3OUT), and P82 have a standard chip select signal output ( $\overline{\text{CS2}}$ ), and P83 has the function of a standard chip select signal output ( $\overline{\text{CS3}}$ ), a 8-bit timer output (TA5OUT), and a wait input ( $\overline{\text{WAIT}}$ ).

These functions operate by setting the bit concerned of P8CR, P8FC, and P8FC2 register as "1". All bits of P8FC and P8FC2 are cleared to "0" by the reset action, and P80 to P83 becomes an output port. Moreover, the output latch of P82 is cleared to "0" and the output latch of P80 to P81 and P83 is set to "1".

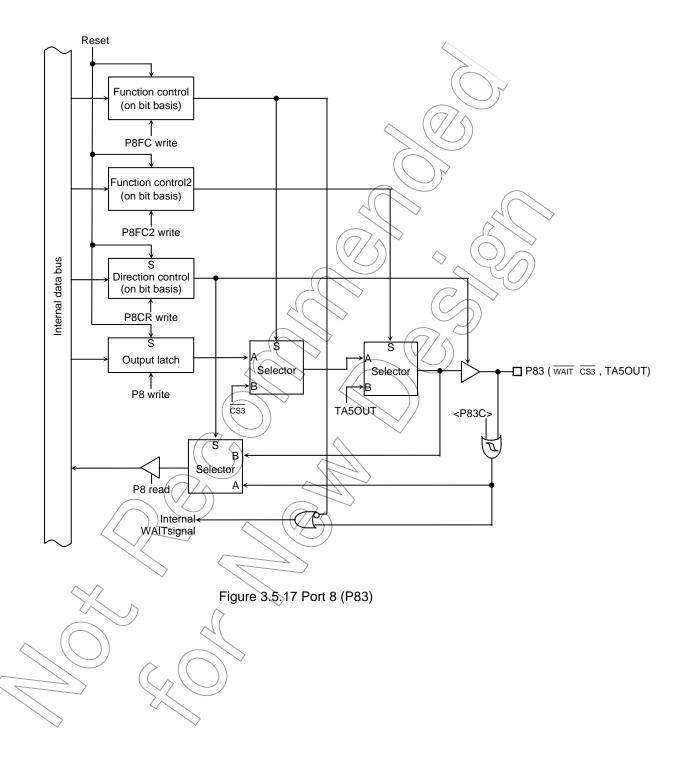
### (1) P80 ( $\overline{\text{CS0}}$ , TA1OUT), P81 ( $\overline{\text{CS1}}$ , TA3OUT)

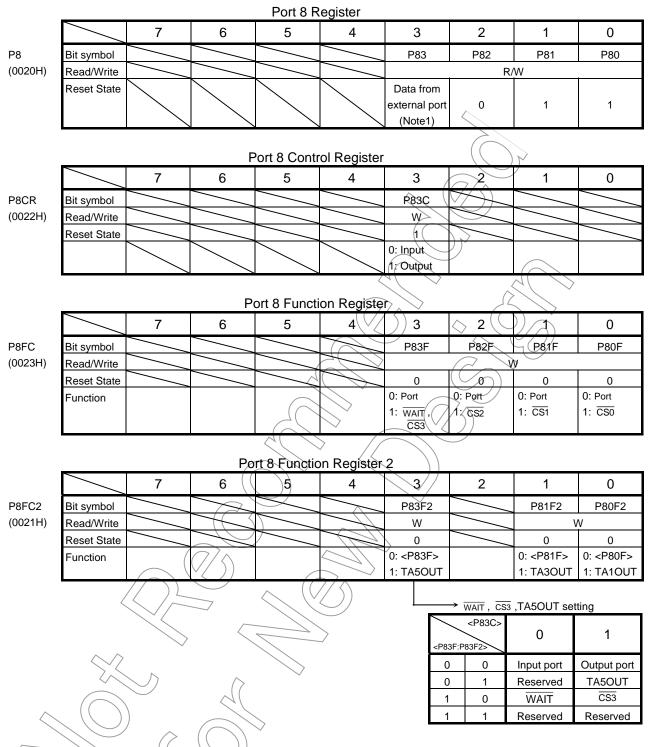
In addition to an output port function, ports P80 and P81 function as a standard chip select signal output ( $\overline{\text{CSO}}$ ,  $\overline{\text{CSI}}$ ) and a 8-bit timer output (TA1OUT, TA3OUT).




92CY23-78 2009-08-28

TOSHIBA


# (2) P82 ( $\overline{\text{CS2}}$ )


In addition to an output port function, a port P82 functions as a standard chip select signal output ( $\overline{\mathrm{CS2}}$ ).



# (3) $P83(\overline{CS3}, \overline{WAIT}, TA5OUT)$

In addition to an I/O port function, a port P83 functions as a standard chip select signal output ( $\overline{\text{CS3}}$ ) and an 8-bit timer output (TA5OUT), and a wait input ( $\overline{\text{WAIT}}$ ).





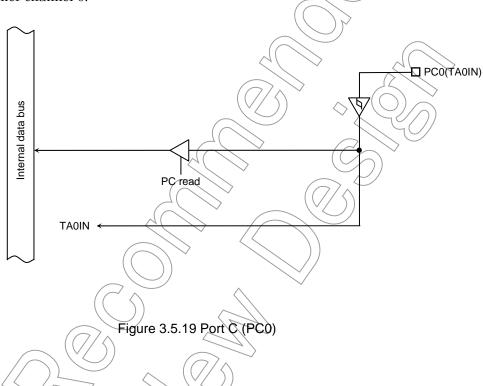
Note 1; Output latch register is set to "1".

Note 2: A read-modify-write operation cannot be performed in P8CR, P8FC and P8FC2 registers.

Note 3: When using P83 as a WAIT input, while setting it as P8CR <P83C> = "0", P8FC<P83F> = "1", it is necessary to set memory control register BxCSL <BxWW2:0> or <BxWR2:0> as "011".

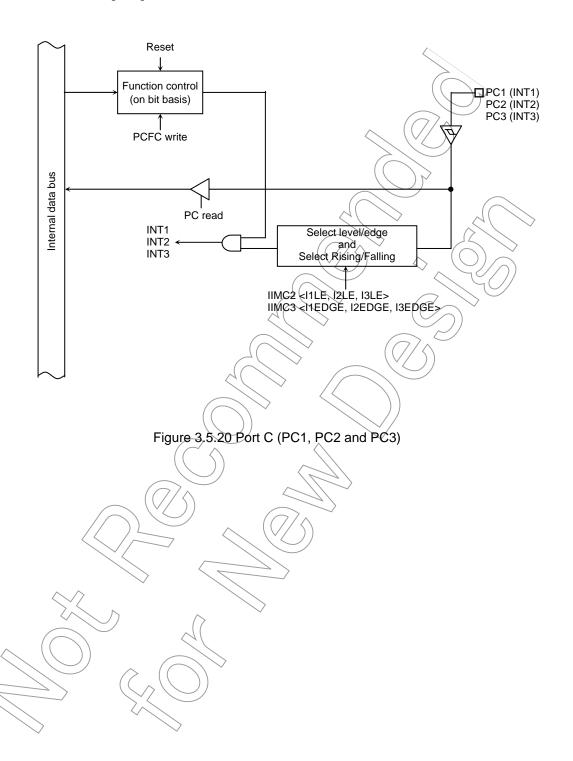
Note 4: When setting a standard chip select signal (  $\overline{\text{CS0}}$  to  $\overline{\text{CS3}}$  ) as an output, P8CR is set up after setting up P8FC.

Figure 3.5.18 Register for Port 8


# 3.5.8 Port C (PC0 to PC3)

Port C is a 4-bit input port.

In addition to the input port function, Port C has the input function (TA0IN) of a 8-bit timer, and an external interrupt input function (INT1 to INT3). These functions operate by setting the bit concerned of PCFC register as "1". Edge selection of external interrupt is set up in IIMC2 and IIMC3 register in an interrupt controller. All bits of PCFC are cleared to "0" by the reset action, and all bits serve as an input port.


#### (1) PC0 (TA0IN)

In addition to an I/O port function, a port PC0 has a function as a TA0IN input of the timer channel 0.



# (2) PC1 (INT1), PC2 (INT2), PC3 (INT3)

In addition to an Input port function, port PC1 to PC3 has a function as an external interrupt input (INT1 to INT3).



# Port C Register

PC (0030H)

|             | 7 | 6 | 5 | 4 | 3                       | 2   | 1   | 0   |  |
|-------------|---|---|---|---|-------------------------|-----|-----|-----|--|
| Bit symbol  |   |   |   |   | PC3                     | PC2 | PC1 | PC0 |  |
| Read/Write  |   |   |   |   |                         | F   | ₹   |     |  |
| Reset State |   |   |   |   | Data from external port |     |     |     |  |

# Port C Function Register

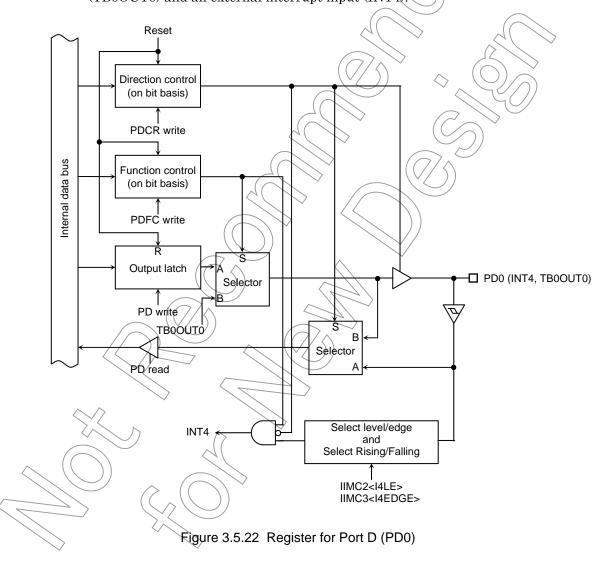
PCFC (0033H)

|             | 7 | 6 | 5 | 4        | 3       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) 1     | 0        |
|-------------|---|---|---|----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|
| Bit symbol  |   |   |   |          | PÇ3F    | PC2F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PC1F    | PC0F     |
| Read/Write  |   |   |   |          |         | (\(\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\frac{\(\carc\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\(\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\carcer{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | V       |          |
| Reset State |   |   |   |          | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       | 0        |
| Function    |   |   |   |          | 0: Port | 0; Port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0: Port | 0: Port  |
|             |   |   | 1 | <u>'</u> | 1: JNT3 | 1;/NT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1: INT1 | 1: TA0IN |

Note1: A read-modify-write operation cannot be performed in PCFQ register.

Note2: PC0 is not based on a functional setup of a port, but is inputted into TA0IN of a 8-bit timer (TMRA0).

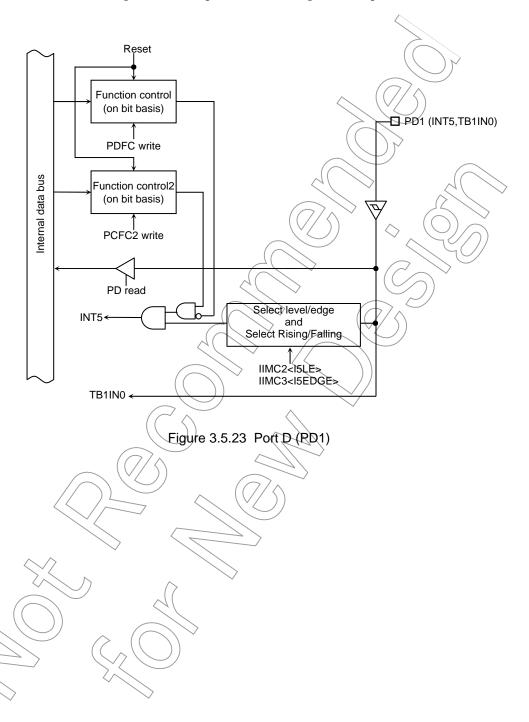



# 3.5.9 Port D (PD0 to PD4)

Port D is 4-bit I/O port (PD0, PD2 to PD4) and 1-bit input port (PD1).

There are I/O of the serial channel 2, I/O of a 16-bit timer (TMRB0, TMRB1), and an external interrupt input (INT4 to INT7) function in addition to an I/O port function. These functions operate by setting the bit concerned of PDCR, PDFC and PDFC2 register as "1". Edge selection of external interrupt is set up in IIMC2 and IIMC3 register in an interrupt controller. All bits of PDCR, PDFC and PDFC2 are cleared to "0" by the reset action, and all bits serve as an input port.

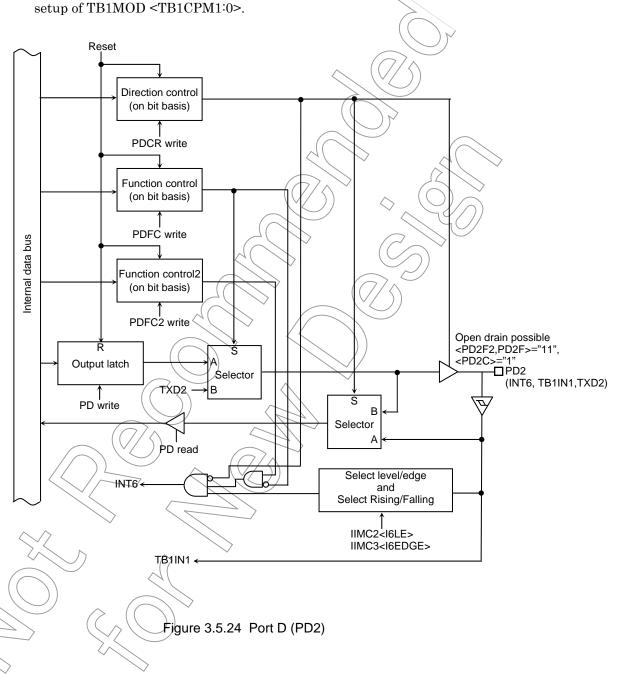
#### (1) PD0 (INT4, TB0OUT0)


In addition to an I/O port function, a port PD0 has a function as a 16-bit timer output (TB0OUT0) and an external interrupt input (INT4).



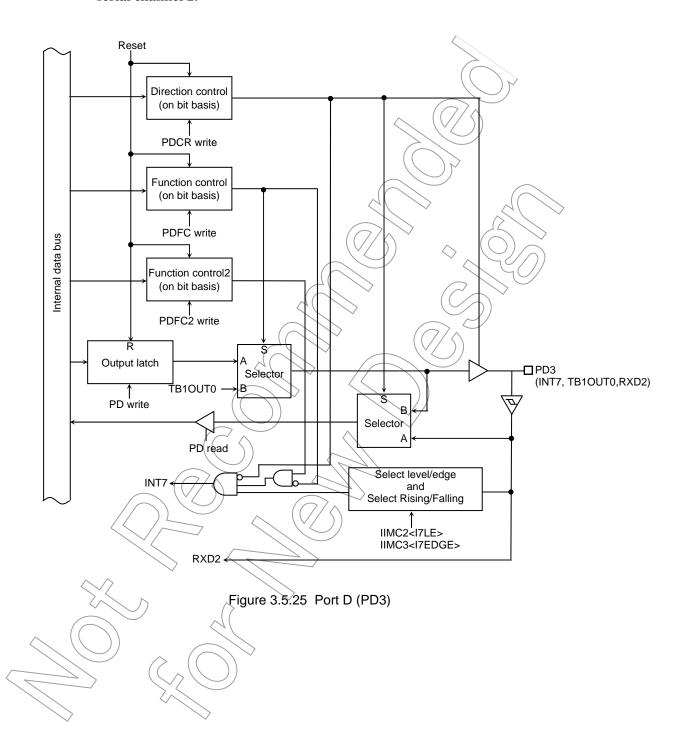
92CY23-85 2009-08-28

#### (2) PD1 (INT5,TB1IN0)


In addition to the input port function, the port PD1 has a function as a 16-bit timer input (TB1IN0) and an external interrupt input (INT5). In a port setup, when choosing a 16-bit timer input and performing capture control, INT5 disregards a setup of IIMC2 and IIMC3 registers, and operates according to a setup of TB1MOD <TB1CPM1:0>.

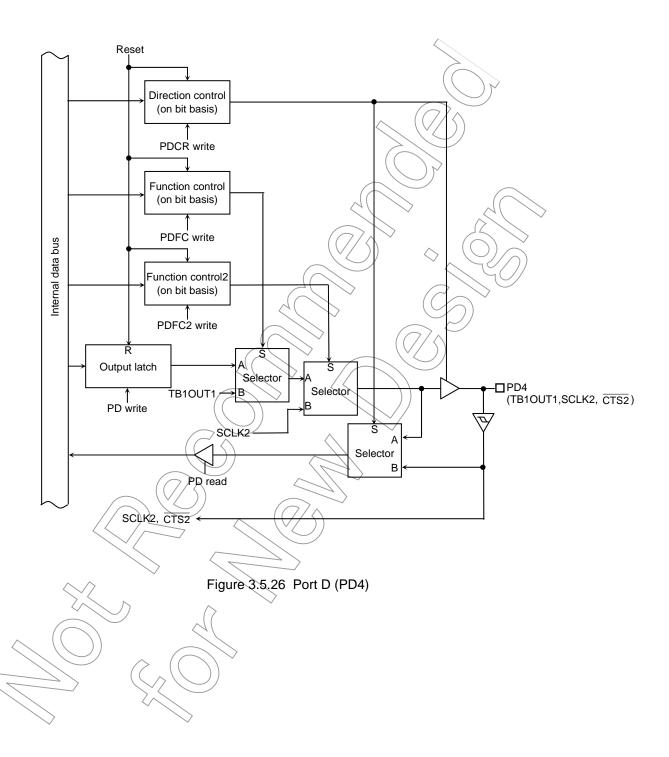


#### (3) PD2 (INT6, TB1IN1, TXD2)


In addition to the I/O port, PD2 has a function as a 16-bit timer input (TB1IN1), an external interrupt input (INT6), and a TXD output (TXD2) of the serial channel 2. When using this port as TXD output (TXD2), it can be set as open drain.

In a port setup, when choosing a 16-bit timer input and performing capture control, INT6 disregards a setup of IIMC2 and IIMC3 registers, and operates according to a




# (4) PD3 (INT7, TB1OUT0, RXD2)

In addition to the I/O port function, the portD3 has a function as a 16-bit timer output (TB1OUT0), an external interrupt input (INT7), and a RXD input (RXD2) of the serial channel 2.



#### (5) PD4 (TB1OUT1, SCLK2, $\overline{\text{CTS2}}$ )

In addition to the I/O port function, PD4 has a function as a 16-bit timer output (TB1OUT1), SCLK I/O (SCLK2) of the serial channel 2, or a CTS input ( $\overline{\text{CTS2}}$ ).



Port D Register 7 6 4 3 2 1 0 PD4 PD3 PD2 PD1 PD0 PD Bit symbol (0034H) R/W R R/W Read/Write Reset State Data from Data from Data from external port (Note1) external port external port (Note1) Port D Control Register 7 6 3 2 0 **PDCR** PD4C PD3C PD2¢ PD0C Bit symbol (0036H) Read/Write W Reset State 0 0 >0 Function 0: Input 0: Input 1: Output 1: Output Port D Function Register 7 6 5 4 3 2 0 **PDFC** PD4F Bit symbol PD3F PD2F ₁ŔD1F PD0F (0037H)Read/Write W Reset State Ò 0 Refer to following table Function Port D Function Register 2 7 4 2 1 6 5 3 0 PD4F2 PD3F2 PD2F2 PD1F2 PDFC2 Bit symbol (0035H)Read/Write ´ W 0 0 0 0 Reset State Refer to following table Function PD4 to PD0 function setting

| <pdxf2, pdxc="" pdxf,=""></pdxf2,> | PD4V/        | PD3         | PD2           | PD1 (Note 3) | PD0 (Note 4) |
|------------------------------------|--------------|-------------|---------------|--------------|--------------|
| 0,0,0                              | Input port   | Input port  | /\nput port   | Input port   | Input port   |
| 0,0,1                              | Output port  | Output port | Output port   |              | Output port  |
| 0 , 1 , 0                          | Reserved     | RXD2        | TB1IN1        | TB1IN0       | INT4         |
| 0 , 1 , 1                          | TB1QUT1      | TB10UT0     | TXD2(3-state) |              | TB0OUT0      |
| 1,0,0                              | SCLK2, CTS2  | INT7        | INT6          | INT5         |              |
| 1 , 0 , 1                          | SCLK2 output | Reserved    | Reserved      |              |              |
| 1 , 1 , 0                          | Reserved     | Reserved    | Reserved      | Reserved     |              |
| $\langle 1, 1, 1 \rangle$          | Reserved     | Reserved    | TXD2(O.D)     |              |              |

Note: <PDxF2>,<PDxF> and <PDxC> are the bits x of PDFC2,PDFC and PDCR registers.

Note 1: Output latch register is cleared to "0".

Note 2: There is no output latch register in PD1.

Note 3: A read-modify-write operation cannot be performed in PDCR, PDFC and PDFC2 registers.

Note 4: TB1IN0 and TB1IN1 input is inputted into the 16-bit timer TMRB1 irrespective of a functional setup of a port.

Note 5: RXD2, SCLK2 input, and  $\overline{\text{CTS2}}$  input are inputted into the serial channel 2 irrespective of a functional setup of

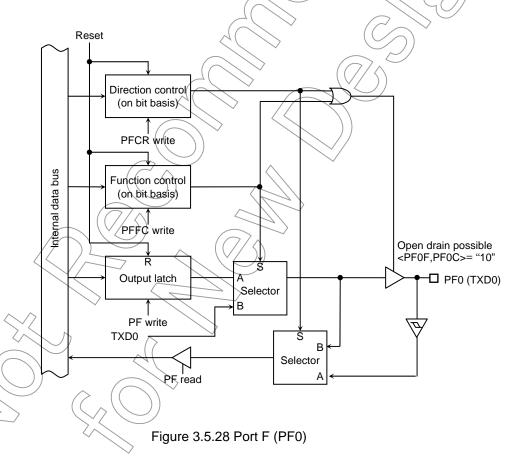
Note 6: PD2 does not have a register for 3-state/open drain setup. Moreover, there is no open drain function at the time of an output port.

Figure 3.5.27 Register for Port D

#### 3.5.10 Port F (PF0 to PF5)

Port F is a 6-bit general-purpose I/O ports.

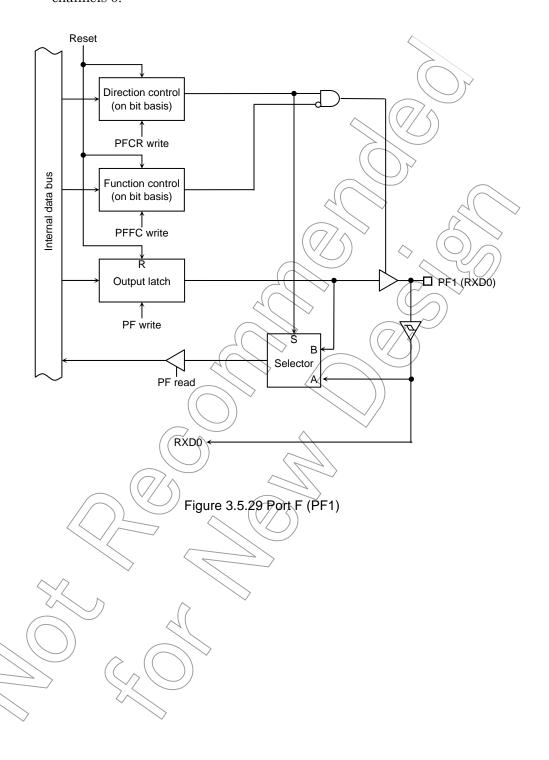
All bits of PFCR, PFFC and PFFC2 are cleared to "0" by the reset action, and all bits serve as an input port.


In addition to an I/O port, there are I/O of the serial channels 0 and 1, high speed serial channel channel and an internal clock output function. These functions operate by setting the bit concerned of PFCR, PFFC, PFFC2, HSCSEL register as "1". All bits of PFCR, PFFC, PFFC2 and HSCSEL are cleared to "0" by the reset action, and all bits serve as an input port.

Note: The high speed serial channel function is not built into TMP92CY23.

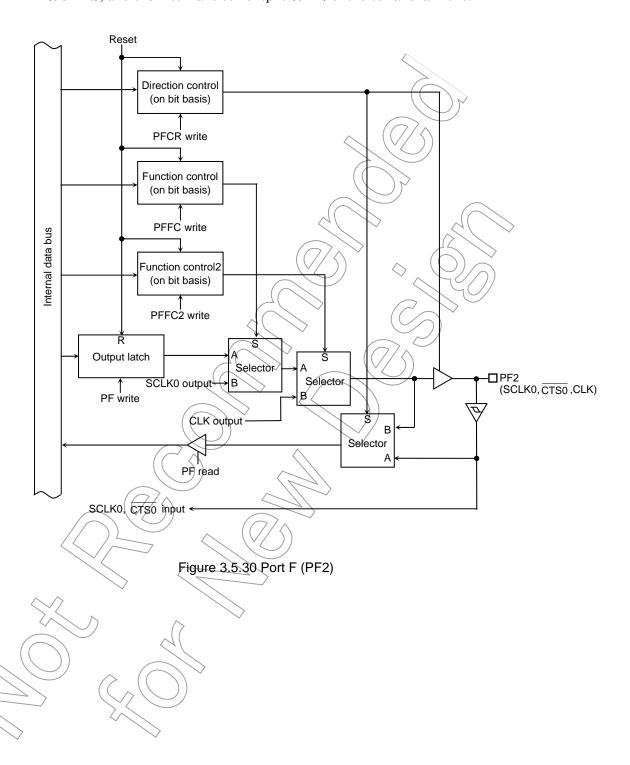
#### (1) Port F0 (TXD0)

In addition to an I/O port function, PF0 have a function as an output (TXD0) of the serial channels 0.


Moreover, when using it as a TXD output terminal, the output buffer has the open drain function in which a program is possible. An open drain function can be set up by the PFFC <PF0F>, PFCR <PF0C> register.



92CY23-91 2009-08-28

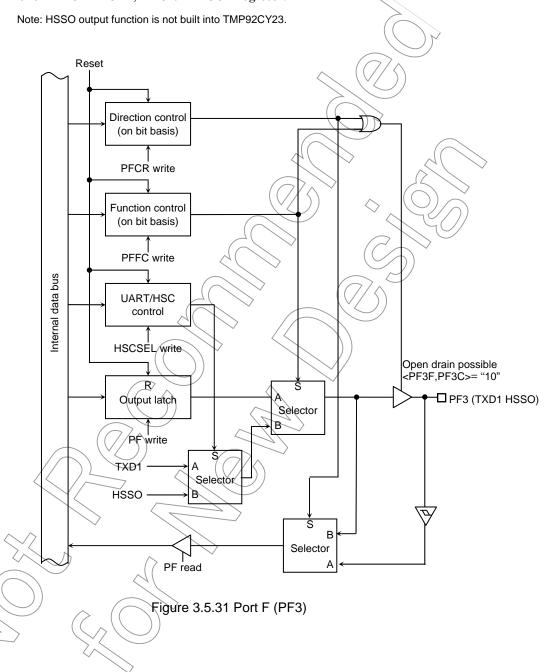

# (2) PF1(RXD0)

In addition to the I/O port, PF1 have a function as an input (RXD0) of the serial channels 0.



# (3) PF2 ( $\overline{CTS0}$ , SCLK0, CLK)

In addition to the I/O port, PF2 has a function as the CTS input ( $\overline{\text{CTS0}}$ ), SCLK I/O (SCLK0), and the internal clock output (CLK) of the serial channel 0.

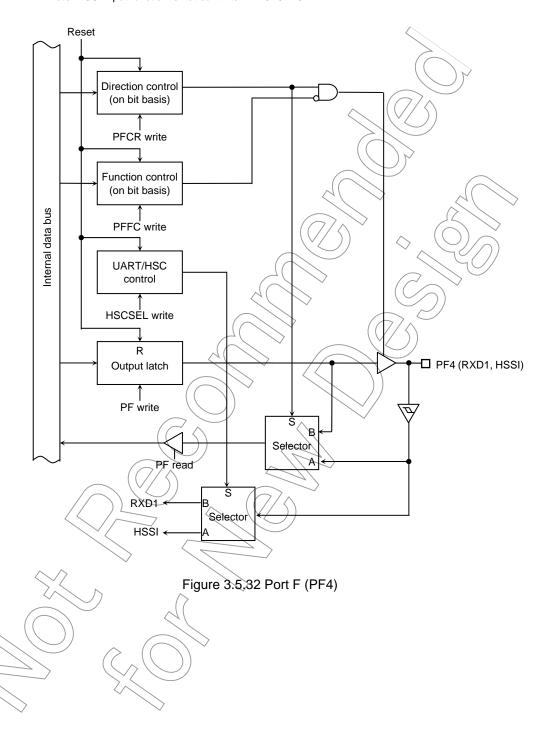



92CY23-93 2009-08-28

### (4) Port F3 (TXD1, HSSO)

In addition to an I/O port function, PF3 have a function as an output (TXD1) of the serial channels 1 and output (HSSO) of the high speed serial channels (Note).

Moreover, when using it as a TXD output terminal, the output buffer has the open drain function in which a program is possible. An open drain function can be set up by the PFFC <PF3F>, PFCR <PF3C> register.




**TOSHIBA** 

# (5) PF4(RXD1, HSSI)

In addition to the I/O port, PF4 have a function as an input (RXD1) of the serial channels 0 and input (HSSI) of high speed serial channels  $^{(Note)}$ .

Note: HSSI input function is not built into TMP92CY23.



# (6) PF5 (CTS1, SCLK1, HSCLK)

In addition to the I/O port function, PF5 has a function as the input  $(\overline{\text{CTS1}})$  or I/O (SCLK1) of the serial channel 1 and output (HSCLK) of high speed serial channels (Note). Note: HSCLK output function is not built into TMP92CY23.

Reset Direction control (on bit basis) PFCR write Function control (on bit basis) PFFC write Internal data bus **UART/HSC** control HSCSEL write Output latch ¬□ PF5 (SCLK1, CTS1, HSCLK) Selector PF write SCLK1 output Selector HSCLK output Selector PF read CTS1 SCLK1 input Figure 3.5.33 Port F (PF5)

92CY23-96 2009-08-28

PF (003CH)

|             | 7 | 6 | 5                                                                 | 4   | 3   | 2   | 1   | 0   |
|-------------|---|---|-------------------------------------------------------------------|-----|-----|-----|-----|-----|
| Bit symbol  |   |   | PF5                                                               | PF4 | PF3 | PF2 | PF1 | PF0 |
| Read/Write  |   |   | R/W                                                               |     |     |     |     |     |
| Reset State |   |   | Data from external port (Output latch register is cleared to "0") |     |     |     |     |     |

Port F Control Register

PFCR (003EH)

|             | 7 | 6 | 5    | 4    | 3        | 2                                      | )) 1 | 0    |
|-------------|---|---|------|------|----------|----------------------------------------|------|------|
| Bit symbol  |   |   | PF5C | PF4C | PF3C     | PF2C                                   | PF1C | PF0C |
| Read/Write  |   |   |      |      | < \ v    | (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |      |      |
| Reset State |   |   | 0    | 0    | 0        | ) \$                                   | 0    | 0    |
| Function    |   |   |      |      | 0: Input | 1: Output                              |      |      |

Port F Functon Register

PFFC (003FH)

|             | 7 | 6 | 5          | 4       | 3                   | 2         | 7 (1    | 0       |
|-------------|---|---|------------|---------|---------------------|-----------|---------|---------|
| Bit symbol  |   |   | PF5F       | PF4F    | ∕∕ ∲F3F             | PF2F (    | PF1F    | PF0F    |
| Read/Write  |   |   |            |         | $\bigcirc$ / $\lor$ | v 🔷 🗸 🤇   |         |         |
| Reset State |   |   | 0          | 0       | 0                   | 0         | 9       | 0       |
| Function    |   |   | 0: Port    | 0: Port | 0: Port             | 0: Port   | 0: Port | 0: Port |
|             |   |   | 1: SCLK1 〈 | 1: RXD1 | 1: TXD1             | 1: SCLKO) | 1: RXD0 | 1: TXD0 |
|             |   |   | CTS1       |         |                     | C120      |         |         |

Port F Function Register 2

PFFC2 (003DH)

|             | 7 | 6      | 5          | > 4 / | 3 |                  | 1 | 0 |
|-------------|---|--------|------------|-------|---|------------------|---|---|
| Bit symbol  |   |        |            |       | 7 | PF2F2            |   |   |
| Read/Write  |   | $\int$ |            |       |   | W                |   |   |
| Reset State |   |        | $\nearrow$ |       |   | 0                |   |   |
| Function    |   |        | $\wedge$   |       |   | 0: <pf2f></pf2f> |   |   |
|             |   |        | ))         |       |   | 1: CLK           |   |   |

StO1/ HSC Control Register

HSCSEL (00F4H)

|             |         | <b>(6)</b> | 5        | 4                  | 3 | 2 | 1 | 0       |
|-------------|---------|------------|----------|--------------------|---|---|---|---------|
| Bit symbol  | //- ) [ | )          | <u> </u> | V// <del>}</del> ) | - | - | - | SIOCNT  |
| Read/Write  |         |            |          | R                  | _ | - | - | R/W     |
| Reset State | 0       | 0 (        | 0        | 0                  | 0 | 0 | 0 | 0       |
| Function    |         | `          |          |                    |   |   |   | 0: SIO1 |
|             | >       |            |          |                    |   |   |   | 1: HSC  |

Note: HSCSEL register is not built into TMP92CY23.

PF5 to PF0 function setting

| <pfxf2, pfxc="" pfxf,=""></pfxf2,>   | PF2                                               | PF1               | PF0                   |
|--------------------------------------|---------------------------------------------------|-------------------|-----------------------|
| 0,0,0                                | Input port                                        | Input port        | Input port            |
| 0 , 0 , 1                            | Output port                                       | Output port       | Output port           |
| 0 , 1 , 0                            | $\frac{\text{SCLK0}}{\text{CTS0}}$ input          | RXD0 input        | TXD0<br>(O.D output)  |
| 0 , 1 , 1                            | SCLK0 output                                      | Reserved          | TXD0 (3-state)        |
| 1 , 0 , 0                            | Reserved                                          |                   |                       |
| 1 , 0 , 1                            | CLK output                                        |                   | (( )}                 |
| 1 , 1 , 0                            | Reserved                                          |                   |                       |
| 1 , 1 , 1                            | Reserved                                          |                   | $(7/\wedge)$          |
| <siocnt, pfxc="" pfxf,=""></siocnt,> | PF5                                               | PF4               | PF3                   |
| 0,0,0                                | Input port                                        | Input port        | Input port            |
| 0,0,1                                | Output port                                       | Output port       | Output port           |
| 0 , 1 , 0                            | $\frac{\text{SCLK1},}{\text{CTS1}} \text{ input}$ | RXD1 input        | TXD1<br>(O.D output)  |
| 0 , 1 , 1                            | SCLK1 output                                      | Reserved          | TXD1 (3-state)        |
| 1 , 0 , 0                            | Reserved                                          | Reserved          | Reserved              |
| 1,0,1                                | Reserved                                          | Reserved          | Reserved              |
| 1 , 1 , 0                            | Reserved                                          | HSSI input (Note) | Reserved              |
| 1 , 1 , 1                            | HSCLK output (Note)                               | Reserved          | HSSO (3-state) (Note) |

Note: <PFxF2>,<PFxF> and <PFxC> are the bits x of PFFC2,PFFC and PFCR registers.

Note 1: A read-modify-write operation cannot be performed in PDCR, PDFC and PDFC2 registers.

Note 2: PF0 and PF3 does not have a register for 3-state/open drain setup. Moreover, there is no open drain function at the time of an output port.

Note3: HSSO, HSSI and HSCLK functions are not built into TMP92CY23.


Figure 3.5.34 Register for Port F

#### 3.5.11 Port G (PG0 to PG7)

Port G is 8-bit general-purpose input ports. In addition to an input port function, there are an analog input for AD converters (AN0 to AN7) and a key input (KI0 to KI7) function for a Key on wake up. These functions operate by setting the bit concerned of PGFC, KIEN register as "1". Moreover, edge selection of a key input is set up by the KICR register.

By the reset action, all bits of PGFC are set to "1", and all bits of KIEN are cleared to "0", and it becomes all bit analog input ports (port input disable).

A key input is enabled by the KIEN register, and when the edge chosen in the KICR register is detected, the Key on wake up input KWI occurs. Although a Key on wake up input can release all HALT mode states, there is no function as interrupt.



Port G Register

PG (0040H)

|             | 7   | 6                               | 5   | 4   | 3   | 2   | 1   | 0   |
|-------------|-----|---------------------------------|-----|-----|-----|-----|-----|-----|
| Bit symbol  | PG7 | PG6                             | PG5 | PG4 | PG3 | PG2 | PG1 | PG0 |
| Read/Write  | R   |                                 |     |     |     |     |     |     |
| Reset State |     | Data from external port (Note1) |     |     |     |     |     |     |

Port G Function Register

PGFC (0043H)

|             | 7    | 6                                       | 5    | 4    | 3    | 2                    | 1    | 0    |
|-------------|------|-----------------------------------------|------|------|------|----------------------|------|------|
| Bit symbol  | PG7F | PG6F                                    | PG5F | PG4F | PG3F | PG2F                 | PG1F | PG0F |
| Read/Write  |      | -                                       |      | V    | V    | $(\bigcap)$          |      |      |
| Reset State | 1    | 1                                       | 1    | 1    | 1    | \\/\(\(\frac{1}{1}\) | 1    | 1    |
| Function    |      | 0: Analog input 1: Input port/Key input |      |      |      |                      |      |      |

Key input Enable Register

KIEN (13A0H)

|             | 7          | 6          | 5           | 4          | $\langle (3) \rangle$ | 2          | 1          | , 0        |
|-------------|------------|------------|-------------|------------|-----------------------|------------|------------|------------|
| Bit symbol  | KI7EN      | KI6EN      | KI5EN       | KI4EN_     | KI3EN                 | KI2EN /    | KIJEN      | KI0EN      |
| Read/Write  |            |            |             | (()        |                       | , ((       |            |            |
| Reset State | 0          | 0          | 0           | 0 \        | $\bigcirc/_0$         | 0 C        |            | 0          |
| Function    | KI7 input  | KI6 input  | KI5 input   | KI4 input  | KI3 input             | KI2 input  | KH input   | KI0 input  |
|             | 0: Disable | 0: Disable | 0: Disable  | 0: Disable | 0: Disable            | 0; Disable | 0: Disable | 0: Disable |
|             | 1: Enable  | 1: Enable  | 1: Enable < | 1: Enable  | 1: Enable             | 1; Enable  | 1: Enable  | 1: Enable  |

Key input Control Register

KICR (13A1H)

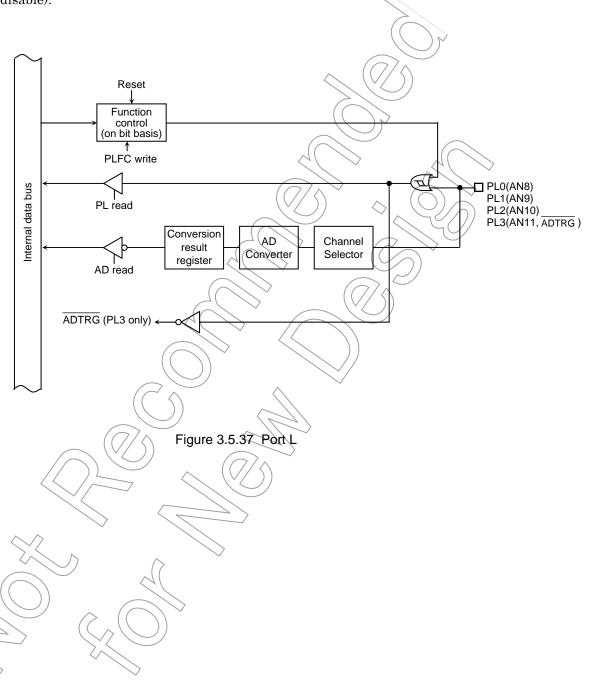
|             | 7          | 6          | 5          | > 4 /      | 3          |            | 1          | 0          |
|-------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Bit symbol  | KI7EDGE    | KI6EDGE    | KI5EDGE.   | KI4EDGE    | KI3EDGE    | KI2EDGE    | KI1EDGE    | KI0EDGE    |
| Read/Write  |            |            |            | V          | v //       |            |            |            |
| Reset State | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| Function    | KI7 edge   | KI6 edge   | KI5 edge   | KI4 edge   | KI3 edge   | KI2 edge   | KI1 edge   | KI0 edge   |
|             | 0: Rising  |
|             | 1: Falling | 1: Falling | 1: Falling | 1: Falling | 1; Falling | 1: Falling | 1: Falling | 1: Falling |

PG7 to PG0 function setting

|                 | // - \        |              |
|-----------------|---------------|--------------|
| <pgxf></pgxf>   |               |              |
| <kixen></kixen> | \ <b>0</b> // |              |
| 0               | Input port    | Analog input |
| 1 ^             | Key input     | Reserved     |

Note: <PGxF> and <KIxEN> are the bits x of PGFC and KIEN registers.

Note 1: It operates as an analog input port (Input port disable).


Note 2: A read-modify-write operation cannot be performed in PGFC, KIEN and KICR registers.

Note 3: The input channel selection of the AD conberter is set by AD mode control register ADMOD1.

Figure 3.5.36 Register for Port G

# 3.5.12 Port L (PL0 to PL3)

Port L is a 4-bit input port. In addition to an input port function, Port L has the analog input function of an AD converter. Moreover, PL3 has the  $\overline{\text{ADTRG}}$  function of an AD converter. When you use PL3 as an  $\overline{\text{ADTRG}}$ , set PLFC <PL3F> as "0". All bits of a PLFC register are set to "1" by the reset action, and Port L become analog input port (port input disable).



Port L Register

PL (0054H)

| 1 of 2 register |   |   |   |   |                                 |     |     |     |  |  |
|-----------------|---|---|---|---|---------------------------------|-----|-----|-----|--|--|
|                 | 7 | 6 | 5 | 4 | 3                               | 2   | 1   | 0   |  |  |
| Bit symbol      |   |   |   |   | PL3                             | PL2 | PL1 | PL0 |  |  |
| Read/Write      |   |   |   |   | R                               |     |     |     |  |  |
| Reset State     |   |   |   |   | Data from external port (Note1) |     |     |     |  |  |

Port L Function Register

PLFC (0057H)

| 1 011 = 1 011011011 1 (09)0101 |   |   |   |   |                                      |            |          |      |  |  |
|--------------------------------|---|---|---|---|--------------------------------------|------------|----------|------|--|--|
|                                | 7 | 6 | 5 | 4 | 3                                    | (2)        | <u> </u> | 0    |  |  |
| Bit symbol                     |   |   |   |   | PL3F                                 | _ PL2F     | PL1F     | PL0F |  |  |
| Read/Write                     |   |   |   |   |                                      | $\bigcirc$ | ٧        |      |  |  |
| Reset State                    |   |   |   |   | <1 \                                 | V/ j)      | 1        | 1    |  |  |
| Function                       |   |   |   |   | 0: Analog input 1:Input port (Note3) |            |          |      |  |  |

Note 1: It operates as an analog input port (Input port disable).

Note 2: A read-modify-write operation cannot be performed in PLFC register.

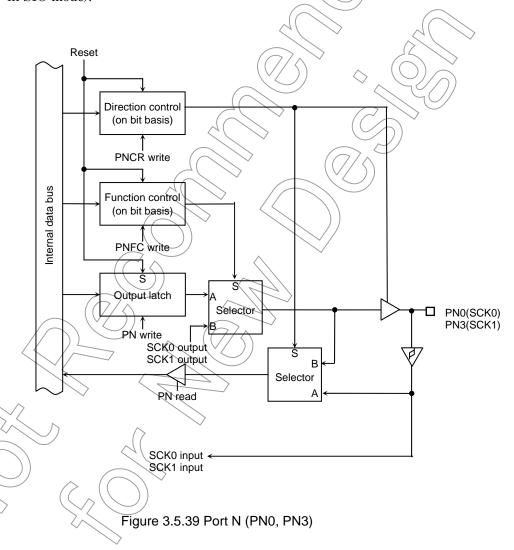
Note 3: The input channel selectino of the AD converter is set by AD mode control register ADMOD1<ADCH3:0>.

Moreover, a set up of AD trigger (ADTRG) input permission is set by ADMOD2<ADTRGE>.



#### 3.5.13 Port N (PN0 to PN5)

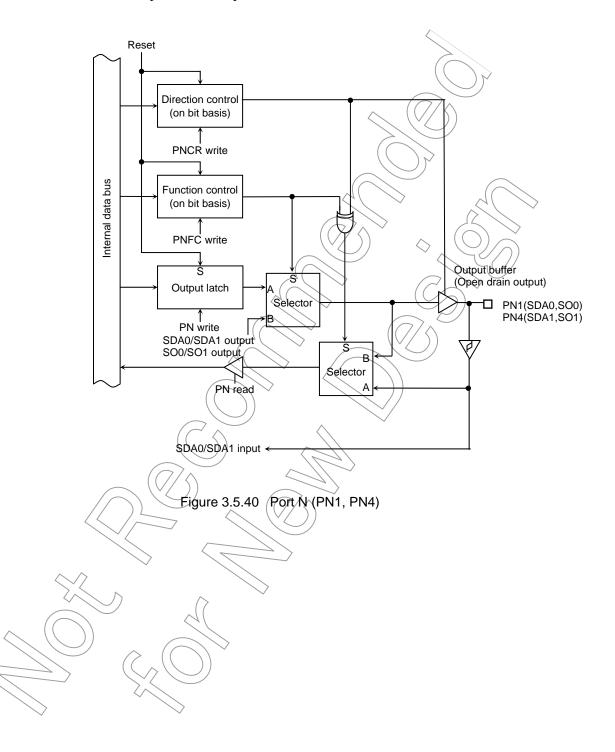
Port N is 6-bit general-purpose I/O ports. Moreover, PN1, PN2, PN4, and PN5 serve as an open drain output, when it is set as an output.


There are the following functions in addition to an I/O port.

- The I/O function of the serial bus interface 0 (SCK0, SO0/SDA0, SI0/SCL0)
- The I/O function of the serial bus interface 1 (SCK1, SO1/\$DA1, SI1/SCL1)

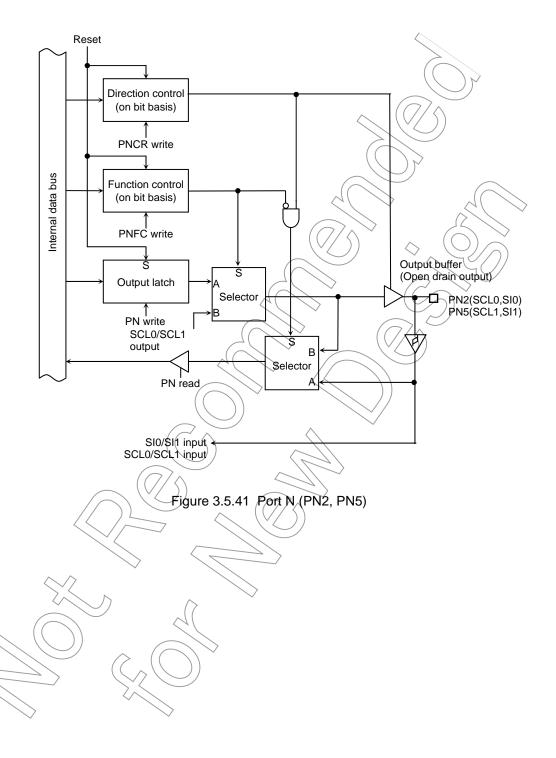
These functions operate by setting the bit concerned of PNCR, PNFC register as "1". All bits of PNCR and PNFC are cleared to "0" by the reset action, and all bits serve as an input port. Moreover, all bits of an output latch are set to "1".

#### (1) PN0 (SCK0), PN3 (SCK1)


PN0 and PN3 are general-purpose I/O ports. It is also used as a SCK (clock I/O signal in SIO mode).



**TOSHIBA** 


### (2) PN1 (SDA0/SO0), PN4 (SDA1/SO1)

PN1 and PN4 are general-purpose I/O ports. It is also used as a SO (data output signal in SIO mode), and SDA (data signal in  $\rm I^2CBUS$  mode). Moreover, these ports serve as an open drain output.



# (3) PN2 (SCL0/SI0), PN5 (SCL1/SI1)

PN2 and PN5 are general-purpose I/O ports. It is also used as a SI (data input signal in SIO mode), and SCL (clock signal in  $I^2CBUS$  mode). Moreover, these ports serve as an open drain output.



Port N Register

PN (005CH)

|             | 7 | 6 | 5                                                             | 4   | 3   | 2   | 1   | 0   |  |  |
|-------------|---|---|---------------------------------------------------------------|-----|-----|-----|-----|-----|--|--|
| Bit symbol  |   |   | PN5                                                           | PN4 | PN3 | PN2 | PN1 | PN0 |  |  |
| Read/Write  |   |   | R/W                                                           |     |     |     |     |     |  |  |
| Reset State |   |   | Data from external port (Output latch register is set to "1") |     |     |     |     |     |  |  |

Port N Control Register

PNCR (005EH)

|             | 7 | 6 | 5                        | 4    | 3    | 2    | ) > 1 | 0    |  |
|-------------|---|---|--------------------------|------|------|------|-------|------|--|
| Bit symbol  |   |   | PN5C                     | PN4C | PN3C | PN2C | PN1C  | PN0C |  |
| Read/Write  |   |   | $\langle w \vee \rangle$ |      |      |      |       |      |  |
| Reset State |   |   | 0                        | 0    | 0    | ) •  | 0     | 0    |  |
| Function    |   |   | 0: Input 1: Output       |      |      |      |       |      |  |

Port N Function Register

PNFC (005FH)

|             | 7 | 6 | 5             | 4           | 3               | 2 (          |             | 0       |
|-------------|---|---|---------------|-------------|-----------------|--------------|-------------|---------|
| Bit symbol  |   |   | PN5F          | PN4F        | PN3F            | PN2F         | PN1F        | PN0F    |
| Read/Write  |   |   |               | _ (         | $\mathcal{I}$ v | $^{V}$       |             |         |
| Reset State |   |   | 0             | 0           | 0               | 0//          | 9           | 0       |
| Function    |   |   | 0: Port       | 0: Port     | : Port          | 0: Port      | 0: Port     | 0: Port |
|             |   |   | 1: SI1, SCL1( | 1: SO1,SDA1 | 1: SCK1         | 1: SHO, SCLO | 1: SO0,SDA0 | 1: SCK0 |

PN5 to PN0 function setting

| <pnxf, pnxc=""></pnxf,> | PN5               | PN4                  | PN3         | PN2                  | PN1                  | PN0         |
|-------------------------|-------------------|----------------------|-------------|----------------------|----------------------|-------------|
| 0,0,0                   | Input port        | Input port           | Input port  | Input port           | Input port           | Input port  |
| 0,0,1                   | Output port       | Output port          | Output port | Output port          | Output port          | Output port |
| 0 , 1 , 0               | SI1 input         | SO1 output           | SCK1 input  | SI0 input            | SO0 output           | SCK0 input  |
| 0 , 1 , 1               | SCL1 input/output | SDA1<br>input/output | SCK1 output | SCL0<br>input/output | SDA0<br>input/output | SCK0 output |

Note: <PNxF> and <PNxC> are the bits x of PNFC and PNCR registers.

Note 1: A read-modify-write operation cannot be performed in PNFC and PNCR registers.

Figure 3.5.42 Register for Port N

# 3.6 Memory Controller

#### 3.6.1 Functional Overview

The TMP92CY23/CD23A has a memory controller with a following features to control four programmable address spaces:

(1) Four programmable address spaces

The MEMC can specify a start address and a block size for each of he four memory spaces.

- SRAM or ROM: All CS spaces (CS0 to CS3) can be assigned.
- Page-ROM: Only the CS2 space can be assigned.
- (2) Memory specification

The MEMC can specify the type of memory, SRAM or ROM, to associate with the selected address spaces.

(3) Data bus size specification

The data bus width is selectable from 8 and 16 bits for the respective chip select spaces.

(4) Wait control

The number of wait states to be inserted into an external bus cycle is determined by the wait state bits of the control register and the WAIT input pin. The number of wait states of a read cycle and that of a write cycle can be specified individually. The number of wait states can be selected from the following 6 options.

0 wait state, 1 wait state, 2 wait states,

3 wait states, 4 wait states

N wait states (controlled by the WAIT pin)



# 3.6.2 Control Registers and Memory Access Operations After Reset

This section describes the registers to control the memory controller, their reset states and the necessary settings after reset.

#### (1) Control Registers

The control registers of the memory controller are listed below.

- Control registers: BnCSH/BnCSL (n = 0 to 3, EX)
  Configures the basic settings of the memory controller, such as the memory type, specification and the number of wait states to be inserted into a read or write cycle.
- Memory Start Address register: MSARn (n = 0 to 3)
   Specifies a start address for a selected address space.
- Memory Address Mask register: MAMR (n = 0 to 3)
   Specifies a block size for a selected address space.
- Page ROM Control register: PMEMCR Selects a method of accessing Page-RØM.

#### (2) Memory Access Operations After Reset

Upon reset, only the control registers (B2CSH and B2CSL) for the CS2 space automatically becomes effective.

Then, the bus width specification bits of the control register for the CS2 space becomes undefined, this bit must be set before accessing the external CS2 spaces.

At the same time, the address range ebtween 000000H and FFFFFH is defined as the CS2 space (The B2CSH<B2M> is cleared to "0").

Then, the address spaces are configured by MSARn and MAMRn. The BnCSH and BnCSL registers are also set up.

The BnCSH<BnE> must be set to "I" to enable these settings.



### 3.6.3 Basic Functions and Register Settings

This section describes some of the memory controller functions, such as setting the address range for each address space, associating memory to the selected and setting the number of wait states to be inserted.

## (1) Programming chip select spaces

The address space is specified by two registers.

The Memory Start Address Register (MSARn) specify the start address for the CS spaces. The memory controller compares the register value and the address every bus cycle. The address bit which is masked by the MAMRn is not compared by the memory controller. The CS spaces size is determined by setting the Memory Address Mask Register. The set value in the register is compared with the CS spaces on the bus. If the result is a match, the memory controller sets the chip select signal ( $\overline{\text{CSn}}$ ) to "low".

### (i) Memory Start Address Registers

The MSAR0 to MSAR3 specify the start addresses for the CS0 to CS3 spaces. The <MS23:MS16> bits specify the upper 8 bits (A23 to A16) of the start address. The lower 16 bits of the start address (A15 to A0) are assumed to be 0000H. Accordingly, the start address can only be a multiple of 64 Kbytes, ranging from 000000H to FF0000H.

### (ii) Memory Address Mask Registers

The Memory Address Mask Register determines whether an address bit is compared or not. In register setting, "0" is "compare", and "1" is "do not compare".

The address bits that can be set depends on the CS spaces.

CS0: A20 to A8

CS1: A21 to A8

CS2 to CS3: A22 to A15

The upper bits are always compared. The CS space size is determined by the result of the comparison.

The size to be set depending on the CS space is as follows.

| Size (bytes) CS Area | 256         | 512 | 32 K | 64 K | 128 K | 256 K | 512 K | 1 M | 2 M | 4 M | 8 M |
|----------------------|-------------|-----|------|------|-------|-------|-------|-----|-----|-----|-----|
| CS0                  | <i>//</i> o | 0   | 0    | 0    | 0     | 0     | 0     | 0   | 0   |     |     |
| ¢\$1                 | 0           | 0 < | 7/   | 0    | 0     | 0     | 0     | 0   | 0   | 0   |     |
| CS2 to CS3           |             |     | /0/  | 0    | 0     | 0     | 0     | 0   | 0   | 0   | 0   |

Note: After reset, only the control register for the CS2 space is effective. The control register for the CS2 space has the B2M bit. If the B2M bit is cleared to "0", the address range between 000000H and FFFFFFH is defined as the CS2 space. (The B2M bit is cleared to "0" after reset.) By setting the B2CSH<B2M> bit to "1", the start address and the block size can be arbitrarily specified, as in the other spaces.

#### (iii) Example of register setting

To set the CS1 space 512 bytes from address 110000H, set the register as follows.

MSAR1 Register

|                 | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Bit symbol      | M1S23 | M1S22 | M1S21 | M1S20 | M1S19 | M1S18 | M1S17 | M1S16 |
| Specified value | 0     | 0     | 0     | 1     | 0     | 0     | 70    | 1     |

M1S23 to M1S16 bits of the MSAR1 correspond to address A23 to A16.

A15 to A0 are cleared to "0". Therefore, if MSAR1 is set to the above mentioned value, the start address of the CS space is set to address 110000H.

MAMR1 Register

|                 | 7     | 6     | 5     | 4     | <u>a</u> ( | 2       | 1 0           |
|-----------------|-------|-------|-------|-------|------------|---------|---------------|
| Bit symbol      | M1V21 | M1V20 | M1V19 | M1V18 | M1V17      | > M1V16 | M1V15 to M1V8 |
| Specified value | 0     | 0     | 0     | 0     | ( ( 0 ) )  | 0 🔷     | 1             |

M1V21 to M1V16 and M1V8 bits of the MAMR1 are set whether addresses A21 to A16 and A8 are compared or not. In register setting, "0" is "compare", and "1" is "do not to compare". M1V15 to M1V9 bits determine whether addresses A15 to A9 are compared or not with bit 1. A23 and A22 are always compared.

When set as above, A23 to A9 are compared with the values that is set as the start addresses. Therefore, the 512 bytes (addresses 110000H to 1101FFH) are set as CS1 spaces. If it is compared with the addresses on the bus, the chip select signal  $\overline{\text{CS1}}$  is set to "LOW".

A23 to A21 are always compared with CS0 spaces. Whether A20 to A8 are compared or not is determined by the register.

Similarly A23 is always compared with CS2 space to CS3 space. Whether A22 to A15 are compared or not/is determined by the register.

Note: When the specified address space overlaps with the on-chip memory area, priority oreder of address spaces are as follows.

On-chip I/O > On-chip memory > CS0 space > CS1 space > CS2 space > CS3 space

The BEXCSL and BEXCSH registers specify the data bus width and number of wait states when an address outside the  $\overline{\text{CS0}}$  to  $\overline{\text{CS3}}$  spaces ( $\overline{\text{CSEX}}$  space) is accessed. These registers are always enabled for the  $\overline{\text{CSEX}}$  space.

#### (2) Memory specification

Setting the <BnOM1:BnOM0> bits specifies the memory type that is associated with each address spaces. The interface signal that corresponds to the specified memory type is generated. The memory type is specified as follows:

<BnOM1: BnOM0> Bit (BnCSH register)

| BnOM1 | BnOM0 | Memory type        |
|-------|-------|--------------------|
| 0     | 0     | SRAM/ROM (Default) |
| 0     | 1     | Reserved           |
| 1     | 0     | Reserved ( )       |
| 1     | 1     | Reserved           |

# (3) Data bus width specification

The data bus width can be specified for each address space by the BnCSH<BnBUS1:BnBUS0> bits as follows.

<BnBUS1: BnBUS0> Bit (BnCSH register)

| BnBUS1 | BnBUS0 | Bus Width               |
|--------|--------|-------------------------|
| 0      | 0      | 8-bit bus mode (Note 2) |
| 0      | 1      | 16-bit bus mode         |
| 1      | 0      | Reserved                |
| 1      | 1      | Reserved                |

As described above, the TMP92CY23/CD23A supports dinamic bus sizing, which allows the controller to transfer operands to or from the selected address spaces while automatically determining the data bus width. On which part of the data bus the data is actually placed is determined by the data size, bus width and start address. The table below provides a detailed description of the actual bus operation.

Note1:If two memories with different bus widths are assigned to consecutive addresses, do not execute an instruction that accesses the addresses crossing the boundary between those memories. Otherwise, a read/write operation might not be performed correctly

Note2: Upon reset, the bus width specification bits of the control register for the CS2 space (B2CSH <B2BUS1:0>) becomes undefined, this bit must be set before accessing the external CS2 spaces.

| Operand Data | Operand           | Memory Data    | CPU            |            | CPU        | Data       |            |
|--------------|-------------------|----------------|----------------|------------|------------|------------|------------|
| Size (Bit)   | Start<br>Address  | Size<br>(Bit)  | Address        | D32 to D24 | D23 to D16 | D15 to D8  | D7 to D0   |
|              | 4n + 0            | 8/16           | 4n + 0         | XXXXX      | XXXXX      | XXXXX      | b7 to b0   |
|              | 4n + 1            | 8              | 4n + 1         | xxxxx      | xxxxx      | xxxxx      | b7 to b0   |
|              |                   | 16             | 4n + 1         | xxxxx      | XXXXX      | b7 to b0   | xxxxx      |
| 8            | 4n + 2            | 8/16           | 4n + 2         | xxxxx      | xxxxx      | xxxxx      | b7 to b0   |
|              | 4n + 3            | 8              | 4n + 3         | xxxxx      | xxxxx      | xxxxx      | b7 to b0   |
|              |                   | 16             | 4n + 3         | xxxxx      | xxxxx      | b7 to b0   | xxxxx      |
|              | 4n + 0            | 8              | (1) 4n + 0     | xxxxx      | xxxxx      | xxxxx      | b7 to b0   |
|              |                   |                | (2) 4n + 1     | xxxxx      | XXXXX      | xxxxx      | b15 to b8  |
|              |                   | 16             | 4n + 0         | xxxxx      | xxxxx      | b15 to b8  | b7 to b0   |
|              | 4n + 1            | 8              | (1) 4n + 1     | xxxxx      | xxxxx      | xxxxx      | b7 to b0   |
|              |                   |                | (2) 4n + 2     | xxxxx (    | XXXXX      | xxxxx      | b15 to b8  |
|              |                   | 16             | (1) 4n + 1     | xxxxx      | xxxxx      | b7 to b0   | xxxxx      |
| 16           |                   |                | (2) 4n + 2     | XXXXX      | xxxxx      | xxxxx      | b15 to b8  |
| 16           | 4n + 2            | 8              | (1) 4n + 2     | XXXXX      | xxxxx      | XXXXX      | b7 to b0   |
|              |                   |                | (2) 4n + 1     | xxxxx      | → xxxxx    | xxxxx      | b15 to b8  |
|              |                   | 16             | 4n + 2         | xxxxx      | xxxxx      | b15 to b8  | b7 to b0   |
|              | 4n + 3            | 8              | (1) 4n + 3     | XXXXX      | xxxxx      | XXXXX      | b7 to b0   |
|              |                   |                | (2) 4n + 4     | (/xxxxx    | xxxxx      | xxxxx      | b15 to b8  |
|              |                   | 16             | (1) 4n + 3     | XXXXX      | XXXXX.     | b746,60)   | xxxxx      |
|              |                   |                | (2) 4n +(4     | xxxxx      | xxxxx      | xxxxx      | b15 to b8  |
|              | 4n + 0            | 8              | (1) 4n + 0     | xxxxx      | xxxxx      | xxxxx      | b7 to b0   |
|              |                   |                | (2) 4n + 1     | > xxxxx    | xxxxx      | ) xxxxx    | b15 to b8  |
|              |                   |                | (3) 4n + 2     | XXXXX      | XXXXX      | xxxxx      | b23 to b16 |
|              |                   |                | (4) 4n + 3     | XXXXX      | XXXXX      | xxxxx      | b31 to b24 |
|              |                   | 16             | (1) 4n +0      | XXXXX      | (XXXXX)    | b15 to b8  | b7 to b0   |
|              |                   | Z              | (2) 4n + 2     | XXXXX      | XXXXX      | b31 to b24 | b23 to b16 |
|              | 4n + 1            | 8              | (1) 4n + 0     | /          | xxxxx      | XXXXX      | b7 to b0   |
|              |                   |                | (2) 4n + 1     | XXXXX      | xxxxx      | XXXXX      | b15 to b8  |
|              |                   |                | \ \ (3) 4n + 2 | xxxxx      | // xxxxx   | XXXXX      | b23 to b16 |
|              |                   |                | // (4) 4n + 3  | xxxxx      | xxxxx      | XXXXX      | b31 to b24 |
|              |                   | (16)           | (1) 4n + 1     | XXXXX      | xxxxx      | b7 to b0   | XXXXX      |
|              |                   |                | (2) 4n + 2     | \\xxxxx    | xxxxx      | b23 to b16 | b15 to b8  |
| 32           |                   |                | (3) 4n + 4     | xxxxx      | xxxxx      | xxxxx      | b31 to b24 |
| 02           | 4n + 2            | $(\bigcirc)$ 8 | (1) 4n/+2      | xxxxx      | xxxxx      | xxxxx      | b7 to b0   |
|              |                   | $(\vee/))$     | (2) 4n + 3     | ×xxxx      | xxxxx      | xxxxx      | b15 to b8  |
|              |                   |                | (3) 4n+4       | XXXXX      | xxxxx      | XXXXX      | b23 to b16 |
|              | (( )=             |                | (4) 4n/+ 5)    | XXXXX      | xxxxx      | XXXXX      | b31 to b24 |
|              |                   | 16             | (1) 4n + 2     | XXXXX      | XXXXX      | b15 to b8  | b7 to b0   |
|              |                   |                | (2) 4n + 4     | XXXXX      | XXXXX      | b31 to b24 | b23 to b16 |
|              | 4n + 3            | 8              | (1) 4n/+ 3     | XXXXX      | XXXXX      | XXXXX      | b7 to b0   |
| $\langle$    | $\langle \rangle$ |                | (2) 4n + 4     | XXXXX      | XXXXX      | XXXXX      | b15 to b8  |
|              | >                 | _              | (3) 4n + 5     | XXXXX      | XXXXX      | XXXXX      | b23 to b16 |
|              | <u> </u>          |                | (4) 4n + 6     | XXXXX      | XXXXX      | XXXXX      | b31 to b24 |
|              |                   | <b>₹16</b> \   | (1) 4n + 3     | xxxxx      | xxxxx      | b7 to b0   | XXXXX      |
|              | ))                |                | (2) 4n + 4     | XXXXX      | xxxxx      | b23 to b16 | b15 to b8  |
|              |                   |                | (3) 4n + 6     | XXXXX      | XXXXX      | XXXXX      | b31 to b24 |

The input data placed on the data bus indicated by this symbol is ignored during a read operation. During a write operation, the bus is in the high-impedance state, and the write strobe signal remains inactive.

#### (4) Wait control

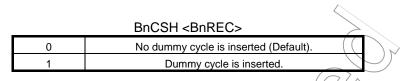
The external bus cycle completes in two states at minimum (100 ns at  $f_{\rm SYS}$  = 20 MHz) without inserting a wait state.

Setting up the BnCSL<BnWW2:BnWW0> specifies the number of wait states to be inserted in a write cycle, and setting the <BnWR2:BnWR0> bits specifies the number of wait states to be inserted in a read cycle. The external bus cycle can be programmed as follows;

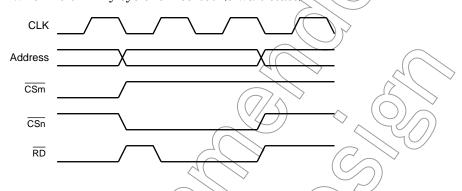
BnCSL Register <BnWW2:BnWW0>/<BnWR2:BnWR0>

|       | 7,21           |       |                                                         |  |  |  |
|-------|----------------|-------|---------------------------------------------------------|--|--|--|
| BnWW2 | BnWW1          | BnWW0 | Number of Wait States                                   |  |  |  |
| BnWR2 | BnWR1          | BnWR0 | 14diffici di valt diates                                |  |  |  |
| 0     | 0              | 1     | 2states (0 wait state), fixed wait-state mode           |  |  |  |
| 0     | 1              | 0     | 3states (1 wait state), fixed wait-state mode (Default) |  |  |  |
| 1     | 0              | 1     | 4states (2 wait states), fixed wait-state mode          |  |  |  |
| 1     | 1              | 0     | 5states (3 wait states), fixed wait-state mode          |  |  |  |
| 1     | 1              | 1     | 6states (4 wait states), fixed wait-state mode          |  |  |  |
| 0     | 1              | 1     | WAIT pin input mode                                     |  |  |  |
| Oth   | er than the ab | ove   | Reserved                                                |  |  |  |

# (i) Fixed wait-state mode


The bus cycle is completed in the specified number of states. The number of states can be selected from 2 (0 wait state) through 6 (4 wait states).

# (ii) WAIT pin input mode

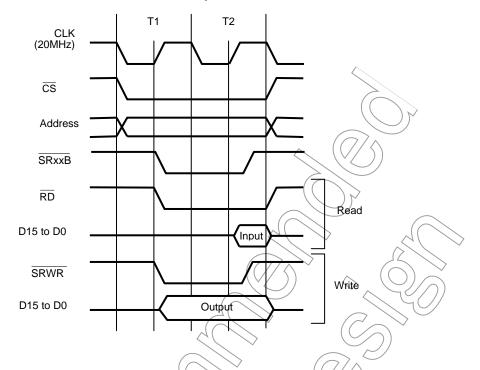

In this mode, the WAIT signal is sampled. A wait state is continued to be inserted while the WAIT signal is sampled active. The minimum bus cycle in this mode is two states. The bus cycle is completed if the wait signal is non-active ("High" level) at the second states. The bus cycle is extended as the wait signal remains active after second states.

### (5) Insert Recovery cycle

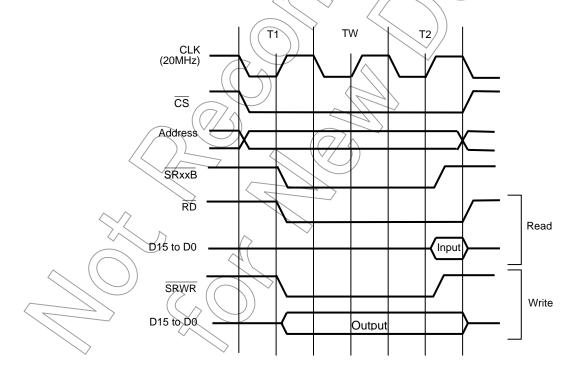
If the plural memory which Data-output-floating-time ( $t_{DF}$ ) is long (the external ROM and etc.) are set, it is necessary to consider each other's  $t_{DF}$  times. However, if BnCSH<BnREC> is set, you can insert dummy cycle of 1-state just before the first bus cycle which start accessing to other CS space.



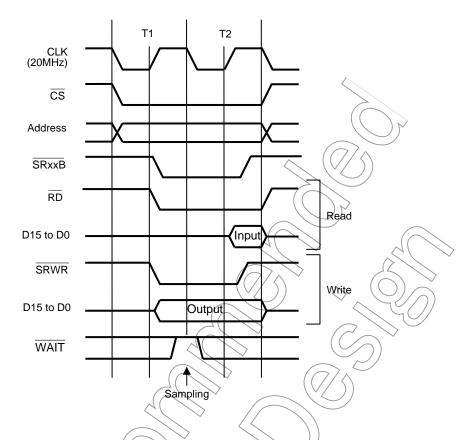
When no dummy cycle is inserted (0 wait state)



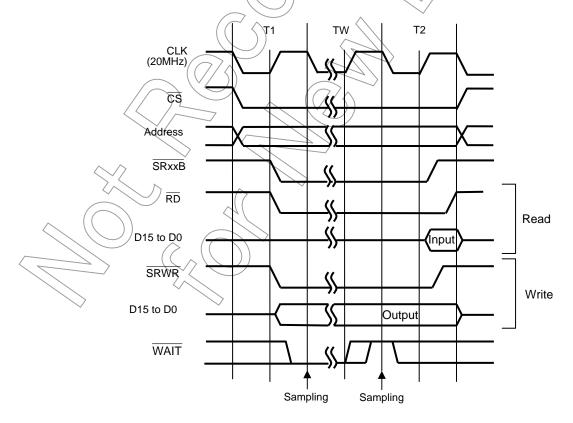

• When a dummy cycle is inserted (0 wait state)



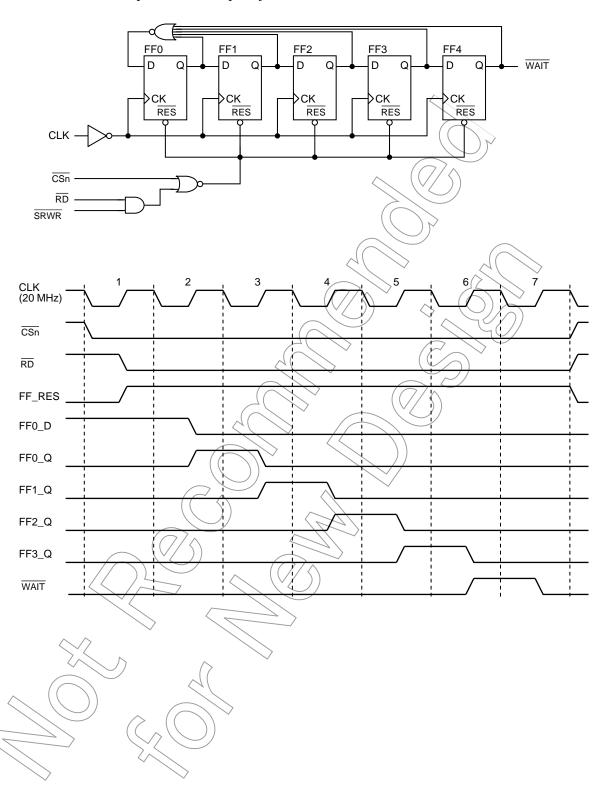

# (6) Basic bus timing


• External bus read/write bus cycle (0 wait state)




• External bus read/write bus cycle (1 wait state)




• External bus read/write cycle (0 wait state at  $\overline{\text{WAIT}}$  pin input mode)



• External bus read/write cycle (n wait state at WAIT pin input mode)



• Example of WAIT input cycle (5 wait state)



# 3.6.4 Controlling the Page Mode Access to ROM

This section describes page mode access operations to ROM and the required register settings. The page mode operation to ROM is specified by PMEMCR.

#### (1) Operations and register settings

The TMP92CY23/CD23A supports page mode accesses to ROM. Only the CS2 space can be configured for this mode of access.

The page mode operation to ROM is specified by the Page ROM Control register, PMEMCR.

Setting the PMEMCR<OPGE> bit to "1" sets the mode of memory access to the CS space to page mode.

The number of cycles required for a read cycle is specified by the PMEMCR<OPWR1:0> bits.

| PMEMCR <opwr1:opwr0></opwr1:opwr0> |
|------------------------------------|
|------------------------------------|

| OPWR1 | OPWR0 | Number of Cycles in Page Mode  |
|-------|-------|--------------------------------|
| 0     | 0     | 1 cycle (n+1-1-1 mode) (n ≥ 2) |
| 0     | 1     | 2 cycle (n-2-2-2 mode) (n ≥ 3) |
| 1     | 0     | 3 cycle (n-3-3-3 mode) (n ≥ 4) |
| 1     | 1     | Reserved                       |

Note: Specify the number of wait state "n" using the control register (B2CSL) for C\$2 space.

The page size (the number of bytes) of ROM as seen from the CPU is determined by PMEMCR<PR1:PR0> When the specified page boundary is reached, the controller terminates the page read operation. The first data of the next page is read in the normal mode. Then, the following data is read again in page mode.

PMEMCR <PR1:PR0>

| PR1                                    | PR0 | ROM Page Size |
|----------------------------------------|-----|---------------|
| // 0)                                  | 0 ^ | 64 bytes      |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 7 1 | 32 bytes      |
| 1                                      | Q   | 16 bytes      |
| 1                                      | 1   | 8 bytes       |

# (2) Signal timing pulse

A0 to A23

CS2

tAD3

tAD2

tA

Figure 3.6.1 Timing Pulse diagram (when using a 8-bit setting)

TOSHIBA TMP92CY23/CD23A

### 3.6.5 List of Registers

The memory control registers and the settings are described as follows. For the addresses of the registers, see Section 5 "Table of Special Function Registers (SFRs)".

#### (1) Control registers

The control register is a pair of BnCSL and BnCSH. ("n" is a number of the CS space.) BnCSL has the same configuration regardless of the CS space. In BnCSH, only B2CSH which is corresponded to the CS2 space has a different configuration from the others.

| ╸. | $\sim$ |
|----|--------|
|    |        |
|    |        |

|             | 7 | 6     | 5     | 4     | 3 2   | 1           | 0     |
|-------------|---|-------|-------|-------|-------|-------------|-------|
| Bit symbol  |   | BnWW2 | BnWW1 | BnWW0 | BnWR2 | BnWR1       | BnWR0 |
| Read/Write  |   |       | W     |       |       | W           |       |
| Reset State |   | 0     | 1     | 0     | 0     | \(\lambda\) | > 0   |

<BnWW2:0> Specifies the number of write waits.

001 = 2 states (0 waits) access

101 = 4 states (2 waits) access

111 = 6 states (4 waits) access

Others = (Reserved)

<BnWR2:0> Specifies the number of read waits.

001 = 2 states (0 waits) access

101 = 4 states (2 waits) access

111 = 6 states (4 waits) access

Others = Reserved

010 = 3 states (1 wait) access

110 = 5 states (3 waits) access

011 WAIT pin input mode

010 = 3 states (1 wait) access 110 = 5 states (3 waits) access

011 = WAIT pin input mode

### B2CSH

|             | 7   | 6                     | √ 5  | 4 🚫   | 3     | 2     | 1         | 0         |
|-------------|-----|-----------------------|------|-------|-------|-------|-----------|-----------|
| Bit symbol  | B2E | B2M                   | // - | B2REC | B2OM1 | B2OM0 | B2BUS1    | B2BUS0    |
| Read/Write  |     | $(\bigcirc)$          |      | \\N   | ĭ     |       |           |           |
| Reset State |     | $( \checkmark (_0) )$ | 0    | 0     | 0     | 0     | Undefined | Undefined |

<B2E>: Enable bit

0 = No chip select signal output.

1 = Chip select signal output (Default).

Note: After reset, only the enable bit <B2E> of B2CS register is valid ("1").

<B2M>: CS space specification

0 = Sets the CS2 space to addresses 000000H to FFFFFH (Default).

1 = Sets the CS2 space to programmable.

Note: After reset, the CS2 space is set to addresses 000000H to FFFFFFH.

<B2REC>: Sets the dummy cycle for data output recovery time.

0 = Not insert a dummy cycle (Default).

1 = Insert a dummy cycle

<B2OM1:0>

00 = SRAM or ROM (Default)

Others = Reserved

<B2BUS1:0> Sets the data bus width.

00 = 8 bits

01 = 16 bits

10 = Reserved

11 = Reserved

Note: The value of <B2BUS> bit is set according to the state of AM<1:0> pin after reset.

TOSHIBA TMP92CY23/CD23A

BnCSH (n = 0, 1, 3)

|             | 7   | 6 | 5 | 4     | 3     | 2     | 1      | 0      |
|-------------|-----|---|---|-------|-------|-------|--------|--------|
| Bit symbol  | BnE |   |   | BnREC | BnOM1 | BnOM0 | BnBUS1 | BnBUS0 |
| Read/Write  | W   |   |   |       |       | W     | -      |        |
| Reset State | 0   |   |   | 0     | 0     | 0     | 0      | 0      |

<BnE>: Enable bit

0 = No chip select signal output (Default).

1 = Chip select signal output.

Note: After reset, only the enable bit B2E of B2CS register is valid ("1").

<BnREC>: Sets the dummy cycle for data output.

0 = Not insert a dummy cycle (Default).

1 = Insert a dummy cycle.

<BnOM1:0>

00 = SRAM or ROM (Default)

01 = Reserved

10 = Reserved

11 = Reserved

<BnBUS1:0> Sets the data bus width.

00 = 8 bits (Default)

01 = 16 bits

10 = Reserved

11 = Reserved

BEXCSL

|             |   |        |                         | 71Q0 <del>L</del> | - 1 1         | // \ \ \     |        |        |
|-------------|---|--------|-------------------------|-------------------|---------------|--------------|--------|--------|
|             | 7 | 6      | 5                       | 4                 | 3             | $\bigcirc_2$ | 1      | 0      |
| Bit symbol  |   | BEXWW2 | BEXWW                   | BEXWWØ            |               | BEXWR2       | BEXWR1 | BEXWR0 |
| Read/Write  |   |        | $\bigcirc$ W $\bigcirc$ |                   | $\mathcal{M}$ |              | W      |        |
| Reset State |   | 0      | (\ 1))                  | 0                 | ¥             | 0            | 1      | 0      |

<BEXWW2:0> Specifies the number of write waits.

001 = 2 states (0 waits) access

101 = 4 states (2 waits) access

111 = 6 states (4 waits) access

Others = (Reserved)

<BEXWR2:0> Specifies the number of read waits.

001 = 2 states (0 waits) access

101 = 4 states (2 waits) access

111 = 6 states (4 waits) access

Others 

Reserved

010 = 3 states (1 wait) access

110 = 5 states (3 waits) access

011 = WAIT pin input mode

010 = 3 states (1 wait) access

110 = 5 states (3 waits) access

 $011 = \overline{WAIT}$  pin input mode

|--|

|             | )) 7   | 6             | <b>&gt;</b> 5 | 4      | 3      | 2      | 1       | 0       |
|-------------|--------|---------------|---------------|--------|--------|--------|---------|---------|
| Bit symbol  | £      | $\mathcal{H}$ |               | BEXREC | BEXOM1 | BEXOM0 | BEXBUS1 | BEXBUS0 |
| Read/Write  |        | $\frac{1}{2}$ |               |        |        | W      | -       |         |
| Reset State | $\sim$ |               |               | 0      | 0      | 0      | 0       | 0       |
|             |        |               |               |        |        |        |         |         |

<BEXOM1:0>

00 = SRAM or ROM (Default)

01 = Reserved

10 = Reserved

11 = Reserved

<BEXBUS1:0>

00 = 8 bits (Default)

01 = 16 bits

10 = Reserved

11 = Reserved

#### (2) Block address register

A start address and an address area of the CS spaces are specified by the Memory Start Address Register (MSARn) and the Memory Address Mask Register (MAMRn). The memory start address register sets all start address similarly regardless of the CS spaces.

The bit to be set by the MAMRn is depended on the CS spaces.

| MSARn (n = 0 to 3) |
|--------------------|
|--------------------|

|             |       |       |       | ,     |        |       |       |       |  |  |
|-------------|-------|-------|-------|-------|--------|-------|-------|-------|--|--|
|             | 7     | 6     | 5     | 4     | 3      | 2     | 1     | 0     |  |  |
| Bit symbol  | MnS23 | MnS22 | MnS21 | MnS20 | Mn\$19 | MnS18 | MnS17 | MnS16 |  |  |
| Read/Write  | R/W   |       |       |       |        |       |       |       |  |  |
| Reset State | 1     | 1     | 1     | 1     | 1 ( (  | 7     | 1     | 1     |  |  |

#### <MnS23:16> Sets a start address.

Sets the start address of the CS spaces. <MnS23:16> are corresponding to the address A23 to A16.

| M | Α | М | R۱ |
|---|---|---|----|
|   |   |   |    |

|             | 7     | 6     | 5     | 4                        | 3       | 2     | (1)              | 0    |  |  |
|-------------|-------|-------|-------|--------------------------|---------|-------|------------------|------|--|--|
| Bit symbol  | M0V20 | M0V19 | M0V18 | M0V17                    | > M0V16 | M0V15 | M0V14 to<br>M0V9 | M0V8 |  |  |
| Read/Write  | RW    |       |       |                          |         |       |                  |      |  |  |
| Reset State | 1     | 1     | 1 (   | $\langle \gamma \rangle$ | 1 (/    | 7/4   | 1                | 1    |  |  |

#### <M0V20:8>

Enables or masks comparison of the addresses. <M0V20:85 are corresponding to addresses A20 to A8. <M0V14:95 are corresponding to address A14 to A9 by 1 bit. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

# MAMR1

|             |        | 1 1   | 1 1        |          |       |       |                  |      |
|-------------|--------|-------|------------|----------|-------|-------|------------------|------|
|             | 7      | 6     | <u>/</u> 5 | 4        | 3     | 2     | 1                | 0    |
| Bit symbol  | M1V21  | M1V20 | M1V19      | M1V18    | M1V17 | M1V16 | M1V15 to<br>M1V9 | M1V8 |
| Read/Write  | // ) [ |       |            | ✓/ )) R/ | W     |       |                  |      |
| Reset State |        | 1     | 1/         |          | 1     | 1     | 1                | 1    |

#### <M1V21:8>

Enables or masks comparison of the addresses. <M1V21:8> are corresponding to addresses A21 to A8. <M1V15:9> are corresponding to address A15 to A9 by 1 bit. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

MAMRn (n = 2 to 3)

|             | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |  |  |  |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| Bit symbol  | MnV22 | MnV21 | MnV20 | MnV19 | MnV18 | MnV17 | MnV16 | MnV15 |  |  |  |
| Read/Write  | R/W   |       |       |       |       |       |       |       |  |  |  |
| Reset State | 1     | 1     | 1     | 1     | 1     | .1    | 1     | 1     |  |  |  |

#### <MnV22:15>

Enables or masks comparison of the addresses. <MnV22:15> are corresponding to addresses A22 to A15. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

After a reset, MASR0 to MSAR3 and MSAR0 to MAMR3 are set to "FFH". B0CSH<B0E>, B1CSH<B1E>, and B3CSH<B3E> are reset to "0". This disabling the CS0, CS1, and CS3 areas. However, B2CSH<B2M> is reset to "0" and B2CSH<B2E> to "1", and CS2 is enabled 000000H to FFFFFFH. Also the bus width and number of waits specified in BEXCSH/L are used for accessing address except the specified CS0 to CS3

# (3) Page ROM control register (PMEMCR)

The page ROM control register sets page ROM accessing. ROM page accessing is executed only in CS2 space.

#### **PMEMCR**

|             | 7 | 6 | 5 | 4     | 3     | 2     | 1          | 0   |  |
|-------------|---|---|---|-------|-------|-------|------------|-----|--|
| Bit symbol  |   |   |   | OPGE  | OPWR1 | OPWR0 | PR1        | PR0 |  |
| Read/Write  |   |   |   | R/W > |       |       |            |     |  |
| Reset State |   |   |   | 0     | 0     | Q     | <u>)</u> 1 | 0   |  |

<OPGE> enable bit

0 = No ROM page mode accessing (Default)

1 = ROM page mode accessing

<OPWR1:0> Specifies the number of waits.

00 = 1 state (n-1-1-1 mode) (n  $\geq$  2) (Default)

01 = 2 states (n-2-2-2 mode) (n  $\geq$  3)

10 = 3 states (n-3-3-3 mode) (n  $\ge 4$ )

11 = Reserved

Note: Set the number of waits "n" to the control register (BnCSL) in CS spaces.

<PR1:0> ROM page size

00 = 64 bytes

01 = 32 bytes

10 = 16 bytes (Default)

11 = 8 bytes

Table 3.6.1 Control Register (1/2)

| Process   Proc | i i      |             |              |                                   |               |                                        |                      |          |             |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|--------------|-----------------------------------|---------------|----------------------------------------|----------------------|----------|-------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |             | 7            | 6                                 | 5             | 4                                      | 3                    | 2        | 1           | 0       |
| Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B0CSL    | Bit symbol  |              | B0WW2                             | B0WW1         | B0WW0                                  |                      | B0WR2    | B0WR1       | B0WR0   |
| Bit symbol   BoE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0140H)  | Read/Write  |              |                                   | W             |                                        |                      |          | W           |         |
| MAMRO   MAMRO   Move             | Reset State |              | 0                                 | 1             | 0                                      |                      | 0        | 1           | 0       |
| Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B0CSH    | Bit symbol  | B0E          | _                                 | ı             | B0REC                                  | B0OM1                | BOOMQ    | B0BUS1      | B0BUS0  |
| MANRO   Bit symbol   MOV20   MOV19   MOV18   MOV17   MOV16   MGV15   MOV14-V9   MOV8   Read/Write   Rest State   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0141H)  | Read/Write  |              |                                   |               | V                                      | V                    |          |             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Reset State | 0            | 0 (Note1)                         | 0 (Note1)     | 0                                      | 0                    | 0        | )           | 0       |
| Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MAMR0    | Bit symbol  | M0V20        | M0V19                             | M0V18         | M0V17                                  | M0V16                | M0V15    | M0V14-V9    | M0V8    |
| MSARO   Bit symbol   MOS23   MOS22   MOS21   MOS20   MOS18   MOS17   MOS16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0142H)  | Read/Write  |              |                                   |               | R/                                     | w 🔇                  | (        |             |         |
| Read/Write                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | Reset State | 1            | 1                                 | 1             | 1                                      | 1 >                  |          | 1           | 1       |
| Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MSAR0    | Bit symbol  | M0S23        | M0S22                             | M0S21         | M0S20                                  | M0S19                | M0S18    | M0S17       | M0S16   |
| B1CSL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0143H)  | Read/Write  |              |                                   |               | R/                                     | W                    | <i>)</i> |             |         |
| O144H  Read/Write Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Reset State | 1            | 1                                 | 1             | 1                                      |                      | 11       | 1           | 1       |
| Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1CSL    | Bit symbol  |              | B1WW2                             | B1WW1         | B1WW0                                  |                      | B1WR2    | B1WR1       | B1WR0   |
| B1CSH   Read/Write   Reset State   O   O (Note1)   O (Note1)   O   O   O   O   O   O   O   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0144H)  | Read/Write  |              |                                   | W             |                                        |                      |          | N/          |         |
| Column   Read/Write   Reset State   O   O (Note1)   O (Note1)   O   O   O   O   O   O   O   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | Reset State |              | 0                                 | 1             | 0 (                                    |                      | 0 ((     | )) <u>)</u> | 0       |
| Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1CSH    | Bit symbol  | B1E          | _                                 | _             | B1REC                                  | B1OM1                | B1OM0    | B1BUS1      | B1BUS0  |
| MAMR1 (0146H)         Bit symbol (0146H)         M1V21         M1V20         M1V19         M1V18         M1V17         M1V16         M1V15-V9         M1V8           MSAR1 (0147H)         Read/Write Reset State 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0145H)  | Read/Write  |              |                                   |               |                                        | V.                   |          |             |         |
| C0146H   Read/Write   Reset State   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Reset State | 0            | 0 (Note1)                         | 0 (Note1)     | 11                                     | 0                    |          | √ 0         | 0       |
| Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MAMR1    | _           | M1V21        | M1V20                             | M1V19         | M1V18                                  | M1V17                | M1V16/   | M1V15-V9    | M1V8    |
| MSAR1 (0147H)         Bit symbol (0147H)         M1S23         M1S22         M1S21         M1S20         M1S19         M1S18         M1S17         M1S16           B2CSL (0148H)         Reset State         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0146H)  | Read/Write  |              |                                   | (             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1 (                  | 7/^      | ı           |         |
| CO147H    Read/Write   Reset State   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | Reset State |              |                                   |               | $\searrow$                             |                      | -        | 1           | 1       |
| Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |             | M1S23        | M1S22                             | M1S21         | 7                                      | /                    | M1S18    | M1S17       | M1S16   |
| B2CSL (0148H)         Bit symbol         B2WW2         B2WW1         B2WW0         B2WR2         B2WR1         B2WR0           Read/Write         W         W         W         W         W         W         W         B2CSH         M2V21         M2V21         M2V20         M2V19         M2V18         M2V17         M2V16         M2V15           MSAR2 (014AH)         Read/Write         RXW         RXW         Reset State         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>(0147H)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0147H)  |             |              |                                   |               |                                        |                      |          |             |         |
| Read/Write   Reset State   Read/Write   Read/Write   Read/Write   Read/Write   Reset State   Read/Write   Reset State   Read/Write   Re |          |             | 1            |                                   | 1             |                                        | $\frac{1}{\sqrt{2}}$ |          |             |         |
| Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | •           |              | B2WW2                             |               | B2WW0                                  | $\longrightarrow$    | B2WR2    |             | B2WR0   |
| B2CSH (0149H) Read/Write Reset State 1 0 0 0 (Note1) 0 0 0 Note3 Note3 Note3 MAMR2 (014AH) Read/Write Reset State 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0148H)  |             | //           |                                   |               |                                        |                      | 0        |             | 0       |
| Read/Write   Reset State   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DOCCLI   |             | DOE          | 1//                               | <del>//</del> |                                        | POOM                 |          |             |         |
| Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | •           | BZE          | BZW)                              |               |                                        | ~                    | B2OIVIU  | BZBUST      | B2BUS0  |
| MAMR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (014911) |             | 1            | $\langle \langle \rangle \rangle$ | 0 (Note1) /   |                                        | ·                    | 0        | Note3       | Note3   |
| Read/Write   Reset State   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAMPS    |             |              |                                   |               | 1// ()                                 |                      |          |             |         |
| Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |             | / IVIZ V Z Z | TVIZVZI                           | IME VEO       | $\overline{}$                          |                      | IVIZVII  | IVIZVIO     | IVIZVIO |
| MSAR2 (014BH)         Bit symbol         M2S23         M2S22         M2S21         M2S20         M2S19         M2S18         M2S17         M2S16           Read/Write         Read/Write         R/W         R/W         Reset State         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (01-711) |             | 1            | 1 (                               |               |                                        |                      | 1        | 1           | 1       |
| (014BH)         Read/Write         R/W           Reset State         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MSAR2    |             | M2S23        | M2S22                             | M2S21         |                                        |                      |          |             |         |
| Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |             | 7            |                                   |               |                                        |                      |          |             |         |
| Read/Write                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,        | /           |              | 1 /                               | 1             |                                        |                      | 1        | 1           | 1       |
| (014CH)         Read/Write         W         W           Reset State         0         1         0         0         1         0           B3CSH         Bit symbol         B3E         -         -         B3REC         B3OM1         B3OM0         B3BUS1         B3BUS0           (014DH)         Read/Write         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B3CSL    | Bit symbøl  |              | B3WW2                             | B3WW1         | B3WW0                                  |                      | B3WR2    | B3WR1       | B3WR0   |
| Reset State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |             |              |                                   | W             |                                        |                      |          | •           |         |
| W         W           Reset State         0         0 (Note)         0 (Note)         0         0         0         0         0           MAMR3         Bit symbol         M3V22         M3V21         M3V20         M3V19         M3V18         M3V17         M3V16         M3V15           (014EH)         Read/Write         R/W         Reset State         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |             | 7            | (0)                               | \ 1           | 0                                      |                      | 0        | 1           | 0       |
| MAMR3         Reset State         0         0 (Note)         0 (Note)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B3CSH -  | Bit symbol  | ВЗЕ 🤇        | $\wedge$                          | / –           | B3REC                                  | B3OM1                | ВЗОМ0    | B3BUS1      | B3BUS0  |
| MAMR3         Bit symbol         M3V22         M3V21         M3V20         M3V19         M3V18         M3V17         M3V16         M3V15           (014EH)         Read/Write         R/W           Reset State         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (014DH)  | Read/Write  | $\geq$       |                                   |               | V                                      | V                    |          |             |         |
| Read/Write         R/W           Reset State         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Reset State | 0            | 0 (Note)                          | 0 (Note)      | 0                                      | 0                    | 0        | 0           | 0       |
| Reset State         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th< td=""><td>MAMR3</td><td>Bit symbol</td><td>M3V22</td><td>M3V21</td><td>M3V20</td><td>M3V19</td><td>M3V18</td><td>M3V17</td><td>M3V16</td><td>M3V15</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MAMR3    | Bit symbol  | M3V22        | M3V21                             | M3V20         | M3V19                                  | M3V18                | M3V17    | M3V16       | M3V15   |
| MSAR3 Bit symbol M3S23 M3S22 M3S21 M3S20 M3S19 M3S18 M3S17 M3S16 (014FH) Read/Write R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (014EH)  | Read/Write  |              |                                   |               | R/                                     | W                    |          | ·           |         |
| (014FH) Read/Write R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | Reset State | 1            | 1                                 | 1             | 1                                      | 1                    | 1        | 1           | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MSAR3    | Bit symbol  | M3S23        | M3S22                             | M3S21         | M3S20                                  | M3S19                | M3S18    | M3S17       | M3S16   |
| Reset State 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (014FH)  | Read/Write  |              |                                   |               | R/                                     | W                    |          | i           |         |
| reset state 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Reset State | 1            | 1                                 | 1             | 1                                      | 1                    | 1        | 1           | 1       |

Table 3.6.2 Control Register (1/2)

BEXCSH (0159H)

BEXCSL (0158H)

PMEMCR (0166H)

|             |   | Tabl   | e 3.0.2 Coi | illoi Kegisi | Ci (1/2) |        |         |         |
|-------------|---|--------|-------------|--------------|----------|--------|---------|---------|
|             | 7 | 6      | 5           | 4            | 3        | 2      | 1       | 0       |
| Bit symbol  |   |        |             | BEXREC       | BEXOM1   | BEXOM0 | BEXBUS1 | BEXBUS0 |
| Read/Write  |   |        |             |              |          | W      |         |         |
| Reset State |   |        |             | 0            | 0        | 6      | 0       | 0       |
| Bit symbol  |   | BEXWW2 | BEXWW1      | BEXWW0       |          | BEXWR2 | BEXWR1  | BEXWR0  |
| Read/Write  |   |        | W           |              |          |        | )       |         |
| Reset State |   | 0      | 1           | 0            |          | 0      | 1       | 0       |
| Bit symbol  |   |        |             | OPGE         | OPWR1    | OPWR0  | PR1     | PR0     |
| Read/Write  |   |        |             |              |          | RW     |         |         |
| Reset State |   |        |             | 0            | 0 (      | 9      | 1       | 0       |

Note 1: Always write "0".

Note 2: A read-modify-write operation cannot be performed in BnC\$L, BnC\$H registers (n=0 to 3, EX).

Note3: Upon reset, these bits become undefined, this bit must be set before accessing the CS2 spaces.

#### 3.6.6 Notes

(1) Timing for the  $\overline{CS}$  and  $\overline{RD}$  signals.

If the load capacitance of the RD (Read) signal line is greater than that of the CS (Chip Select) signal line, the deassertion timing of the read signal is delayed, which may lead to an unintentional extension of a read cycle. Such an unintended read cycle extention, which is indicated as (a) in Figure 3.6.2 may cause a problem.

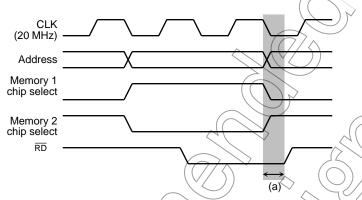



Figure 3.6.2 Delay Read Cycle of When the Read Signal is Delayed

Example: When using an externally connected flash EEPROM whose commands are compatible with the standard JEDEC commands, the toggle bit may not be read correctly. If the rising edge of the read signal in the cycle immediately preceding the flash EEPROM access cycle does not occur in time, a read cycle may be extended unintentilnally as indicated as indicated as (b) in Figure 3.6.3.

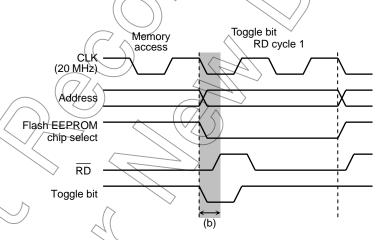
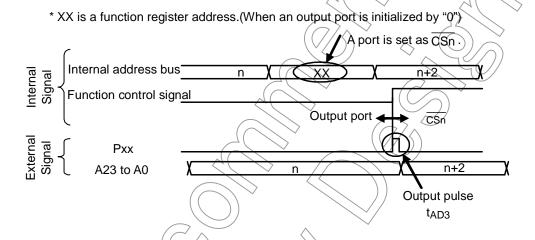



Figure 3.6.3 Flash EEPROM Toggle Bit Read Cycle

When the toggle bit is inverted due to this unexpected read cycle extension, the CPU read the toggle bit properly and it always reads the same value from the toggle bit.

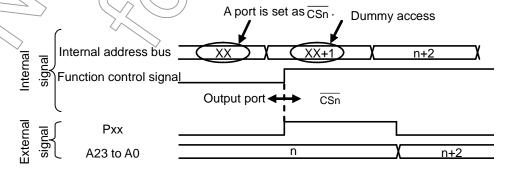

To avoid this situation, it is recommended to perform data polling.

(2) The cautions at the time of the functional change of a  $\overline{\text{CSn}}$ .

A chip select signal output has the case of a combination terminal with a general-purpose port function. In this case, an output latch register and a function control register are initialized by the reset action, and an object terminal is initialized by the port output ("1" or "0") by it.

### Functional change

Although an object terminal is changed from a port to a chip select signal output by setting up a function control register (PnFC register), the short pulse for several ns may be outputted to the changing timing. Although it does not become especially a problem when using the usual memory, it may become a problem when using a special memory.




#### The measure by software

The countermeasures in S/W for avoiding this phenomenon are explained.

Since CS signal decodes the address of the access area and is generated, an unnecessary pulse is outputted by access to the object CS area immediately after setting it as a CSn function. Then, if internal area is accessed also immediately after setting a port as CS function, an unnecessary pulse will not output.

- 1. Prohibition of use of an NMI function
- 2. The ban on interruption under functional change (DI command)
- 3. A dummy command is added in order to carry out continuous internal access.
- 4. (Access to a functional change register is corresponded by 16-bit command. (LDW command))



TOSHIBA TMP92CY23/CD23A

# 3.7 8-Bit Timers (TMRA)

The TMP92CY23/CD23A features 6 built-in 8-bit timers (TMRA0-TMRA5).

These timers are paired into three modules: TMRA01, TMRA23 and TMRA45. Each module consists of two channels and can operate in any of the following four operating modes.

- 8-bit interval timer mode
- 16-bit interval timer mode
- 8-bit programmable square wave pulse generation output mode (PPG: Variable duty cycle with variable period)
- 8-bit pulse width modulation output mode (PWM: Variable duty cycle with constant period)

Figure 3.7.1 to Figure 3.7.3 show block diagrams for TMRA01, TMRA23 and TMRA45.

Each channel consists of an 8-bit up counter, an 8-bit comparator and an 8-bit timer register. In addition, a timer flip-flop and a prescaler are provided for each pair of channels.

The operation mode and timer flip-flops are controlled by a five-byte SFR (special function registers).

Each of the three modules (TMRA01, TMRA23 and TMRA45) can be operated independently. All modules operate in the same manner, hence only the operation of TMRA01 is explained here.

Table 3.7.1 Registers and Pins for Each Module

| Specification    | Module                           | TMRA01                      | TMRA23                      | TMRA45                      |
|------------------|----------------------------------|-----------------------------|-----------------------------|-----------------------------|
| External pin     | Input pin for external clock     | TA0IN (Shared with PC0)     | None                        | None                        |
| External pill    | Output pin for timer             | TA1OUT<br>(Shared with P80) | TA3OUT<br>(Shared with P81) | TA5OUT<br>(Shared with P83) |
|                  | Timer RUN register )             | TA01RUN (1100H)             | TA23RUN (1108H)             | TA45RUN (1110H)             |
|                  | Timer register                   | TA0REG (1102H)              | TA2REG (110AH)              | TA4REG (1112H)              |
| SFR (Address)    | Timer register                   | TA1REG (1103H)              | TA3REG (110BH)              | TA5REG (1113H)              |
| Or it (/taarooo) | Timer mode register              | TA01MOD(1104H)              | TA23MOD(110CH)              | TA45MOD(1114H)              |
| _                | Timer flip-flop control register | TA1FFCR(1105H)              | TA3FFCR(110DH)              | TA5FFCR(1115H)              |

TOSHIBA TMP92CY23/CD23A

# 3.7.1 Block Diagrams

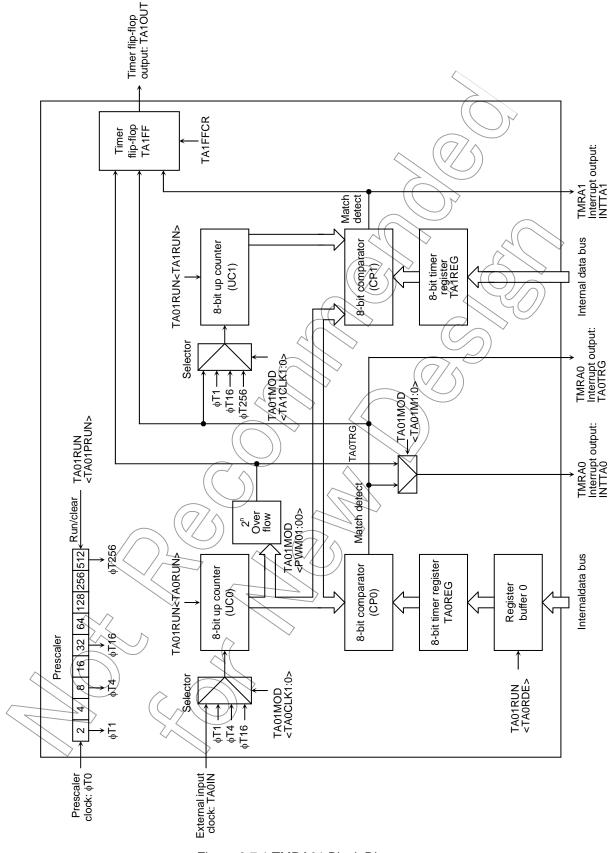



Figure 3.7.1 TMRA01 Block Diagram

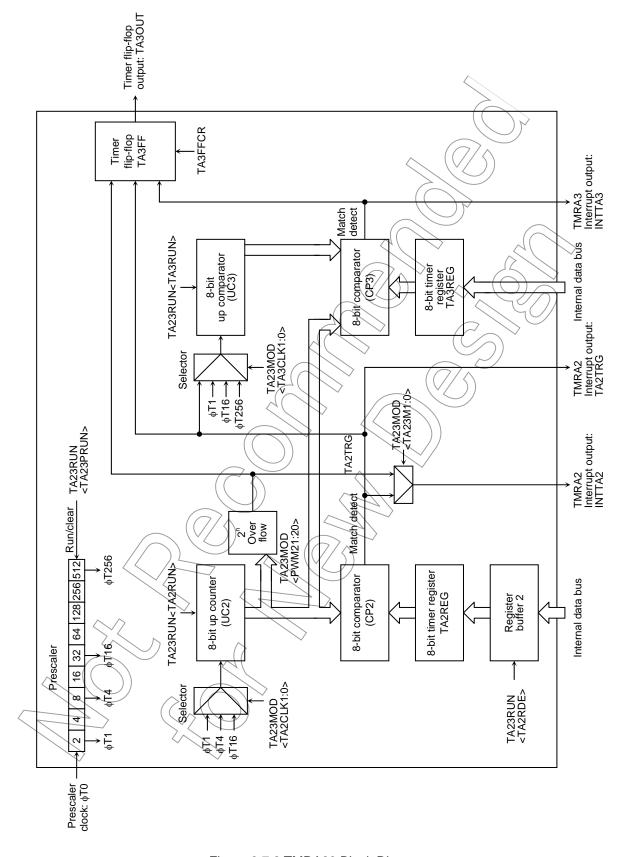



Figure 3.7.2 TMRA23 Block Diagram

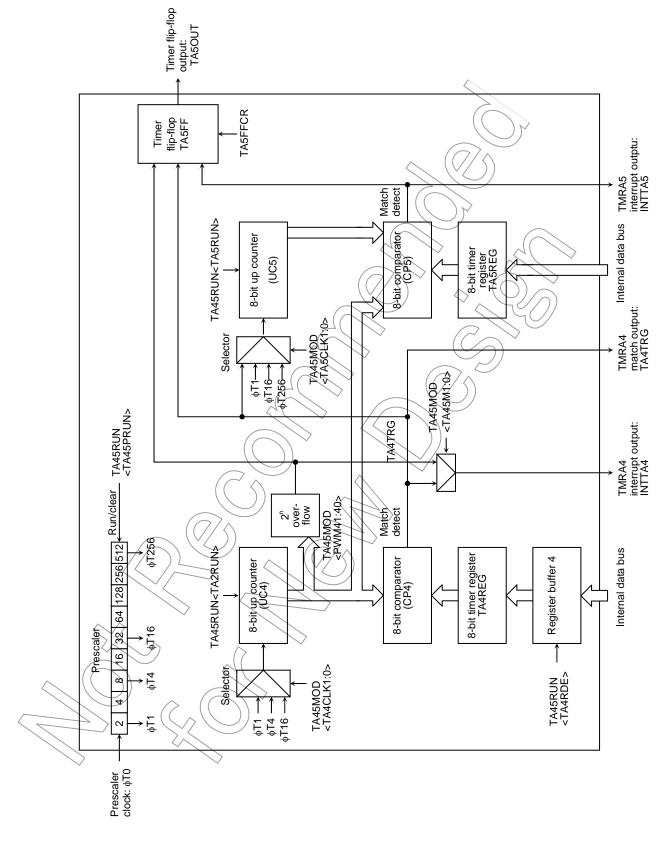



Figure 3.7.3 TMRA45 Block Diagram

### 3.7.2 Operation of Each Circuit

#### (1) Prescalers

A 9-bit prescaler generates the input clock to TMRA01.

The prescaler clock (φT0) is a divided clock (divided by 4) from the f<sub>FPH</sub>.

The prescaler's operation can be controlled using TA01RUN <TA0PRUN> in the timer control register. Setting <TA0PRUN> to "1" starts the count; setting <TA0PRUN> to "0" clears the prescaler to "0" and stops operation. Table 3.7.2 shows the various prescaler output clock resolutions.

| Table 3.7.2 | Prescaler Outpu | t Clock Res | olution | ì  |
|-------------|-----------------|-------------|---------|----|
|             |                 |             | / _ `   | ١. |

| Clock Value<br>SYSCR1<br><gear2:0></gear2:0> | System clock SYSCR1 | _   |          | Timer counter<br>TMRA pro<br>TAxMOD <ta< th=""><th>escaler</th><th></th></ta<> | escaler    |              |
|----------------------------------------------|---------------------|-----|----------|--------------------------------------------------------------------------------|------------|--------------|
|                                              | <sysck></sysck>     |     | φT1(1/2) | <b>∮</b> T4(1/8)                                                               | φT16(1/32) | φT256(1/512) |
| _                                            | 1 (fs)              |     | fs/8     | (fs/32)                                                                        | /fs/128    | fs/2048      |
| 000 (1/1)                                    |                     |     | fc/8     | fc/32                                                                          | fc/1/28    | fc/2048      |
| 001 (1/2)                                    |                     | 1/4 | fc/16    | fc/64                                                                          | fc/256     | fc/4096      |
| 010 (1/4)                                    | 0 (fc)              | 1/4 | fc/32    | fc/128                                                                         | fc/512     | fc/8192      |
| 011 (1/8)                                    |                     |     | fc/64    | fc/256                                                                         | fc/1024    | fc/16384     |
| 100 (1/16)                                   |                     |     | fc/128   | c/512 /                                                                        | fc/2048    | fc/32768     |

#### (2) Up counters (UC0 and UC1)

These are 8-bit binary counters which count up the input clock pulses for the clock specified by TA01MOD.

The input clock for UC0 is selectable and can be either the external clock input via the TA0IN pin or one of the three internal clocks  $\phi T1$ ,  $\phi T4$  or  $\phi T16$ . The clock setting is specified by the value set in TA01MOD $\leq$ TA0CLK1:0>.

The input clock for UC1 depends on the operation mode. In 16-bit timer mode, the overflow output from UC0 is used as the input clock. In any mode other than 16-bit timer mode, the input clock is selectable and can either be one of the internal clocks  $\phi$ T1,  $\phi$ T16 or  $\phi$ T256, or the comparator output (the match detection signal) from TMRA0.

For each interval timer the timer operation control register bits TA01RUN<TA0RUN> and TA01RUN<TA1RUN> can be used to stop and clear the up counters and to control their count. A reset clears both up counters, stopping the timers.

#### (3) Timer registers (TA0REG and TA1REG)

These are 8-bit registers, which can be used to set a time interval. When the value set in the timer register TA0REG or TA1REG matches the value in the corresponding up counter, the comparator match detect signal goes Active. If the value set in the timer register is 00H, the signal goes Active when the up counter overflows.

The TAOREG has a double buffer structure, making a pair with the register buffer.

The setting of the bit TA01RUN<TA0RDE> determines whether TA0REG's double buffer structure is enabled or disabled. It is disabled if <TA0RDE> = "0" and enabled if <TA0RDE> = "1".

When the double buffer is enabled, data is transferred from the register buffer to the timer register when a 2<sup>n</sup> overflow occurs in PWM mode, or at the start of the PPG cycle in PPG mode. Hence the double buffer cannot be used in timer mode.

A reset initializes <TAORDE> to "0", disabling the double buffer. To use the double buffer, write data to the timer register 0, set <TAORDE> to "1", and write the following data to the register buffer. Figure 3.7.4 show the configuration of TAOREG.

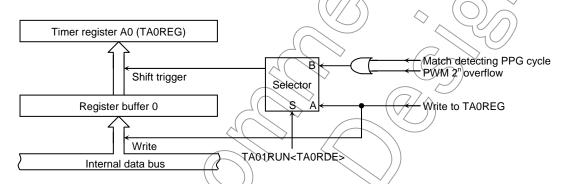



Figure 3.7.4 Configuration of TA0REG

Note: The same memory address is allocated to the timer register and the register buffer. When <TAORDE> = "0", the same value is written to the register buffer and the timer register; when <TAORDE> = "1", only the register buffer is written to.

The address of each timer register is as follows

TAOREG: 001102H TA1REG: 001103H

TA2REG: 00110AH TA3REG: 00110BH

TA4REG: 001112H TA5REG: 001113H

All these registers are write only and cannot be read.

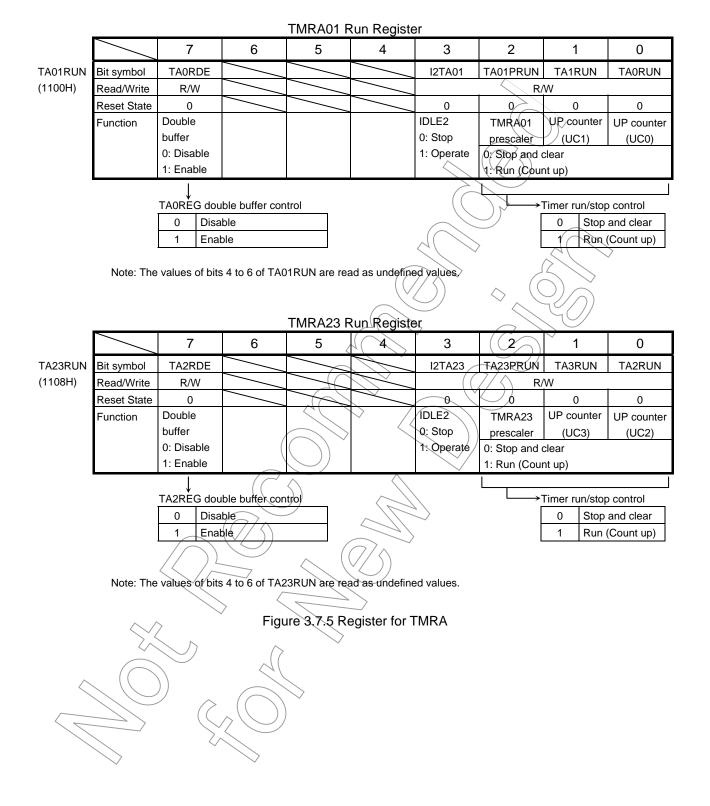
### (4) Comparator (CP0, CP1)

The comparator compares the value in an up counter with the value set in a timer register. If they match, the up counter is cleared to "0" and an interrupt signal (INTTA0 or INTTA1) is generated. If timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

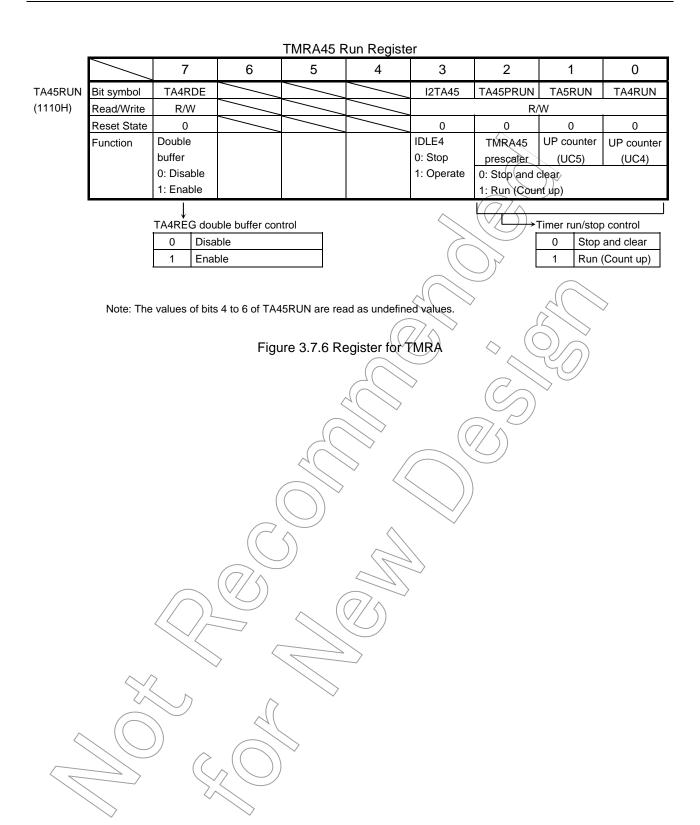
### (5) Timer flip-flop (TA1FF)

The timer flip-flop (TA1FF) is a flip-flop inverted by the match detect signals (8-bit comparator output) of each interval timer.

Whether inversion is enabled or disabled is determined by the setting of the bit TA1FFCR<TA1FFIE> in the timer flip-flops control register a reset clears the value of TA1FF to "0". Writing "01" or "10" to TA1FFCR<TA1FFCL'0> sets TA1FF to "0" or "1". Writing "00" to these bits inverts the value of TA1FF (this is known as software inversion).


The TA1FF signal is output via the TA1OUT pin (which can also be used as P80).

When this pin is used as the timer output, the timer (flip) flop should be set beforehand using the port 8 function register P8CR and P8FC.




TOSHIBA TMP92CY23/CD23A

#### 3.7.3 SFR



TOSHIBA TMP92CY23/CD23A



TMRA01 Mode Register

TA01MOD (1104H)

|             | TWI G TO MODE TO SISTER |         |                                    |       |                       |            |                            |           |
|-------------|-------------------------|---------|------------------------------------|-------|-----------------------|------------|----------------------------|-----------|
|             | 7                       | 6       | 5                                  | 4     | 3                     | 2          | 1                          | 0         |
| Bit symbol  | TA01M1                  | TA01M0  | PWM01                              | PWM00 | TA1CLK1               | TA1CLK0    | TA0CLK1                    | TA0CLK0   |
| Read/Write  |                         |         |                                    | R/    | W                     |            |                            |           |
| Reset State | 0                       | 0       | 0                                  | 0     | 0                     | 0          | 0                          | 0         |
| Function    | Operation me            | ode     | PWM cycle                          |       | Source clock          | for TMRA1  | Source clock               | for TMRA0 |
|             | 00: 8-bit time          | er mode | 00: Reserved<br>01: 2 <sup>6</sup> |       | 00: TA0TRG<br>01: φT1 |            | 00: TA0IN pin input (Note) |           |
|             | 01: 16-bit tim          | er mode |                                    |       |                       |            |                            |           |
|             | 10: 8-bit PPG mode      |         | 10: 2 <sup>7</sup>                 |       | 10: φT16              |            | -10. ¢T4                   |           |
|             | 11: 8-bit PWI           | M mode  | 11: 2 <sup>8</sup>                 |       | 11: φT256             | $(\Omega)$ | 11: φT16                   |           |

TMRA0 input clock

|                         | 00 | TA0IN (External input) |
|-------------------------|----|------------------------|
| <ta0clk1:0></ta0clk1:0> | 01 | φT1                    |
|                         | 10 | φΤ4                    |
|                         | 11 | φT16                   |

TMRA1 input clock

| -                       |    | 1/// > *                            |                                     |
|-------------------------|----|-------------------------------------|-------------------------------------|
|                         |    | TA01MOD <ta01m1:0># "01"</ta01m1:0> | TA01MQD <ta01m1;0>=,"01"</ta01m1;0> |
|                         | 00 | Matching output for                 |                                     |
|                         |    | TMRA0                               | Overflow output from                |
| <ta1clk1:0></ta1clk1:0> | 01 | φT1                                 | TMRA0                               |
|                         | 10 | φT16                                | (16-bit timer mode)                 |
|                         | 11 | ∳T256                               |                                     |

PWM cycle selection

|                       | 00 Reserved                      |
|-----------------------|----------------------------------|
| DWW04-00              | 01 2 <sup>6</sup> × Source clock |
| <pwm01:00></pwm01:00> | 10 2 <sup>x</sup> × Source clock |
|                       | 11 28 × Source clock             |

TMRA01 operation mode selection

|   | TWINTAGT OPCIALION INGO | C 3CICCIIOII |                     |
|---|-------------------------|--------------|---------------------|
| Ī |                         | 00           | 8-bit timer × 2ch   |
|   |                         | 01           | 16-bit timer        |
|   | <ta01ma1:0></ta01ma1:0> | 10           | 8-bit PPG           |
|   |                         | 11           | 8-bit PWM (TMRA0),  |
|   |                         |              | 8-bit timer (TMRA1) |

Note: When setting TA0IN, set TA01MOD after set port C0.



TMRA23 Mode Register

TA23MOD (110CH)

|             | Title tiled i tegleter                |        |                           |          |              |            |              |           |  |  |
|-------------|---------------------------------------|--------|---------------------------|----------|--------------|------------|--------------|-----------|--|--|
|             | 7                                     | 6      | 5                         | 4        | 3            | 2          | 1            | 0         |  |  |
| Bit symbol  | TA23M1                                | TA23M0 | PWM21                     | PWM20    | TA3CLK1      | TA3CLK0    | TA2CLK1      | TA2CLK0   |  |  |
| Read/Write  |                                       |        | -                         | R/       | W            | -          | _            | -         |  |  |
| Reset State | 0                                     | 0      | 0                         | 0        | 0            | 0          | 0            | 0         |  |  |
| Function    | Operation me                          | ode    | PWM cycle<br>00: Reserved |          | Source clock | for TMRA3  | Source clock | for TMRA2 |  |  |
|             | 00: 8-bit time                        | r mode |                           |          | 00: TA2TRG   |            | 00: Reserved |           |  |  |
|             | 01: 16-bit timer mode                 |        | 01: 2 <sup>6</sup>        |          | 01: φT1 ( (  |            | 01: φT1      |           |  |  |
|             | 10: 8-bit PPG mode 10: 2 <sup>7</sup> |        |                           | 10: φT16 |              | 10: φΤ4    |              |           |  |  |
|             | 11: 8-bit PW                          | M mode | 11: 2 <sup>8</sup>        |          | 11: φT256    | $(\Omega)$ | 11: φT16     |           |  |  |

TMRA2 input clock

| <ta2clk1:0></ta2clk1:0> | 00 | Reserved     |  |
|-------------------------|----|--------------|--|
|                         | 01 | φ <b>T</b> 1 |  |
|                         | 10 | φТ4          |  |
|                         | 11 | φT16         |  |

TMRA3 input clock

|                         |    | TA23MOD <ta23m1;0># "01"</ta23m1;0> | TA23MQD <ta23m1:0>= 01"</ta23m1:0> |
|-------------------------|----|-------------------------------------|------------------------------------|
|                         | 00 | Matching output for                 |                                    |
|                         |    | TMRA2                               | Overflow output from               |
| <ta3clk1:0></ta3clk1:0> | 01 | φT1_                                | (TMRA2                             |
|                         | 10 | φT16                                | (16-bit-timer/mode)                |
|                         | 11 | ∳T256                               |                                    |

PWM cycle selection

|                       | 00 Reserved                      |
|-----------------------|----------------------------------|
| DWW00.00              | 01 2 <sup>6</sup> × Source clock |
| <pwm23:00></pwm23:00> | 10 2 <sup>7</sup> × Source clock |
|                       | 11 28 × Source clock             |

TMRA23 operation mode selection

| TWINA23 Operation inge  | • 09,00mo. |                     |
|-------------------------|------------|---------------------|
|                         | 00         | 8-bit timer × 2ch   |
|                         | )01        | 16-bit timer        |
| <ta23ma1:0></ta23ma1:0> | 10         | 8-bit PPG           |
|                         | 11         | 8-bit PWM (TMRA2),  |
|                         | $\wedge$   | 8-bit timer (TMRA3) |

Figure 3.7.8 Register for TMRA

TMRA45 Mode Register

TA45MOD (1114H)

|             | TWITE THE MICE PROGRESS |                                   |                    |           |            |                        |              |                        |  |
|-------------|-------------------------|-----------------------------------|--------------------|-----------|------------|------------------------|--------------|------------------------|--|
|             | 7                       | 6                                 | 5                  | 4         | 3          | 2                      | 1            | 0                      |  |
| Bit symbol  | TA45M1                  | TA45M0                            | PWM41              | PWM40     | TA5CLK1    | TA5CLK0                | TA4CLK1      | TA4CLK0                |  |
| Read/Write  | e R/W                   |                                   |                    |           |            |                        | _            | -                      |  |
| Reset State | 0                       | 0                                 | 0                  | 0         | 0          | 0                      | 0            | 0                      |  |
| Function    | Operation m             | peration mode                     |                    | PWM cycle |            | Source clock for TMRA5 |              | Source clock for TMRA4 |  |
|             | 00: 8-bit time          | er mode                           | 00: Reserved       | d         | 00: TA4TRG |                        | 00: Reserved | t                      |  |
|             | 01: 16-bit timer mode   |                                   | 01: 2 <sup>6</sup> |           | 01: φΤ1    |                        | 01: φT1      |                        |  |
|             | 10: 8-bit PP0           | 8-bit PPG mode 10: 2 <sup>7</sup> |                    |           | 10: φΤ16   |                        | 10: φΤ4      |                        |  |
|             | 11: 8-bit PW            | M mode                            | 11: 2 <sup>8</sup> |           | 11: φT256  | $(\Omega)$             | 11: φT16     |                        |  |

TMRA4 input clock

|                         | 00 | Reserved     |      |
|-------------------------|----|--------------|------|
| TA 401 1/4 0            | 01 | φ <b>T</b> 1 |      |
| <ta4clk1:0></ta4clk1:0> | 10 | φ <b>T</b> 4 |      |
|                         | 11 | φT16         | ~~// |

TMRA5 input clock

|                         |    | TA45MOD <ta45m1:0># "01"</ta45m1:0> | TA45MOD <ta45m1:0>= "01"</ta45m1:0> |
|-------------------------|----|-------------------------------------|-------------------------------------|
|                         | 00 | Matching output for                 |                                     |
|                         |    | TMRA4                               | Overflew output from                |
| <ta5clk1:0></ta5clk1:0> | 01 | φ <b>T.1</b>                        | TMRA4                               |
|                         | 10 | φT16                                | (16-bit timer mode)                 |
|                         | 11 | <b>♦</b> ₹256                       |                                     |

PWM cycle selection

|                                        | 00 Reserved                      |
|----------------------------------------|----------------------------------|
| D\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 01 2 <sup>6</sup> × Source clock |
| <pwm45:00></pwm45:00>                  | 10 2 <sup>7</sup> × Source clock |
|                                        | 11 ) 28 × Source clock           |

TMRA45 operation mode selection

| Tivil (140 operation phode occount) |         |                     |  |  |
|-------------------------------------|---------|---------------------|--|--|
|                                     | 90      | 8-bit timer × 2ch   |  |  |
|                                     | <u></u> | 16-bit timer        |  |  |
| <ta45ma1:0></ta45ma1:0>             | 10      | 8-bit PPG           |  |  |
|                                     | 11      | 8-bit-PWM (TMRA4),  |  |  |
|                                     |         | 8-bjt timer (TMRA5) |  |  |

Figure 3.7.9 Register for TMRA

TMRA1 Flip-Flop Control Register

TA1FFCR (1105H) A read-modify -write operation cannot be performed.

|             | 7 | 6 | 5 | 4 | 3                                                     | 2         | 1                                                | 0                                                    |
|-------------|---|---|---|---|-------------------------------------------------------|-----------|--------------------------------------------------|------------------------------------------------------|
| Bit symbol  |   |   |   |   | TA1FFC1                                               | TA1FFC0   | TA1FFIE                                          | TA1FFIS                                              |
| Read/Write  |   |   |   |   |                                                       | R/        | W                                                |                                                      |
| Reset State |   |   |   |   | 1                                                     | <1.       | 0                                                | 0                                                    |
| Function    |   |   |   |   | 00: Invert TA 01: Set TA1I 10: Clear TA 11: Don't car | FF<br>1FF | TA1FF control for inversion 0: Disable 1: Enable | TA1FF<br>inversion<br>select<br>0: TMRA0<br>1: TMRA1 |

Inversion signal for timer flip-flop 1 (TA1FF) (Don't care except in 8-bit timer mode)

| TAAFFIC                 | 0    | Inversion by TMRA0                              |
|-------------------------|------|-------------------------------------------------|
| TA1FFIS                 | 1    | Inversion by TMRA1                              |
| Inversion of TA1FF      |      |                                                 |
| TA45515                 | 0    | Disabled                                        |
| TA1FFIE                 | 1    | Enabled ( )                                     |
| Control of TA1FF        |      |                                                 |
|                         | 00   | Inverts the value of TA1FF (Software inversion) |
| TA4FFC4.0               | 01   | Sets TA1FF to "1"                               |
| <ta1ffc1:0></ta1ffc1:0> | 10   | Clears TA1FF to "0"                             |
|                         | 11 ( | Don't care                                      |
|                         |      |                                                 |

Note: The values of bits4 to 6 of TA1FFCR are read as undefined values.

Figure 3.7.10 Register for TMRA

TMRA3 Flip-Flop Control Register

TA3FFCR (110DH) A read-modify -write operation cannot be performed

|             | TMRA3 FIIP-FIOP CONTROL REGISTER |   |   |   |                                                       |           |                                                  |                                          |
|-------------|----------------------------------|---|---|---|-------------------------------------------------------|-----------|--------------------------------------------------|------------------------------------------|
|             | 7                                | 6 | 5 | 4 | 3                                                     | 2         | 1                                                | 0                                        |
| Bit symbol  |                                  |   |   |   | TA3FFC1                                               | TA3FFC0   | TA3FFIE                                          | TA3FFIS                                  |
| Read/Write  |                                  |   |   |   |                                                       | R/        | W                                                |                                          |
| Reset State |                                  |   |   |   | 1                                                     | 1         | 0                                                | 0                                        |
| Function    |                                  |   |   |   | 00: Invert TA 01: Set TA3I 10: Clear TA 11: Don't car | FF<br>3FF | TA3FF control for inversion 0: Disable 1: Enable | TA3FF inversion select 0: TMRA2 1: TMRA3 |

Inversion signal for timer flip-flop 3 (TA3FF) (Don't care except in 8-bit timer mode)

| TAOFFIO                 | 0  | Inversion by TMRA2                              |
|-------------------------|----|-------------------------------------------------|
| TA3FFIS                 | 1  | Inversion by TMRA3                              |
| Inversion of TA3FF      |    |                                                 |
| TAGEFIE                 | 0  | Disabled                                        |
| TA3FFIE                 | 1  | Enabled                                         |
| Control of TA3FF        |    |                                                 |
|                         | 00 | Inverts the value of TA3FF (Software inversion) |
| TA2FF04.0               | 01 | Sets TA3FF to "1"                               |
| <ta3ffc1:0></ta3ffc1:0> | 10 | Clears TA3FF to "0"                             |
|                         | 11 | Don't care                                      |

Note: The values of bits4 to 6 of TA3FFCR are read as undefined values.

Figure 3.7.1 Register for TMRA

TMRA5 Flin-Flon Control Register

TA5FFCR (1115H) read-modify -write operation cannot be performed

|   | TWRAS FIIP-FIOP CONTROL REGISTER |   |   |   |   |                                                                |            |                                                  |                                          |  |
|---|----------------------------------|---|---|---|---|----------------------------------------------------------------|------------|--------------------------------------------------|------------------------------------------|--|
|   |                                  | 7 | 6 | 5 | 4 | 3                                                              | 2          | 1                                                | 0                                        |  |
|   | Bit symbol                       |   |   |   |   | TA5FFC1                                                        | TA5FFC0    | TA5FFIE                                          | TA5FFIS                                  |  |
|   | Read/Write                       |   |   |   |   | R/W                                                            |            |                                                  |                                          |  |
|   | Reset State                      |   |   |   |   | 1                                                              | 1          | 0                                                | 0                                        |  |
| У | Function                         |   |   |   |   | 00: Invert TA<br>01: Set TA5F<br>10: Clear TA<br>11: Don't car | FF<br>.5FF | TA5FF control for inversion 0: Disable 1: Enable | TA5FF inversion select 0: TMRA4 1: TMRA5 |  |

Inversion signal for timer flip-flop 5 (TA5FF) (Don't care except in 8-bit timer mode)

| TAFFFIC                 | 0  | Inversion by TMRA4                              |
|-------------------------|----|-------------------------------------------------|
| TA5FFIS                 | 1  | Inversion by TMRA5                              |
| Inversion of TA5FF      |    |                                                 |
| TAFFEIF                 | 0  | Disabled                                        |
| TA5FFIE                 | 1  | Enabled (7/4)                                   |
| Control of TA5FF        |    |                                                 |
|                         | 00 | Inverts the value of TA5FF (Software inversion) |
| TA 55504 0              | 01 | Sets TA5FF to "1"                               |
| <ta5ffc1:0></ta5ffc1:0> |    |                                                 |

10 Clears TA5FF to "0" Don't care 11

Note: The values of bits4 to 6 of TA5FFCR are read as undefined values.

Figure 3.7.12 Register for TMRA



|         | TMRA Register |           |   |   |      |        |                         |            |   |  |  |  |  |
|---------|---------------|-----------|---|---|------|--------|-------------------------|------------|---|--|--|--|--|
|         |               | 7         | 6 | 5 | 4    | 3      | 2                       | 1          | 0 |  |  |  |  |
| TA0REG  | Bit symbol    |           |   |   |      | =      |                         |            |   |  |  |  |  |
| (1102H) | Read/Write    |           |   |   |      |        |                         |            |   |  |  |  |  |
|         | Reset State   |           |   |   | Unde | efined |                         |            |   |  |  |  |  |
| TA1REG  | Bit symbol    |           |   |   |      | =      |                         |            |   |  |  |  |  |
| (1103H) | Read/Write    |           |   |   | ١    | N      |                         |            |   |  |  |  |  |
|         | Reset State   |           |   |   | Unde | efined |                         | ) ~        |   |  |  |  |  |
| TA2REG  | Bit symbol    |           |   |   |      | =      |                         |            |   |  |  |  |  |
| (110AH) | Read/Write    |           |   |   | ١    | N _    | (7/4)                   |            |   |  |  |  |  |
|         | Reset State   |           |   |   | Unde | efined | (                       |            |   |  |  |  |  |
| TA3REG  | Bit symbol    |           |   |   |      | -      |                         |            |   |  |  |  |  |
| (110BH) | Read/Write    |           |   |   | 1    | N (    | ) \                     |            |   |  |  |  |  |
|         | Reset State   | Undefined |   |   |      |        |                         |            |   |  |  |  |  |
| TA4REG  | Bit symbol    |           |   |   |      | -4/ // | >                       |            |   |  |  |  |  |
| (1112H) | Read/Write    |           |   |   | لر   | AL.    |                         |            | ~ |  |  |  |  |
|         | Reset State   |           |   |   | Unde | efined | (                       |            |   |  |  |  |  |
| TA5REG  | Bit symbol    |           |   |   | _ (  |        | $\Diamond$ $\backslash$ | 2//        |   |  |  |  |  |
| (1113H) | Read/Write    | ·         |   |   |      | N      |                         | 40/        |   |  |  |  |  |
|         | Reset State   |           |   |   | Unde | efined |                         | $\Diamond$ |   |  |  |  |  |

Note: A read-modify -write operation cannot be performed.



## 3.7.4 Operation in Each Mode

#### (1) 8-bit timer mode

Both TMRA0 and TMRA1 can be used independently as 8-bit interval timers. When set function and count data, TMRA0 and TMRA1 should be stopped.

1. Generating interrupts at a fixed interval (using TMRA1)

To generate interrupts at constant intervals using TMRA1 (INTTA1), first stop TMRA1 then set the operation mode, input clock and a cycle to TA01MOD and TA1REG register, respectively. Then, enable the interrupt INTTA1 and start TMRA1 counting.

Example: To generate an INTTA1 interrupt every 40 µs at f<sub>C</sub> = 40 MHz, set each register as follows:

|               |            | (   | NOCK | sta | te: | Clo | ск д | ear: 1 | (1(IC)                                                                              |
|---------------|------------|-----|------|-----|-----|-----|------|--------|-------------------------------------------------------------------------------------|
|               | MSB        |     |      |     |     |     | L    | SB     |                                                                                     |
|               | 7          | 6   | 5    | 4   | 3   | 2   | 1    | 0      |                                                                                     |
| TA01RUN       | ← -        | Χ   | Χ    | Χ   | _   | _   | 0    | _      | Stop TMRA1 and clear it to "0".                                                     |
| TA01MOD       | ← 0        | 0   | Χ    | Χ   | 0   | 1   | _    | _      | Select 8-bit timer mode and select $\phi$ T1 ( $\pm$ (8/fc)s at f <sub>C</sub> = 40 |
|               |            |     |      |     |     |     |      | (      | MHz) as the input clock.                                                            |
| TA1REG        | ← 1        | 1   | 0    | 0   | 1   | 0   | 0    | 0 <    | Set $40 \mu s \div \phi T1 = 200 = C8H$ to TAREG.                                   |
| INTETA01      |            | 1   | 0    | 1   | _   | -   | _    |        | Enable INTTA1 and set it to level 5.                                                |
| TA01RUN       | ← -        | Χ   | Χ    | Χ   | _   | 1   | 1    | (-     | Start TMRA1 counting.                                                               |
| X: Don't care | e, –: No c | han | ge   |     |     |     | (    |        | v (v)                                                                               |

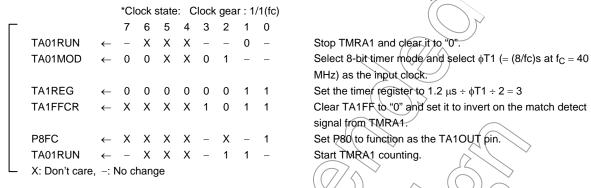
Select the input clock using Table 3.7.3.

Table 3.7.3 Selecting Interrupt Interval and the Input Clock Using 8-Bit Timer

| Input Clock     | Interrupt Interval (at fc = 40 MHz) | Resolution |
|-----------------|-------------------------------------|------------|
| φT1 (8/fC)      | 0.2 μs to 51.2 μs                   | 0.2 μs     |
| φT4 (32/fC)     | 0.8 μs to 204.8 μs                  | 0.8 μs     |
| φT16 (128/fC)   | 3.2 μ <b>\$</b> tø 819.2μs          | 3.2 μs     |
| φT256 (2Q48/fC) | 51,2 μs to 13.11 ms                 | 51.2 μs    |

Note: The input clocks for TMRA0 and TMRA1 differ as follows:

TMRA0: Uses TMRA0 input (TA0IN) and can be selected from \$\psi T1\$, \$\psi T4\$ or \$\psi T16\$


TMRA1: Matches output of TMRA0 (TA0TRG) and can be selected from \$\phi\$T1, \$\phi\$T16, \$\phi\$T256

**TOSHIBA** 

2. Generating a 50 % duty ratio square wave pulse

The state of the timer flip-flop (TA1FF) is inverted at constant intervals and its status output via the timer output pin (TA1OUT).

Example: To output a 1.2- $\mu$ s square wave pulse from the TA1OUT pin at f<sub>C</sub> = 40 MHz, use the following procedure to make the appropriate register settings. This example uses TMRA1; however, either TMRA0 or TMRA1 may be used.



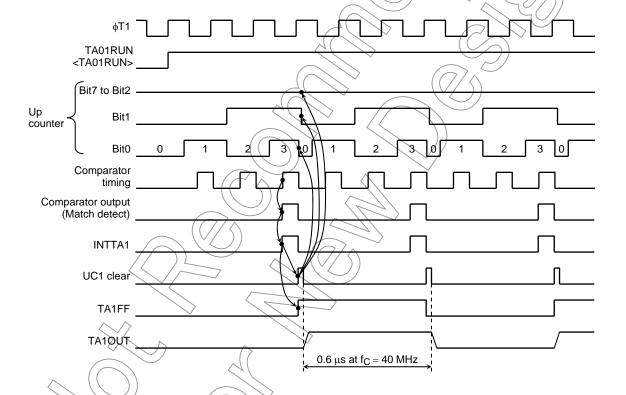



Figure 3.7.14 Square Wave Output Timing Chart (50 % Duty)

3. Making TMRA1 count up on the match signal from the TMRA0 comparator Select 8-bit timer mode and set the comparator output from TMRA0 to be the input clock to TMRA1.

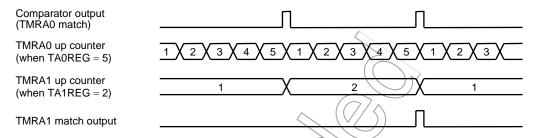



Figure 3.7.15 TMRA1 Count Up on Signal from TMRA0

#### (2) 16-bit timer mode

A 16-bit interval timer is configured by pairing the two 8-bit timers TMRA0 and TMRA1.

To make a 16-bit interval timer in which TMRA0 and TMRA1 are cascaded together, set TA01MOD<TA01M1:0> to "01".

In 16-bit timer mode, the overflow output from TMRA0 is used as the input clock for TMRA1, regardless of the value set in TA01MOD<TA01CLK1:0>. Table 3.7.2 shows the relationship between the timer (interrupt) cycle and the input clock selection.

To set the timer interrupt interval, set the lower eight bits in timer register TAOREG and the upper eight bits in TAIREG. Be sure to set TAOREG first (as entering data in TAOREG temporarily disables the compare, while entering data in TAIREG starts the compare).

Setting example: To generate an INTTAl interrupt every 0.2~s at  $f_C=40~MHz$ , set the timer registers TAOREG and TA1REG as follows:

\*Clock state: Clock gear: 1/1(fc)

If  $\phi$ T16 (=(128/fc)s at fc=40 MHz) is used as the input clock for counting, set the following value in the registers:

 $0.2 \text{ s} \div (128/\text{fc})$ s = 62500 = F424H; e.g. set TA1REG to F4H and TA0REG to 24H.

The comparator match signal is output from TMRA0 each time the up counter UC0 matches TA0REG, though the up counter UC0 is not cleared.

In the case of the TMRA1 comparator, the match detect signal is output on each comparator pulse on which the values in the up counter UC1 and TA1REG match. When the match detect signal is output simultaneously from both the comparator TMRA0 and TMRA1, the up counters UC0 and UC1 are cleared to "0" and the interrupt INTTA1 is generated. Also, if inversion is enabled, the value of the timer flip-flop TA1FF is inverted.

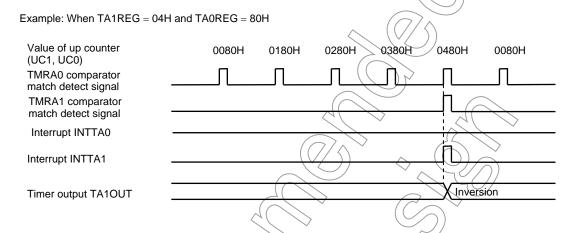



Figure 3.7.16 Timer Output by 16-Bit Timer Mode

### (3) 8-bit PPG (Programmable pulse generation) output mode

Square wave pulses can be generated at any frequency and duty ratio by TMRA0. The output pulses may be active low or active high. In this mode TMRA1 cannot be used.

TMRA0 outputs pulses on the TA1OUT pin (which can also be used as P80).

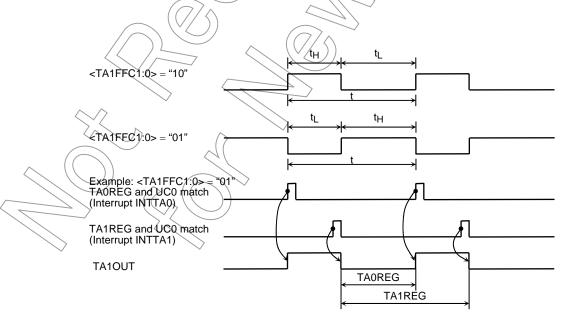



Figure 3.7.17 8-Bit PPG Output Waveforms

In this mode a programmable square wave is generated by inverting the timer output each time the 8-bit up counter (UC0) matches the value in one of the timer registers TA0REG or TA1REG.

The value set in TA0REG must be smaller than the value set in TA1REG.

Although the up counter for TMRA1 (UC1) is not used in this mode,

TA01RUN<TA1RUN> should be set to "1" so that UC1 is set for counting.

Figure 3.7.18 shows a block diagram representing this mode.

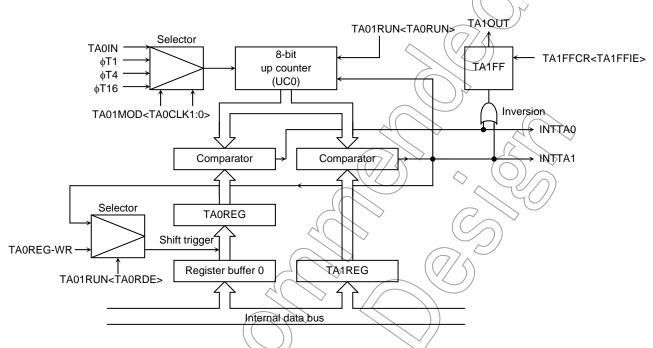



Figure 3.7.18 Block Diagram of 8-Bit PPG Output Mode

If the TAOREG double buffer is enabled in this mode, the value of the register buffer will be shifted into TAOREG each time TAIREG matches UCO.

Use of the double buffer facilitates the handling of low duty waves (when duty is varied).

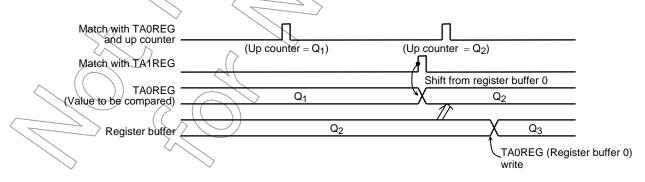




Figure 3.7.19 Operation of Register Buffer 0



#### (4) 8-bit PWM output mode

This mode is only valid for TMRA0. In this mode, a PWM pulse with the maximum resolution of 8 bits can be output.

When TMRA0 is used the PWM pulse is output on the TA1OUT pin (which is also used as P80). TMRA1 can also be used as an 8-bit timer.

The timer output is inverted when the up counter (UC0) matches the value set in the timer register TA0REG or when 2<sup>n</sup> counter overflow occurs (n = 6, 7 or 8 as specified by TA01MOD<PWM01:00>). The up counter UC0 is cleared when 2<sup>n</sup> counter overflow occurs. The following conditions must be satisfied before this PWM mode can be used.

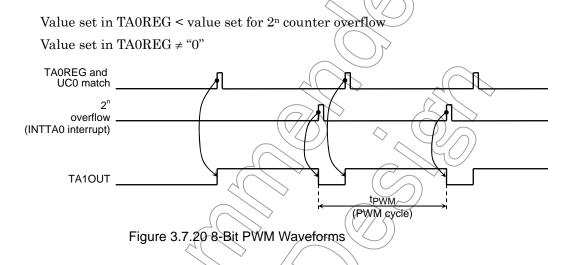



Figure 3.7.21 shows a block diagram representing this mode.

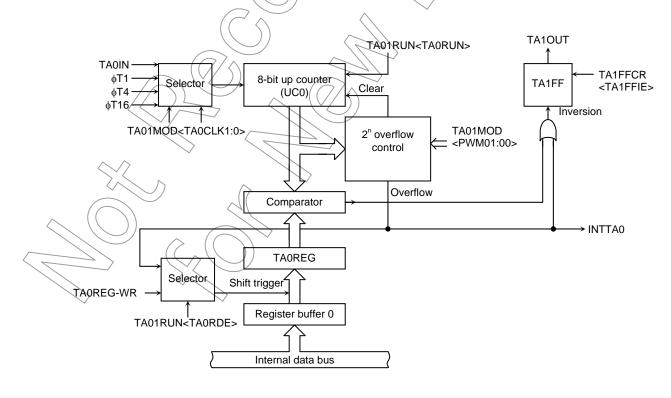



Figure 3.7.21 Block Diagram of 8-Bit PWM Mode

In this mode the value of the register buffer will be shifted into TAOREG if 2<sup>n</sup> overflow is detected when the TAOREG double buffer is enabled.

Use of the double buffer facilitates the handling of low duty ratio waves.

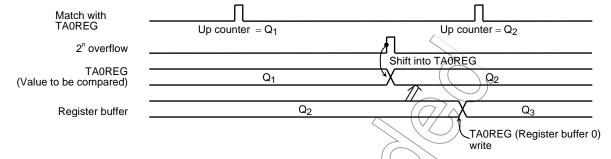
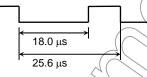



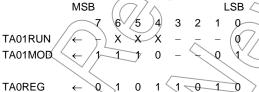

Figure 3.7.22 Register Buffer Operation

Example: To output the following PWM waves on the TA1OUT pin (at  $f_C = 40 \text{ MHz}$ ).



\*Clock state: Clock gear: 1/1(f¢)

To achieve a 25.6- $\mu$ s (PWM cycle by setting  $\phi$ T1 (= (8/fc)s at fc = 40 MHz):


 $25.6 \,\mu s \div (8/fc)s = 128 = 2n$ 

Therefore n should be set to 7.

Since the low level period is 18.0  $\mu$ s when  $\phi T1 \neq (8/fc)s$ ,

set the following value for TREGO:

$$18.0 \,\mu\text{s} \div (8/\text{fc}) = 90 = 5\text{AH}$$



Stop TMRA0 and clear it to "0" Select 8-bit PWM mode (cycle: 2

Select 8-bit PWM mode (cycle:  $2^7$ ) and select  $\phi T1$  as the input clock.

Write 5AH.

Clear TA1FF to "0", enable the inversion and double buffer.

TA1FFCR

Set P80 as the TA1OUT pin. Start TMRA0 counting.

Table 3.7.4 PWM Cycle

|                     |                 |    |         |                                                                                                                                                                                  |           |                       | •                                                                                                               |           |                       |                                            |           |  |  |  |
|---------------------|-----------------|----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|-----------------------------------------------------------------------------------------------------------------|-----------|-----------------------|--------------------------------------------|-----------|--|--|--|
|                     |                 |    |         |                                                                                                                                                                                  |           |                       | PWM cyc                                                                                                         | cle       |                       |                                            |           |  |  |  |
| Clock gear          | System          |    |         | TAxxMOD <pwmx1:0></pwmx1:0>                                                                                                                                                      |           |                       |                                                                                                                 |           |                       |                                            |           |  |  |  |
| value<br>SYSCR1     | clock<br>SYSCR0 | -  |         | 2 <sup>6</sup> (x64)                                                                                                                                                             |           | 2 <sup>7</sup> (x128) |                                                                                                                 |           | 2 <sup>8</sup> (x256) |                                            |           |  |  |  |
| <gear2:0></gear2:0> |                 |    | TAxxM   | OD <tax(< td=""><td>CLK1:0&gt;</td><td>TAxxM</td><td>OD<taxc< td=""><td>LK1:0&gt; &lt;</td><td>TAxxM</td><td>OD<taxc< td=""><td>LK1:0&gt;</td></taxc<></td></taxc<></td></tax(<> | CLK1:0>   | TAxxM                 | OD <taxc< td=""><td>LK1:0&gt; &lt;</td><td>TAxxM</td><td>OD<taxc< td=""><td>LK1:0&gt;</td></taxc<></td></taxc<> | LK1:0> <  | TAxxM                 | OD <taxc< td=""><td>LK1:0&gt;</td></taxc<> | LK1:0>    |  |  |  |
|                     |                 |    | φT1(x2) | φT4(x8)                                                                                                                                                                          | φT16(x32) | φT1(x2)               | φT4(x8)                                                                                                         | φT16(x32) | φT1(x2)               | φT4(x8)                                    | φT16(x32) |  |  |  |
| _                   | 1(fs)           |    | 512/fs  | 2048/fs                                                                                                                                                                          | 8192/fs   | 1024/fs               | 4096/fs                                                                                                         | 16384/fs  | 2048/fs               | 8192/fs                                    | 32768/fs  |  |  |  |
| 000(x1)             |                 |    | 512/fc  | 2048/fc                                                                                                                                                                          | 8192/fc   | 1024/fc               | 4096/fc                                                                                                         | 16384/fc  | 2048/fc               | 8192/fc                                    | 32768/fc  |  |  |  |
| 001(x2)             |                 | ×4 | 1024/fc | 4096/fc                                                                                                                                                                          | 16384/fc  | 2048/fc               | 8192/fc /                                                                                                       | 32768/fc/ | 4096/fc               | 16384/fc                                   | 65536/fc  |  |  |  |
| 010(x4)             | 0(fc)           | ×4 | 2048/fc | 8192/fc                                                                                                                                                                          | 32768/fc  | 4096/fc               | 16384/fc                                                                                                        | 65536/fc  | 8192/fc               | 32768/fc                                   | 131072/fc |  |  |  |
| 011(x8)             |                 |    | 4096/fc | 16384/fc                                                                                                                                                                         | 65536/fc  | 8192/fc               | 32768/fc                                                                                                        | 131072/fc | 16384/fc              | 65536/fc                                   | 262144/fc |  |  |  |
| 100(x16)            |                 |    | 8192/fc | 32768/fc                                                                                                                                                                         | 131072/fc | 16384/fc              | 65536/fc                                                                                                        | 262144/fc | 32768/fc              | 131072/fc                                  | 524288/fc |  |  |  |

(5) Settings for each mode

Table 3.7.5 shows the SFR settings for each mode.

Table 3.7.5 Timer Mode Setting Registers

| Register name            |                       | TAO1                               | MOD                                                                            |                                                       | TA1FFCR                                     |  |
|--------------------------|-----------------------|------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|--|
| <bit symbol=""></bit>    | <ta01m1:0></ta01m1:0> | <pwm01:00></pwm01:00>              | ₹TA1CLK1:0>                                                                    | <ta0clk1:0></ta0clk1:0>                               | <ta1ffis></ta1ffis>                         |  |
| Function                 | Timer Mode            | PWM Cycle                          | Upper Timer<br>Input Clock                                                     | Lower Timer<br>Input Clock                            | Timer F/F<br>Invert Signal<br>Select        |  |
| 8-bit timer × 2 channels | 00                    |                                    | Lower timer match,<br>\$\phi T1, \$\phi T16, \$\phi T256\$<br>(00\ 01, 10, 11) | External clock,<br>φT1, φT4, φT16<br>(00, 01, 10, 11) | 0: Lower timer output 1: Upper timer output |  |
| 16-bit timer mode        | 01                    |                                    |                                                                                | External clock,                                       | -                                           |  |
| 8-bit PPG × 1 channel    |                       | -                                  | <u>-</u>                                                                       | External clock,<br>φT1, φT4, φT16<br>(00, 01, 10, 11) | -                                           |  |
| 8-bit PWM × 1 channel    | 13                    | $2^{6}, 2^{7}, 2^{8}$ (01, 10, 11) |                                                                                | External clock,                                       | -                                           |  |
| 8-bit timer × 1 channel  | <u>)</u> 11           | \(\) -                             | φT1, φT16, φT256<br>(01, 10, 11)                                               | _                                                     | Output disabled                             |  |

-: Don't care

TOSHIBA TMP92CY23/CD23A

# 3.8 16-Bit Timer/Event Counters (TMRB0)

The TMP92CY23/CD23A incorporates two multifunctional 16-bit timer/event counter (TMRB0 and TMRB1) which has the following operation modes:

- 16-bit interval timer
- 16-bit event counter
- 16-bit programmable pulse generation (PPG)

Can be used following operation modes by capture function.

- Frequency measurement mode
- Pulse width measurement mode
- Time differential measurement mode

Figure 3.8.1 and Figure 3.8.2 show block diagram of TMRB0 and TMRB1.

The timer/event counter consists of a 16-bit up counter, two 16-bit timer registers (one of them with a double buffer structure), two 16-bit capture register, two comparators, a capture input controller, a timer flip-flop and a control circuit.

The timer/event counter is controlled by a 11 byte SFR. Each channel (TMRB0,TMRB1) operate independently.

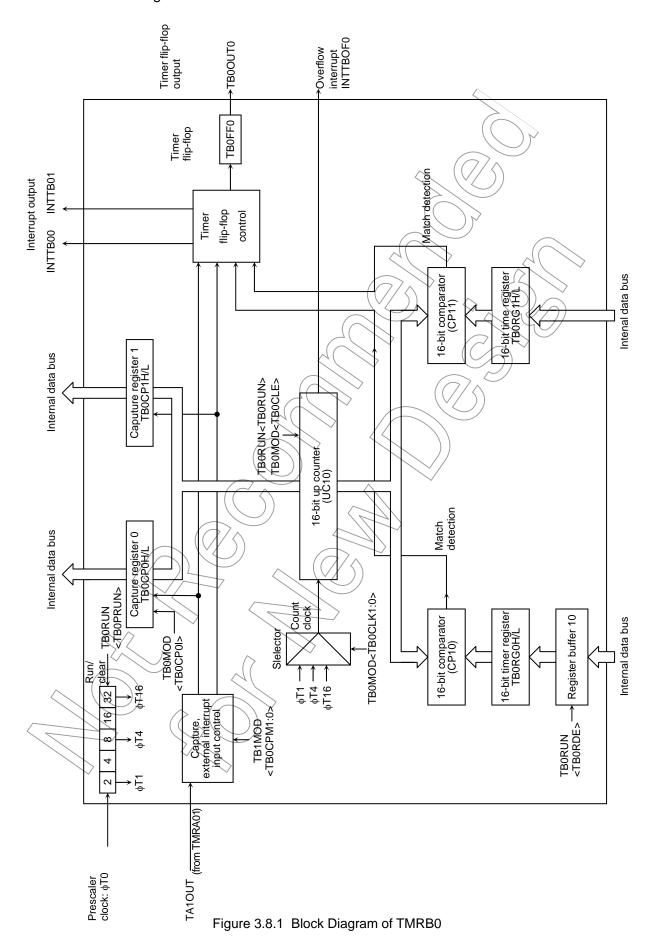

In this section, the explanation describes only for TMRB1 because each channel is identical operation except for the difference as follows:

Table 3.8.1 Pins and SFR of TMRB

| Spec         | Channel                                  | TMRB0                       | TMRB1                                             |
|--------------|------------------------------------------|-----------------------------|---------------------------------------------------|
| External nin | External clock/ Caputre triggr input pin | None                        | TB1IN0 (Share with PD1) TB1IN1 (Share with PD2)   |
| External pin | Timer flip-flop output pin               | TB0OUT0<br>(Share with PD0) | TB1OUT0 (Share with PD3) TB1OUT1 (Share with PD4) |
|              | Timre run register                       | TB0RUN (1180H)              | TB1RUN (1190H)                                    |
|              | Timrer mode register                     | // TB0MOD (1182H)           | TB1MOD (1192H)                                    |
|              | Timre flip-flop control register         | TB0FFCR (1183H)             | TB1FFCR (1193H)                                   |
|              |                                          | TB0RG0L (1188H)             |                                                   |
| SFR          | Timer register                           | TB0RG0H (1189H)             | TB1RG0H (1199H)                                   |
| (Address)    | Timer register                           | TB0RG1L (118AH)             | TB1RG1L (119AH)                                   |
| (Address)    |                                          | TB0RG1H (118BH)             | TB1RG1H (119BH)                                   |
|              | (1)                                      | TB0CP0L (118CH)             | TB1CP0L (119CH)                                   |
|              | Contino                                  | TB0CP0H (118DH)             | TB1CP0H (119DH)                                   |
|              | Capture register                         | TB0CP1L (118EH)             | TB1CP1L (119EH)                                   |
|              |                                          | TB0CP1H (118FH)             | TB1CP1H (119FH)                                   |

**TOSHIBA** 

# 3.8.1 Block Diagrams



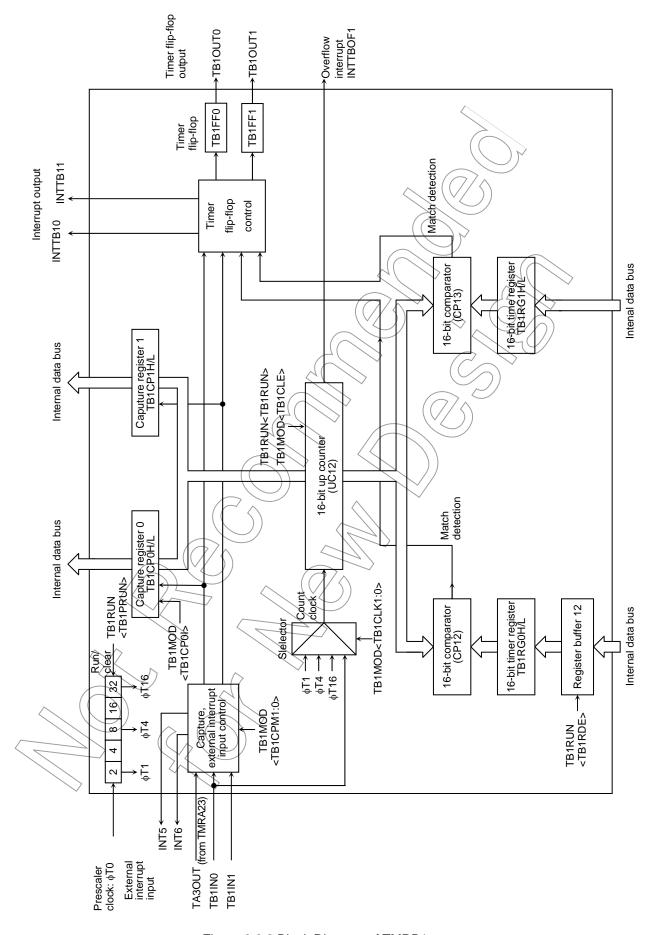



Figure 3.8.2 Block Diagram of TMRB1

### 3.8.2 Operation of Each Block

#### (1) Prescaler

The 5-bit prescaler generates the source clock for TMRB1. The prescaler clock ( $\phi$ T0) is a divided clock (divided by 4) from the f<sub>FPH</sub>.

This prescaler can be started or stopped using TB1RUN<TB1PRUN>. Counting starts when <TB0PRUN> is set to "1"; the prescaler is cleared to "0" and stops operation when <TB0PRUN> is cleared to "0".

|                                             | Tubic                                        | 0.0.2 1 10 | Societ Clock It | CSOIGLIOIT (                                                                |         |
|---------------------------------------------|----------------------------------------------|------------|-----------------|-----------------------------------------------------------------------------|---------|
| Gear Value<br>SYSCR1<br><gear2:0></gear2:0> | System<br>clock<br>SYSCR1<br><sysck></sysck> | -          | Т               | r counter input<br>TMRB prescale<br>MOD <tbxclk< td=""><td>ŗ</td></tbxclk<> | ŗ       |
| -                                           | 1 (fs)                                       |            | fs/8            | fs/32                                                                       | fs//128 |
| 000 (1/1)                                   |                                              |            | fc/8 (//        | fc/32                                                                       | fc/128  |
| 001 (1/2)                                   |                                              | 1/4        | fc/16           | fc/64                                                                       | fe/256  |
| 010 (1/4)                                   | 0 (fc)                                       | 1/4        | fc/64           | fc/128                                                                      | fc/512  |
| 011 (1/8)                                   |                                              |            | fc/64           | fc/256                                                                      | fc/1024 |
| 100 (1/16)                                  |                                              |            | fc/128          | fc/512                                                                      | fc/2048 |

Table 3.8.2 Prescaler Clock Resolution

### (2) Up counter (UC12)

UC12 is a 16-bit binary counter which counts up pulses input from the clock specified by TB0MOD<TB0CLK1:0>.

Any one of the prescaler internal clocks \$\psi T1\$, \$\psi T4\$ and \$\psi T16\$ can be selected as the input clock. Counting or stopping and clearing of the counter is controlled by TB1RUN<TB1RUN>. TMRB0 cannot choose an external clock as an input clock (there is no external clock input terminal).

When clearing is enabled, the up counter UC12 will be cleared to 0 each time its value matches the value in the timer register TB1RG1H/L. If clearing is disabled, the counter operates as a free running counter. Clearing can be enabled or disabled using TB1MQD<TB1CLE>.

A timer overflow interrupt (INTTBOF1) is generated when UC12 overflow occurs.

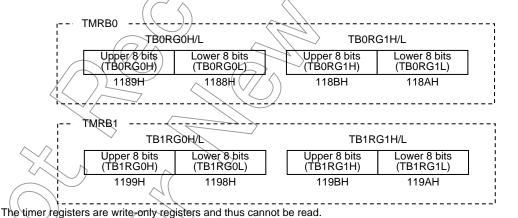
92CY23-156

#### (3) Timer registers (TB1RG0H/L and TB1RG1H/L)

These 16-bit registers are used to set the interval time. When the value in the up counter UC12 matches the value set in this timer register, the comparator match detect signal will go active.

Setting data for both Upper and Lower timer registers is always needed. For example, either using a 2-byte data transfer instruction or using a 1-byte data transfer instruction twice for the lower 8 bits and upper 8 bits in order.

The TB1RG0H/L timer register has a double-buffer structure, which is paired with a register buffer. The value set in TB1RUN<TB1RDE> determines whether the double-buffer structure is enabled or disabled: it is disabled when <TB1RDE> = "0", and enabled when <TB1RDE> = "1".

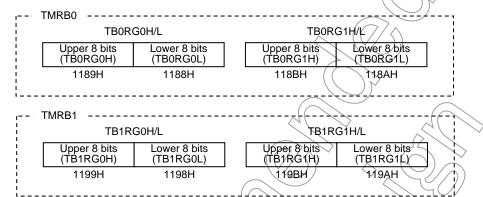

When the double buffer is enabled, data is transferred from the register buffer to the timer register when the values in the up counter (UC12) and the timer register TB1RG1H/L match.

After a reset, TB1RG0H/L and TB1RG1H/L are undefined. If the 16-bit timer is to be used after a reset, data should be written to it beforehand.

On a reset <TB1RDE> is initialized to "0", disabling the double buffer. To use the double buffer, write data to the timer register, set <TB1RDE> to "1", then write data to the register buffer as shown below.

TB1RG0H/L and the register buffer both have the same memory addresses (1188H and 1189H) allocated to them. If <TB1RDE> = "0", the value is written to both the timer register and the register buffer. If <TB1RDE> = "1", the value is written to the register buffer only.

The addresses of the timer registers are as follows:




#### (4) Capture registers (TB1CP0H/L and TB1CP1H/L)

These 16-bit registers are used to latch the values in the up counters UC12.

All 16 bits of data in the capture registers should be read. For example, using a 2-byte data load instruction or two 1-byte data load instructions twice for lower 8 bits and upper 8 bits in order.

The addresses of the capture registers are as follows:



The capture registers are read-only registers and thus cannot be written to.

### (5) Capture input control

This circuit controls the timing to latch the value of the up counter UC12 into TB1CP0H/L and TB1CP1H/L.

Interrupt timing of capture register and selection edge of external interrupt are set by TB1MOD<TB1CPM1:0>. (TMRB0 does not include the selection edge of external interrupt.)

The value in the up counter can be loaded into a capture register by software. Whenever 0 is programmed to TB1MOD<TB1CP0I>, the current value in the up counter is loaded into capture register TB1CP0H/L. It is necessary to keep the prescaler in run mode (e.g., TB1RUN>TB1PRUN> must be held at a value of 1).

#### (6) Comparators (CP12, CP13)

CP12 is 16-bit comparators which compare the value in the up counter UC12 with the value set in TB1RG0H/L or TB1RG1H/L respectively, in order to detect a match. If a match is detected, the comparator generates an interrupt (INTTB10 or INTTB11 respectively).

# (7) Timer flip-flops (TB1FF0 and TB1FF1)

These flip-flops are inverted by the match detect signals from the comparators and the latch signals to the capture registers. Inversion can be enabled and disabled for each element using PB1FFCR<TB1C0T1, TB1E1T1 and TB1E0T1>.

After a reset the value of TB1FF0 is undefined. If "00" is programmed to TB1FFCR <TB1FF0C1:0> or <TB1FF1C1:0>, TB1FF0 will be inverted. If "01" is programmed to the capture registers, the value of TB1FF0 will be set to "1". If "10" is programmed to the capture registers, the value of TB1FF0 will be cleared to "0".

The values of TB1FF0 and TB1FF1 can be output via the timer output pin TB1OUT0 (which is shared with PD3), TB1OUT1 (which is shard with PD4). The timer output pin of TMRB0 is one pin (TB0OUT0: which is shard with PD0). Timer output should be specified using the port D function register.

TOSHIBA TMP92CY23/CD23A

# 3.8.3 SFR

TMRB0 Run Register

TB0RUN (1180H)

|             | 7                       | 6                   | 5 | 4 | 3                | 2                             | 1  | 0                    |
|-------------|-------------------------|---------------------|---|---|------------------|-------------------------------|----|----------------------|
| Bit symbol  | TB0RDE                  | =                   |   |   | I2TB0            | TB0PRUN                       |    | TB0RUN               |
| Read/Write  | R/                      | W                   |   |   | R                | w <                           |    | R/W                  |
| Reset State | 0                       | 0                   |   |   | 0                | 9                             |    | 0                    |
| Function    | Double<br>buffer        | Always<br>write "0" |   |   | IDLE2<br>0: Stop | TMRB0<br>prescaler            | )} | Up counter<br>(UC10) |
|             | 0: Disable<br>1: Enable |                     |   |   | 1: Operate       | 0: Stop and o<br>1: Run (Cour |    |                      |

Count operation

| TROPPLING TROPLING                     | 0 | Stop and clear |
|----------------------------------------|---|----------------|
| <tb0prun>, <tb0run></tb0run></tb0prun> | 1 | Count up       |

Note: The 1, 4 and 5 of TB0RUN are read as undefined values,

TMRB1 Run Register

TB1RUN (1190H)

|             |            |           |           | 411.1.69.010         |            |                |        |            |
|-------------|------------|-----------|-----------|----------------------|------------|----------------|--------|------------|
|             | 7          | 6         | 5         | 4                    | 3          | 2//            | 1      | 0          |
| Bit symbol  | TB1RDE     | _         | 4         | $\mathcal{N}$        | I2TB1      | 7B(RRUN        |        | TB1RUN     |
| Read/Write  | R/         | W         |           |                      | (R)        | $(\mathbf{w})$ |        | R/W        |
| Reset State | 0          | 0         |           | $\int_{\mathcal{D}}$ | 0          | 0              |        | 0          |
| Function    | Double     | Always    |           |                      | NDLE2      | TMRB1          |        | Up counter |
|             | buffer     | write "0" |           |                      | 0: Stop    | prescaler      |        | (UC12)     |
|             | 0: Disable | \         |           |                      | 1: Operate | 0: Stop and    | clear  |            |
|             | 1: Enable  |           | $\langle$ |                      |            | 1: Run (Cour   | nt up) |            |

Count operation / /

| TRADDINI, TDADINI                      | 0   | Stop and clear |
|----------------------------------------|-----|----------------|
| <tb1prun>, <tb1run></tb1run></tb1prun> | _ 1 | (Count) up     |

Note: The 1, 4 and 5 of TB0RUN are read as undefined values.



TMRB0 Mode Register

TB0MOD (1182H)

A read-modify -write operation cannot be performed.

| TWKB0 Wode Register |              |     |              |                                        |                                       |           |                            |         |  |  |  |
|---------------------|--------------|-----|--------------|----------------------------------------|---------------------------------------|-----------|----------------------------|---------|--|--|--|
|                     | 7            | 6   | 5            | 4                                      | 3                                     | 2         | 1                          | 0       |  |  |  |
| Bit symbol          | -            | -   | TB0CP0I      | TB0CPM1                                | TB0CPM0                               | TB0CLE    | TB0CLK1                    | TB0CLK0 |  |  |  |
| Read/Write          | R/           | W   | W*           |                                        |                                       | R/W       | _                          | -       |  |  |  |
| Reset State         | 0            | 0   | 1            | 0                                      | 0                                     | 0         | 0                          | 0       |  |  |  |
| Function            | Always write | "0" | Software     | Capture timing Up counter TMRB0 source |                                       |           | ce clock                   |         |  |  |  |
|                     |              |     | capture      | 00: Disable                            |                                       | control   | 00: Reserved               |         |  |  |  |
|                     |              |     | control      | 01: Reserve                            | 01: Reserved 0: Disable 01: $\phi$ T1 |           |                            |         |  |  |  |
|                     |              |     | 0: Software  | 10: Reserve                            | d                                     | 1: Enable | 10: <sub>\$\phi T4\$</sub> |         |  |  |  |
|                     |              |     | capture      | 11: TA1OUT↑TA1OUT↓                     |                                       |           | 11: φT16                   |         |  |  |  |
|                     |              |     | 1: Undefined |                                        |                                       |           |                            |         |  |  |  |

TMRB0 source clock

|                         | 00 | Reserved |                            |
|-------------------------|----|----------|----------------------------|
| TDOOLKA.O.              | 01 | φT1      | $\mathcal{A}(\mathcal{A})$ |
| <tb0clk1:0></tb0clk1:0> | 10 | φТ4      |                            |
|                         | 11 | фТ16     |                            |

Control clearing for up counter (UC10)

| Control dicurring for up oc |     |                                         |
|-----------------------------|-----|-----------------------------------------|
| <tb0cle></tb0cle>           | 0   | Disable                                 |
|                             | 1 _ | Enable clearing by match with TB0RG1H/L |

Capture timing

| ouplare tirring         |    |                                                |
|-------------------------|----|------------------------------------------------|
|                         |    | Capture control                                |
|                         | 00 | Disable                                        |
| \                       | 01 | Reserved                                       |
| <tb0cpm1:0></tb0cpm1:0> | 10 | Reserved                                       |
|                         | )) | Capture to TB0CP0H/L at rising edge of TA1OUT  |
|                         | 11 | Capture to TB0CP1H/L at falling edge of TA1OUT |
| 1////                   |    |                                                |

Software capture

| 4 - (-)   |                                                  |
|-----------|--------------------------------------------------|
| TROCROL   | The value of up counter is captured to TB0CP0H/L |
| ≥TB0CP0I> | 1 Undefined                                      |

Figure 3.8.4 The Registers for TMRB0

**TOSHIBA** 

|                     |                   |                                                                                                                                              |                 | ΓMRB0 Mo      | de Register                                   | •              |               |                     |                 |
|---------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|-----------------------------------------------|----------------|---------------|---------------------|-----------------|
|                     |                   | 7                                                                                                                                            | 6               | 5             | 4                                             | 3              | 2             | 1                   | 0               |
| TB1MOD              | Bit symbol        | TB1CT1                                                                                                                                       | TB1ET1          | TB1CP0I       | TB1CPM1                                       | TB1CPM0        | TB1CLE        | TB1CLK1             | TB1CLK0         |
| (1192H)             | Read/Write        | R.                                                                                                                                           | /W              | W*            |                                               |                | R/W           | <b>.</b>            |                 |
|                     | Reset State       | 0                                                                                                                                            | 0               | 1             | 0                                             | 0              | 0             | 0                   | 0               |
| Α                   | Function          |                                                                                                                                              | ersion trigger  | Software      | Capture timir                                 | -              | Up counter    | TMRB1 soul          |                 |
| read-modify         |                   | 0: Trigger di                                                                                                                                |                 | capture       | 00: Disable                                   | rising edge    | clear         | 00: TB1IN0          | oin input       |
| -write              |                   | 1: Trigger er                                                                                                                                |                 | 0: Software   |                                               | TB1IN1         |               | 01: φT1<br>10: φT4  |                 |
| operation cannot be |                   |                                                                                                                                              | Invert when     | capture       |                                               | rising edge    | 1;Enable      | 10: φ14<br>11: φT16 |                 |
| performed           |                   | the UC10<br>value is                                                                                                                         | match UC10 with | 1: Undefined  | 10: TB1IN0                                    |                | (// 5)        | Ι 11. Ψ1 10         |                 |
| periorinea          |                   | loaded in to                                                                                                                                 | TB1RG1H/L       |               |                                               | falling edge   |               |                     |                 |
|                     |                   | TB1CP1H/L                                                                                                                                    |                 |               | 11: TA3OU<br>TA3OU                            |                |               |                     |                 |
|                     |                   |                                                                                                                                              |                 |               |                                               | rising edge    | ))~           |                     |                 |
|                     |                   |                                                                                                                                              |                 |               | ,                                             |                |               |                     |                 |
|                     |                   | TMRB1 sou                                                                                                                                    | rce clock       |               | <                                             |                | (             |                     |                 |
|                     |                   | TWINDTOOL                                                                                                                                    | 100 GIOGIK      | 00            | TB1IN0 pin inp                                | out            |               |                     |                 |
|                     |                   | TD40                                                                                                                                         | N 164 O         |               | ¢T1                                           | ))             | Q (           |                     |                 |
|                     |                   | <1B1C                                                                                                                                        | CLK1:0>         |               | bT4                                           |                |               | 90/                 |                 |
|                     |                   |                                                                                                                                              |                 | 11 (          | þT16                                          | •              |               | >                   |                 |
|                     |                   |                                                                                                                                              |                 | (110.10)      |                                               |                |               |                     |                 |
|                     |                   | Control clea                                                                                                                                 | ring for up co  | / (           |                                               |                | 77/           | 7                   |                 |
|                     |                   | <tb1< td=""><td>CLE&gt;</td><td></td><td>Disable<br/>Enable clearin</td><td>Thumatan wi</td><td>th TD1DC1U</td><td>/1</td><td></td></tb1<>   | CLE>            |               | Disable<br>Enable clearin                     | Thumatan wi    | th TD1DC1U    | /1                  |                 |
|                     |                   |                                                                                                                                              |                 | - ( )         |                                               | g by maich wi  | BIRGIN        | <u>'L</u>           |                 |
|                     |                   | Capture/inte                                                                                                                                 | errupt timing/  |               |                                               |                |               |                     |                 |
|                     |                   |                                                                                                                                              | ( (             |               | Ò                                             | apture contro  | ol            |                     | control         |
|                     |                   |                                                                                                                                              |                 |               | Disable                                       |                |               |                     | s at the rising |
|                     |                   |                                                                                                                                              | ((              | ) ) 01        | Capture to TB1CP0H/L at rising edge of TB1IN0 |                |               |                     | 51IN0           |
|                     |                   | ∠TR0C                                                                                                                                        | PM1:0>          | /             | Capture to TB1C Capture to TB1C               |                |               | s at the rising     |                 |
|                     |                   | (1000                                                                                                                                        |                 | 10            | Capture to TB1C                               |                |               |                     |                 |
|                     |                   |                                                                                                                                              |                 |               | Capture to TB1C                               |                |               | s at the rising     |                 |
|                     |                   |                                                                                                                                              | <u> </u>        | 11 UU         | apture to TB1C                                | J              | J             |                     | _               |
|                     |                   |                                                                                                                                              |                 |               |                                               |                |               |                     |                 |
|                     |                   | Software ca                                                                                                                                  | pture           |               |                                               |                |               |                     |                 |
|                     | $\wedge$ $\wedge$ | <tb1< td=""><td>CP0I&gt;</td><td>0</td><td>The value of u</td><td>p counter is c</td><td>aptured to TE</td><td>31CP0H/L</td><td></td></tb1<> | CP0I>           | 0             | The value of u                                | p counter is c | aptured to TE | 31CP0H/L            |                 |
|                     | >,<               |                                                                                                                                              |                 | 1             | Undefined                                     |                |               |                     |                 |
|                     |                   |                                                                                                                                              |                 |               |                                               |                |               |                     |                 |
| ^                   |                   | TB1FF1 cor                                                                                                                                   |                 | a matches the | valued in TB                                  | 1PC1H/I        |               |                     |                 |
|                     |                   |                                                                                                                                              |                 | $\vee$        | Disable inversi                               |                |               | 7                   |                 |
|                     | 7/                | (⊲TB1                                                                                                                                        | ET1> ))         |               | Enable inversi                                |                |               |                     |                 |
|                     |                   |                                                                                                                                              |                 |               |                                               |                |               |                     |                 |
|                     |                   | TB1FF1 cor                                                                                                                                   | ntrol           |               |                                               |                |               |                     |                 |
|                     | ~                 |                                                                                                                                              | ~               | e is captured | into TB1CP1H                                  | /L             |               |                     |                 |
|                     |                   |                                                                                                                                              |                 | 0 1           | Disable inversi                               | on             |               |                     |                 |
|                     |                   |                                                                                                                                              | CT1>            |               | 2.000.0                                       |                |               |                     |                 |

Note: When controlling capture by using TB1MOD<TB1CPM1:0>, control capture after setting SYSCR2<DRVE> to "0".

Figure 3.8.5 The Registers for TMRB0

TMRB0 Flip-Flop Control Register

TB0FFCR (1183H)

A read-modify -write operation cannot be performed

|             | TMRBU FIIP-FIOP CONTROL REGISTER |             |                                                |                             |                          |                      |                                            |            |  |  |  |
|-------------|----------------------------------|-------------|------------------------------------------------|-----------------------------|--------------------------|----------------------|--------------------------------------------|------------|--|--|--|
|             | 7                                | 6           | 5                                              | 4                           | 3                        | 2                    | 1                                          | 0          |  |  |  |
| Bit symbol  | П                                | -           | TB0C1T1                                        | TB0C0T1                     | TB0E1T1                  | TB0E0T1              | TB0FF0C1                                   | TB0FF0C0   |  |  |  |
| Read/Write  | V                                | <b>/</b> *  |                                                | R/                          | W                        | _                    | V                                          | <b>/</b> * |  |  |  |
| Reset State | 1                                | 1           | 0                                              | 0                           | 0                        | 0                    | 1                                          | 1          |  |  |  |
| Function    | Always v                         | vrite "11". | TB0FF0 inve<br>0: Disable tri<br>1: Enable tri | gger                        |                          |                      | Control TB0l<br>00: Invert<br>01: Set      | FF0        |  |  |  |
|             |                                  |             | the UC value is loaded into                    | the UC value is loaded into | the UC value matches the | matches the value in | 10: Clear<br>11: Don't car<br>* Always rea |            |  |  |  |

Timer flip-flop control (TB0FF0)

|                         | 00 | Invert        |
|-------------------------|----|---------------|
| <tb0ffc1:0></tb0ffc1:0> | 01 | Set to "11"   |
| <1B0FFC1.0>             | 10 | Clear to "00" |
|                         | 11 | Don't care    |

TB0FF0 control

Inverted when UC10 value matches the value in TB0RG0H/L

| TDOFOTA             | 0 Disable inversion |
|---------------------|---------------------|
| <tb0e0t1></tb0e0t1> | 1 Enable inversion  |

TB0FF0 control

Inverted when UC10 value matches the value in TB0RG1H/L

| <tb0e1t1></tb0e1t1> | $\bigcirc$ | Disable inversion |
|---------------------|------------|-------------------|
|                     | )) 1       | Enable inversion  |

TB0FF0 control

Inverted when UC10 value is captured into TB0CP0H/L

| jiryortoa mjioni o o i o vala | o lo oaptal qu | 111,10/12001011/2 |
|-------------------------------|----------------|-------------------|
| CTB0C0T1                      | 0              | Disable inversion |
| Verbucuits                    | 1              | Enable inversion  |

TB0FF0 control

Inverted when UC10 value is captured into TB0CP1H/L

| TDOOLTA             | $\wedge$ | 0 | Disable inversion |
|---------------------|----------|---|-------------------|
| <tb0c1t1></tb0c1t1> | 41       | 1 | Enable inversion  |

Figure 3.8.6 The Registers for TMRB

**TOSHIBA** TMP92CY23/CD23A

TB1FFCR

read-modify

operation

cannot be

performed.

(1193H)

Α

-write

TMRB1 Flip-Flop Control Register 4 2 1 TB1FF1C0 Bit symbol TB1FF1C1 TB1C1T1 TB1C0T1 TB1E1T1 TB1E0T1 TB1FFC1 TB1FFC0 Read/Write W\* R/W W\* Reset State 0 TB1FF1 control TB0FF0 inversion trigger Control TB1FF0 Function 00: Invert 00: Invert 0: Disable trigger 01: Set 01: Set 1: Enable trigger 10: Clear 10: Clear Invert when Invert when Invert when Invert when 11: Don't care 11: Don't care the UC value the UC value the UC value the UC value \* Always read as 11. \* Always read as "11". is loaded intolis loaded intolmatches the matches the TB1CP1H/L TB1CP0H/L value in value in TB1RG1H/L TB1RG0H/L Timer flip-flop control(TB1FF0) Invert 01 Set to "11" <TB1FFC1:0> 10 Clear to "00" 11 Don't care TB1FF0 control Inverted when UC12 value matches the value in TB1RG0H/L Disable inversion <TB1E0T1> Enable inversion TB1FF0 control Inverted when UC12 value matches the value in TB1RG1H/L 0 Disable inversion <TB1E1T1> Enable inversion TB1FF0 control Inverted when UC12 value is captured into TB1CP0H/L Disable inversion <TB1C0T1> Enable inversion 1 TB1FF0 control Inverted when UC12 value is captured into TB1CP1H/L Disable inversion , <TB1C1T1> Enable inversion TB1FF1 control Invert value of TB1FF1 01 Set TB1FF1 to "1" <TB1FF1C1:0>

Figure 3.8.7 The Registers for TMRB

Set TB1FF1 to "0" Don't care


10

11

0

|         | TMRB0 register |   |   |               |           |               |            |                          |            |  |
|---------|----------------|---|---|---------------|-----------|---------------|------------|--------------------------|------------|--|
|         |                | 7 | 6 | 5             | 4         | 3             | 2          | 1                        | 0          |  |
| TB0RG0L | bit Symbol     |   |   | •             |           | -             | •          |                          |            |  |
| (1188H) | Read/Write     |   |   |               | V         | V             |            |                          |            |  |
|         | Reset State    |   |   |               | Unde      | fined         |            |                          |            |  |
| TB0RG0H | bit Symbol     |   |   |               |           | -             |            |                          |            |  |
| (1189H) | Read/Write     |   |   |               | V         | V             |            |                          |            |  |
|         | Reset State    |   |   |               | Unde      | fined         |            | (( )>                    |            |  |
| TB0RG1L | bit Symbol     |   |   |               |           | -             |            |                          |            |  |
| (118AH) | Read/Write     |   |   |               | V         | V _           |            |                          |            |  |
|         | Reset State    |   |   |               | Unde      | fined         | // / /<    | J)                       |            |  |
| TB0RG1H | bit Symbol     |   |   |               |           | -             |            |                          |            |  |
| (118BH) | Read/Write     |   |   |               | V         | V             | (( ) r     | ,                        |            |  |
|         | Reset State    |   |   |               | Unde      | efined 🦳      |            |                          |            |  |
| TB1RG0L | bit Symbol     |   |   |               |           | - 4           |            | <u> </u>                 |            |  |
| (1198H) | Read/Write     |   |   |               | V         | V             |            | $\sim$                   |            |  |
|         | Reset State    |   |   |               | Unde      | fined / 🛆     | <u> </u>   |                          | $\searrow$ |  |
| TB1RG0H | bit Symbol     |   |   |               |           | <u>-(`()</u>  | $\Diamond$ |                          | (2)        |  |
| (1199H) | Read/Write     |   |   |               |           | <u> </u>      |            | 1/9                      |            |  |
|         | Reset State    |   |   |               | Unde      | fined         |            |                          |            |  |
| TB1RG1L | bit Symbol     |   |   |               | 4( /      | $\rightarrow$ |            | $\langle \gamma \rangle$ |            |  |
| (119AH) | Read/Write     |   |   | /             |           | V             |            |                          |            |  |
|         | Reset State    |   |   |               | Unde      | fined         |            |                          |            |  |
| TB1RG1H | bit Symbol     |   |   | $\mathcal{A}$ | \\ `.     | -             |            | /                        |            |  |
| (119BH) | Read/Write     |   |   |               | \ \ \ \ \ | v//           |            |                          |            |  |
|         | Reset State    |   |   |               | ✓ Unde    | efined        | ) )        |                          |            |  |

Note: A read-modify-write operation cannot be performed.



|         |             | Capture register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |   |   |   |   |   |   |  |  |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|---|---|---|---|---|--|--|
|         |             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6        | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
| TB0CP0L | bit Symbol  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |   |   |   |   |   |   |  |  |
| (118CH) | Read/Write  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |   |   |   |   |   |   |  |  |
|         | Reset State | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |   |   |   |   |   |   |  |  |
| TB0CP0H | bit Symbol  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |   |   |   |   |  |  |
| (118DH) | Read/Write  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |   |   |   |   |   |   |  |  |
|         | Reset State | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |   |   |   |   |   |   |  |  |
| TB0CP1L | bit Symbol  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>-</u> |   |   |   |   |   |   |  |  |
| (118EH) | Read/Write  | R \( \langle \ |          |   |   |   |   |   |   |  |  |
|         | Reset State | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |   |   |   |   |   |   |  |  |
| TB0CP1H | bit Symbol  | Symbol –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |   |   |   |   |   |   |  |  |
| (118FH) | Read/Write  | R (\)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |   |   |   |   |   |   |  |  |
|         | Reset State | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |   |   |   |   |   |   |  |  |
| TB1CP0L | bit Symbol  | - 4/ >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |   |   |   |   |   |   |  |  |
| (119CH) | Read/Write  | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |   |   |   |   |   |   |  |  |
|         | Reset State | Undefined / <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |   |   |   |   |   |   |  |  |
| TB1CP0H | bit Symbol  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |   |   |   |   |  |  |
| (119DH) | Read/Write  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |   |   |   |   |   |   |  |  |
|         | Reset State | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |   |   |   |   |   |   |  |  |
| TB1CP1L | bit Symbol  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |   |   |   |   |  |  |
| (119EH) | Read/Write  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |   |   |   |   |   |   |  |  |
|         | Reset State | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |   |   |   |   |   |   |  |  |
| TB1CP1H | bit Symbol  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |   |   |   |   |  |  |
| (119FH) | Read/Write  | R/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |   |   |   |   |   |   |  |  |
|         | Reset State | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |   |   |   |   |   |   |  |  |

Note: A read-modify-write operation cannot be performed.



TOSHIBA TMP92CY23/CD23A

## 3.8.4 Operation in Each Mode

#### (1) 16-bit interval timer mode

Generating interrupts at fixed intervals in this example, the interval time is set the timer register TB1RG1H/L to generate the interrupt INTTB11.

```
3
                                     2
                                         1
TB1RUN
                                                    Stop TMRB1.
INTETB1
                                                    Enable INTTB11 and set interrupt level 4. Disable INTTB10.
                              0
                                 Χ
                                     0
                                                    Disable the trigger.
TB1FFCR
                              0
                                                    Select internal clock for input and disable the capture function.
TB1MOD
TB1RG1H/I
                                                    Set the interval time (16 bits)
TB1RUN
                                                    Start TMRB1
X: Don't care, -: No change
```

(2) 16-bit event counter mode

In 16-bit timer mode as described in above, the timer can be used as an event counter by selecting the external clock (TB1IN0 pin input) as the input clock

Up counter counting up by rising edge of TB1IN0 pin input. And execution software capture and reading capture value enable reading count value.

```
2
TB1RUN
                                                   $top TMRB1.
PDCR
                                                   Set PD1 to TB1IN0 input mode.
PDFC2
                      Χ
                         Χ
                             Χ
PDFC
                      Χ
                         Χ
                             Χ
                                                   Set INTTB11 to enable (Interrupt level4).
INTETB1
                          0
                             0
                                            0
                                                   Set INTTB10 to disable.
                             0
                                                   Set trigger to disable.
TB1FFCR
                                 0/
                                         1
                                                   Set input clock to TB1IN0 pin input.
TB1MOD
                      0
                             ø
                                 0
TB1RG1H/L
                                                   Set number of count. (16 bits)
                                                   Start TMRB1.
TB1RUN
                                        Χ
X: Don't care,
              -: No change
```

Note: When used as an event counter, set the prescaler to "RUN" (TB1RUN<TB1PRUN> = "1").

## (3) 16-bit programmable pulse generation (PPG) output mode

Square wave pulses can be generated at any frequency and duty ratio. The output pulse may be either low active or high active.

The PPG mode is obtained by inversion of the timer flip-flop TB1FF0 that is enabled by the match of the up counter UC12 with timer register TB1RG0H/L or TB1RG1H/L and is output to TB1OUT0. In this mode the following conditions must be satisfied.

(Value set in TB1RG0H/L) < (Value set in TB1RG1H/L)

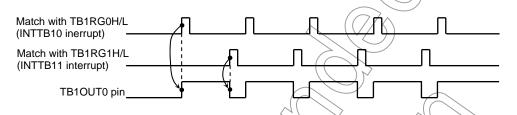



Figure 3.8.10 Programmable Pulse Generation (PPG) Output Waveforms

When the TB1RG0H/L double buffer is enabled in this mode, the value of register buffer 12 will be shifted into TB1RG0H/L at match with TB1RG1H/L. This feature facilitates the handling of low duty waves.

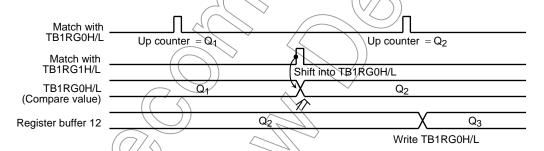



Figure 3.8.11 Operation of Register Buffer

The following block diagram illustrates this mode.

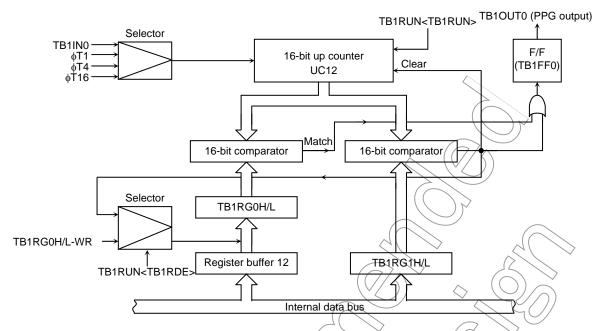
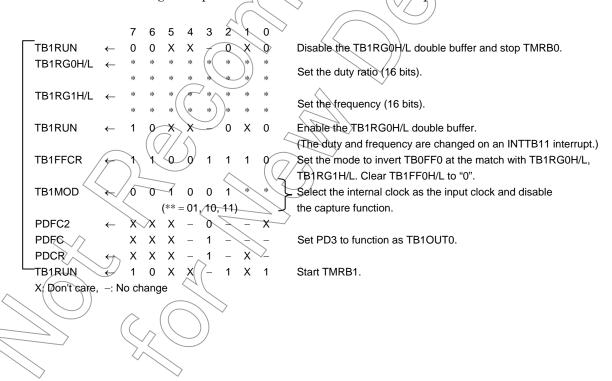




Figure 3.8.12 Block Diagram of 16-Bit Mode

The following example shows how to set 16-bit PPG output mode:



### (4) Capture function examples

Used capture function, they can be applicable in many ways, for example:

- 1. One-shot pulse output from external trigger pulse
- 2. Frequency measurement
- 3. Pulse width measurement
- 4. Measurement of difference time
  - 1. One-shot pulse output from external trigger pulse

Set the up counter UC12 in free-running mode with the internal input clock, input the external trigger pulse from TB11N0 pin, and load the value of up counter into capture register TB1CP0H/L at the rise edge of external trigger pulse.

When the interrupt INT5 is generated at the rise edge of external trigger pulse, set the TB1CP0H/L value (c) plus a delay time (d) to TB1RG0H/L (= c + d), and set the above set value (c + d) plus a one shot width (p) to TB1RG1H/L (= c + d + p). And, set "11" to timer flip-flop control register TB1FFCR TB1E1T1, TB1E0T1>. Set to trigger enable for be inverted timer flip-flop TB1FF0 by UC0 matching with TB1RG0H/L and with TB1RG1H/L. When interrupt INTTB11 occurs, this inversion will be disabled after one shot pulse is output.

The (c), (d), and (p) correspond to c, d, and p in Figure 3.8.13.

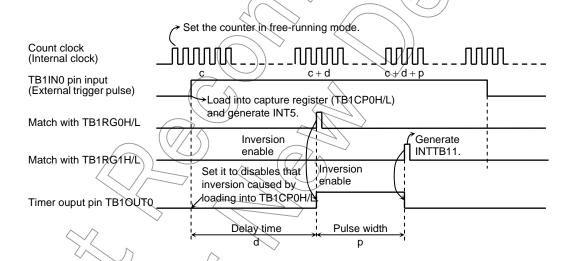
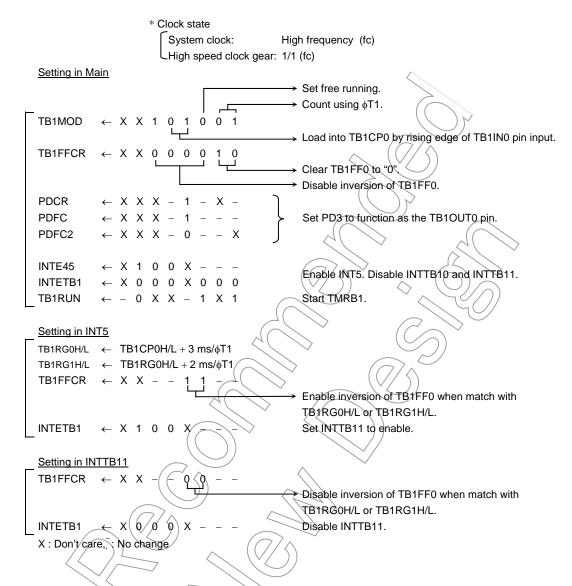




Figure 3.8.13 One-shot Pulse Output (with delay)

Example: To output a 2 [ms] one-shot pulse with a 3 [ms] delay to the external trigger pulse via the TB1IN0 pin.



When delay time is unnecessary, invert timer flip-flop TB1FF0 when up counter value is loaded into capture register (TB1CP0H/L), and set the TB1CP0H/L value (c) plus the one-shot pulse width (p) to TB0RG1H/L when the interrupt INT5 occurs. The TB1FF0 inversion should be enable when the up counter (UC12) value matches TB1RG1H/L, and disabled when generating the interrupt INTTB11.



Figure 3.8.14 One-shot Pulse Output (without delay)

#### 2. Frequency measurement

The frequency of the external clock can be measured in this mode. Frequency is measured by the 8-bit timers TMRA23 and the 16-bit timer/event counter.

TMRA23 is used to setting of measurement time by inversion TA3FF.

Counter clock in TMRB1 select TB1IN0 pin input, and count by external clock input. Set to TB1MOD<TB1CPM1:0> = "11". The value of the up counter (UC12) is loaded into the capture register TB1CP0H/L at the rise edge of the timer flip-flop TA3FF of 8-bit timers (TMRA23), and into TB0CP1H/L at its fall edge.

The frequency is calculated by difference between the loaded values in TB1CP0H/L and TB1CP1H/L when the interrupt (INTTA2 or INTTA3) is generates by either 8-bit timer.

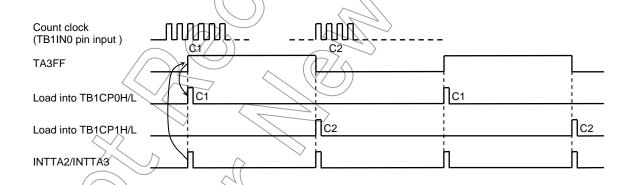



Figure 3.8.15 Frequency Measurement

For example, if the value for the level 1 width of TA3FF of the 8-bit timer is set to 0.5 s and the difference between the values in TB1CP0H/L and TB1CP1H/L is 100, the frequency is  $100 \div 0.5$  s = 200 Hz.

#### 3. Pulse width measurement

This mode allows measuring the high level width of an external pulse. While keeping the 16-bit timer/event counter counting (Free running) with the prescaler output clock input, external pulse is input through the TB1IN0 pin. Then the capture function is used to load the UC12 values into TB1CP0H/L and TB1CP1H/L at the rising edge and falling edge of the external trigger pulse respectively. The interrupt INT5 occurs at the falling edge of TB1IN0.

The pulse width is obtained from the difference between the values of TB1CP0H/L and TB1CP1H/L and the internal clock cycle.

For example, if the prescaler output clock is 0.8  $\mu$ s and the difference between TB1CP0H/L and TB1CP1H/L is 100, the pulse width will be  $100 \times 0.8 \ \mu$ s = 80  $\mu$ s.

Additionally, the pulse width that is over the UC12 maximum count time specified by the clock source can be measured by changing software.

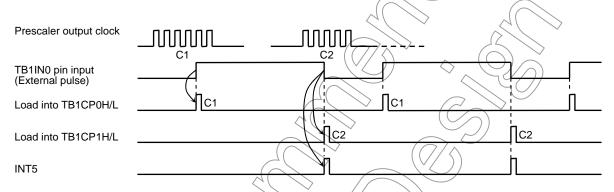
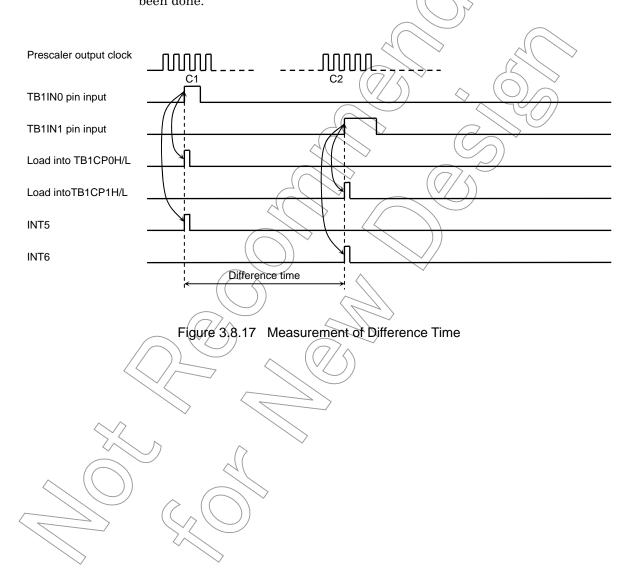



Figure 3,8.16 Pulse Width Measurement

Note: Pulse Width measure by setting "10" to TB1MOD<TB1CPM1:0>. The external interrupt INT5 is generated in timing of falling edge of TB1IN0 input. In other modes, it is generated in timing of rising edge of TB1IN0 input.

The width of low level can be measured from the difference between the first C2 and the second C1 at the second INT5 interrupt.


#### 4. Measurement of difference time

This mode is used to measure the difference in time between the rising edges of external pulses input through TB1IN0 and TB1IN1.

Keep the 16-bit timer/event counter (TMRB1) counting (Free running) with the prescaler output clock, and load the UC12 value into TB1CP0H/L at the rising edge of the input pulse to TB1IN0. Then the interrupt INT5 is generated.

Similarly, the UC12 value is loaded into TB1CP1H/Lat the rising edge of the input pulse to TB1IN1, generating the interrupt INT6.

The time difference between these pulses can be obtained by multiplying the value subtracted TB1CP0H/L from TB1CP1H/L and the internal clock cycle together at which loading the UC12 value into TB1CP0H/L and TB1CP1H/L has been done.



TOSHIBA TMP92CY23/CD23A

### 3.9 Serial Channels

The TMP92CY23/CD23A includes 3 serial I/O channels. Each channel is called SIO0, SIO1 and SIO2. For each channel either UART mode (asynchronous transmission) or I/O interface mode (synchronous transmission) can be selected.

I/O interface mode — Mode 0: For transmitting and receiving I/O data using the synchronizing signal SCEK for extending I/O.

UART mode — Mode 1: 7-bit data

Mode 2: 8-bit data

Mode 3: 9-bit data

In mode 1 and mode 2 a parity bit can be added. Mode 3 has a wakeup function for making the master controller start slave controllers via a serial link (a multi controller system).

Figure 3.9.2, Figure 3.9.3 and Figure 3.9.4 are block diagrams for each channel.

Each channel can be used independently.

Each channel operates in the same function except for the following points; hence only the operation of channel 0 is explained below.

Table 3.9.1 Differences between Channels 0 to 1

|           | Channel 0                                     | Channel 1                                    | Channel/2                                     |
|-----------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|
| Pin name  | TXD0 (PF0)<br>RXD0 (PF1)<br>CTS0 /SCLK0 (PF2) | TXD4 (PF3)<br>RXD1 (PF4)<br>CT31/SCLK1 (PF5) | TXD2 (PD2)<br>RXD2 (PD3)<br>CTS2 /SCLK2 (PD4) |
| IrDA mode | Yes                                           | Yes                                          | Yes                                           |

Mode 0 (I/O interface mode) Bit0 1 2 6 Transfer direction Mode 1 (7-bit UART mode) Bit0 No parity Parity Start Bit0 Parity Stop Mode 2 (8-bit UART mode) No parity Stop Bit0 Start A Parity Bit0 Mode 3 (9-bit UART mode) Bit0 8 Start 6 Stop Start Bit0 5 6 Bit8 Stop Wakeup When bit8 = "1", Address (Select code) is denoted.
When bit8 = "0", Data is denoted. Figure 3.9.1 Data Formats

TOSHIBA TMP92CY23/CD23A

## 3.9.1 Block Diagrams

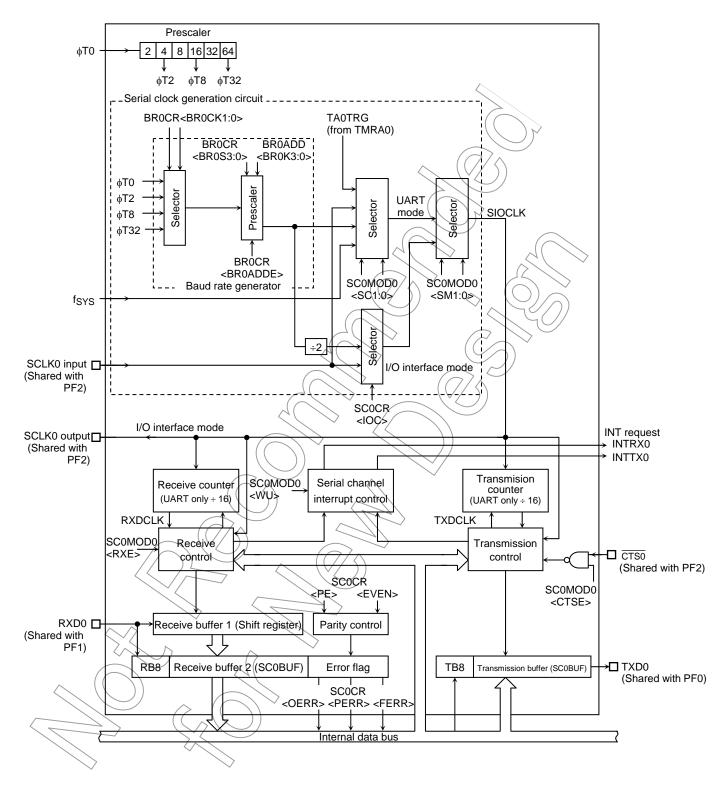



Figure 3.9.2 Block Diagram of Serial Channel 0

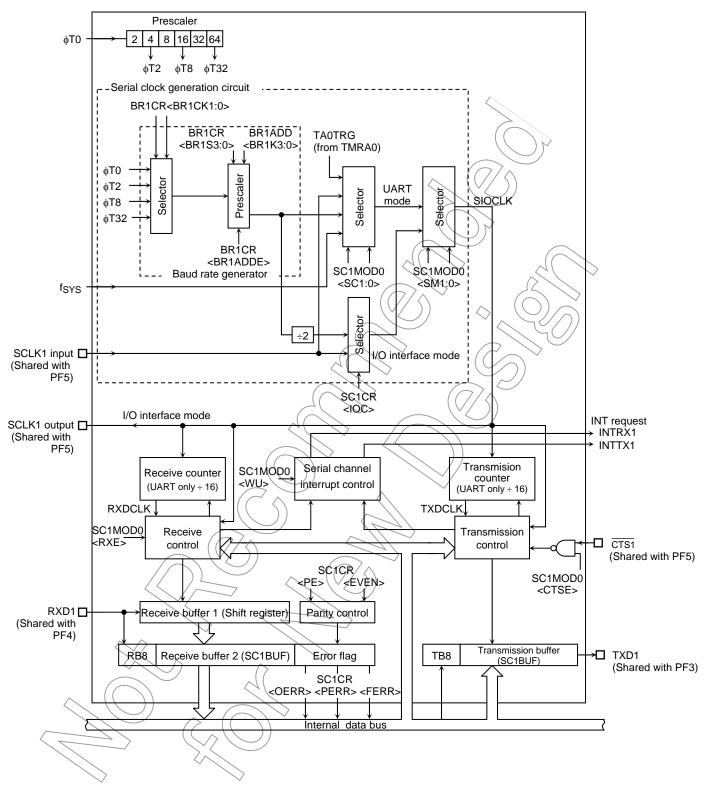
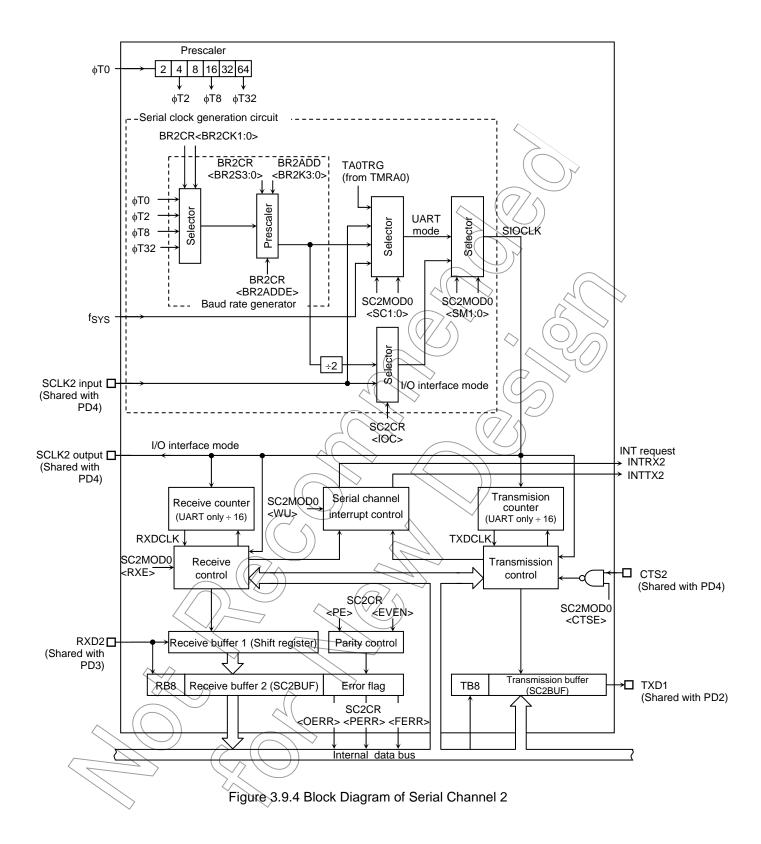




Figure 3.9.3 Block Diagram of Serial Channel 1



# 3.9.2 Operation for Each Circuit

### (1) Prescaler

There is a 6-bit prescaler for generating a clock to SIO0.

The prescaler can be run only case of selecting the baud rate generator as the serial transfer clock.

Table 3.9.2 shows prescaler clock resolution into the baud rate generator.

Table 3.9.2 Prescaler Clock Resolution to Baud Rate Generator

| System clock              | Clock Gear<br>SYSCR1         | _   |       |          | esolution<br>ROCK1:0> | $\mathcal{L}$ |
|---------------------------|------------------------------|-----|-------|----------|-----------------------|---------------|
| SYSCR1<br><sysck></sysck> | SYSCR1   <gear2:0></gear2:0> |     | фТ0   | фТ2(1/4) | фТ8(1/16)             | фТ32(1/64)    |
| 1(fs)                     | =                            |     | fs/4  | fs/16    | fs/64                 | fs/256        |
|                           | 000(1/1)                     |     | fc/4  | fc/16    | fc/64                 | fc/256        |
|                           | 001(1/2)                     | 1/4 | fc/8  | fc/32    | fc/128                | fc/512        |
| 0 (fc)                    | 010(1/4)                     | 1/4 | fc/16 | fc/64/ \ | fc/256                | fc/1024       |
|                           | 011(1/8)                     |     | fc/32 | fc/128   | fc/512                | fc/2048       |
|                           | 100(1/16)                    |     | fc/64 | fc/256   | fc/1024               | fc/4096       |

The baud rate generator selects between 4 clock inputs \$\phi T0\$, \$\phi T2\$, \$\phi T8\$, and \$\phi T32\$ among the prescaler outputs.

### (2) Baud rate generator

The baud rate generator is a circuit, which generates transmission and receiving clocks that determine the transfer rate of the serial channels.

The input clock to the baud rate generator,  $\phi T0$ ,  $\phi T2$ ,  $\phi T8$  or  $\phi T32$ , is generated by the 6-bit SIO prescaler which is shared by the timers. One of these input clocks is selected using the BR0CR<BR0CK1:0> field in the baud rate generator control register.

The baud rate generator includes a frequency divider, which divides the frequency by 1 or N + (16 - K)/16 or 16 values, thereby determining the transfer rate.

The transfer rate is determined by the settings of BROCR<BROADDE, BROS3:0> and BROADD<BROK3:0>.

- In UART mode
- (1) When BR0CR < BR0ADDE > = "0"

The settings BR0ADD<BR0K3:0> are ignored. The baud rate generator divides the selected prescaler clock by N, which is set in BR0CK<BR0S3:0>. (N = 1, 2, 3 ...16)

(2) When BROCR < BROADDE > = "1"

The N + (16 - K)/16 division function is enabled. The baud rate generator divides the selected prescaler clock by N + (16 - K)/16 using the value of N set in BR0CR<BR0S3:0> (N = 2, 3...15) and the value of K set in BR0ADD<BR0K3:0> (K = 1, 2, 3...15)

Note: If N = 1 or N = 16, the N + (16 - K)/16 division function is disabled. Set BROCR<BROADDE> to "0".

In I/O interface mode

The N + (16 – K)/16 division function is not available in I/O interface mode. Clear BR0CR<BR0ADDE> to "0" before dividing by N.

The method for calculating the transfer rate when the baud rate generator is used is explained below.

In UART mode

Baud rate = Input clock of baud rate generator Frequency divider for baud rate generator ÷ 16

• In I/O interface mode

Baud rate = Input clock of baud rate generator Frequency divider for baud rate generator ÷ 2

### • Integer divider (N divider)

For example, when the source clock frequency ( $f_C$ ) is 12.288 MHz, the input clock is  $\phi$ T2 ( $f_C$ /16), the frequency divider N (BR0CR<BR0S3:0>) = 5, and BR0CR<BR0ADDE> = "0", the baud rate in UART mode is as follows:

Baud rate = 
$$\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 16$$

$$= \frac{\text{fc/16}}{5} \div 16$$

$$= 12.288 \times 10^6 \div 16 \div 5 \div 16 = 9600 \text{ (bps)}$$

Note: The N + (16 - K)/16 division function is disabled and setting BR0ADD<BR0K3:0> is invalid.

# • N + (16 - K)/16 divider (UART mode only)

Accordingly, when the source clock frequency (fc) = 4.8 MHz, the input clock is  $\phi$ T0 (fc/4), the frequency divider N (BR0CR<BR0S3:0>) = 3, K (BR0ADD<BR0K3:0>) = 7, and BR0CR<BR0ADDE> = "1", the band rate in UART mode is as follows:

Baud rate = 
$$\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 16$$

$$= \frac{\frac{\text{fc } /4}{7 + (16 - 3)}}{16} \div 16$$

$$=4.8 \times 10^6 \div 4 \div (7 + \frac{13}{16}) \div 16 = 9600 \text{ (bps)}$$

Table 3.9.3 show examples of UART mode transfer rates.

Additionally, the external clock input is available in the serial clock. (Serial channels 0, 1 and 2). The method for calculating the baud rate is explained below:

### In VART mode

Baud rate = external clock input frequency ÷ 16

It is necessary to satisfy (External clock input cycle) ≥ 4/fC

### • In I/O interface mode

>Baud rate = external clock input frequency

It is necessary to satisfy (External clock input cycle) ≥ 16/f<sub>C</sub>

Table 3.9.3 Selection of Transfer Rate (when baud rate generator is used and BR0CR<BR0ADDE> = "0")

Unit (Kbps)

| f - [NALI=1          | Input Clock       | φΤ0                 | φΤ2                    | φΤ8                  | φТ32                  |
|----------------------|-------------------|---------------------|------------------------|----------------------|-----------------------|
| f <sub>C</sub> [MHz] | Frequency Divider | (f <sub>C</sub> /4) | (f <sub>C</sub> /16)   | (f <sub>C</sub> /64) | (f <sub>C</sub> /256) |
| 9.8304               | 2                 | 76.800              | 19.200                 | 4.800                | 1.200                 |
| <b></b>              | 4                 | 38.400              | 9.600                  | 2.400                | 0.600                 |
| <b></b>              | 8                 | 19.200              | 4.800                  | 1.200                | 0.300                 |
| <u> </u>             | 10                | 9.600               | _2.400 ((              | // 0,600             | 0.150                 |
| 12.2880              | 5                 | 38.400              | 9.600                  | 2,400                | 0.600                 |
| <u> </u>             | A                 | 19.200              | 4.800                  | 1.200                | 0.300                 |
| 14.7456              | 2                 | 115.200             | 28.800                 | 7.200                | 1.800                 |
| <b></b>              | 3                 | 76.800              | 19.200                 | 4.800                | 1.200                 |
| <b>↑</b>             | 6                 | 38.400              | 9.600                  | 2.400                | 0.600                 |
| <b>↑</b>             | С                 | 19.200              | 4,800                  | 1.200                | 0.300                 |
| 19.6608              | 1                 | 307.200             | 76.800                 | 19.200               | 4.800                 |
| <b>↑</b>             | 2                 | 153.600             | )) <sub>38.400</sub> < | 9.600                | 2.400                 |
| <b>↑</b>             | 4                 | 76.800              | 19.200                 | 4,800                | 1/.200                |
| <b>↑</b>             | 8                 | 38.400              | 9.600                  | 2.400                | 0.600                 |
| <b>↑</b>             | 10 <              | 19.200              | 4.800                  | 1:200                | 0.300                 |
| 22.1184              | 3                 | 115.200             | 28.800                 | 7.200                | 1.800                 |
| 24.5760              | 1                 | 384.000             | 96.000//               | <b>24.000</b>        | 6.000                 |
| <b>↑</b>             | 2                 | 192.000             | 48.000                 | //12.000             | 3.000                 |
| <u></u>              | 4                 | 96.000              | 24,000                 | 6.000                | 1.500                 |
| <u> </u>             | 5                 | 76.800              | 19.200                 | 4.800                | 1.200                 |
| <u> </u>             | 8 (( ))           | 48.000              | 12,000                 | 3.000                | 0.750                 |
| <u> </u>             | A                 | 38.400              | 9.600                  | 2.400                | 0.600                 |
| <b>↑</b>             | (10 \             | 24.000              | 6.000                  | 1.500                | 0.375                 |

Note1: Transfer rates in I/O interface mode are eight times taster than the values given above.

In UART mode, TMRA match detect signal (TA0TRG) can be used for serial transfer clock.

Method for calculating the timer output frequency which is needed when outputting trigger of timer

TAOTRG frequency = Baud rate × 16

Note2: The TMRA0 match detect signal cannot be used as the transfer clock in I/O Interface mode.

### (3) Serial clock generation circuit

This circuit generates the basic clock for transmitting and receiving data.

#### • In I/O interface mode

In SCLK output mode with the setting SC0CR<IOC> = "0", the basic clock is generated by dividing the output of the baud rate generator by 2, as described previously.

In SCLK input mode with the setting SCOCR<IOC>="1", the rising edge or falling edge will be detected according to the setting of the SCOCR<SCLKS> register to generate the basic clock.

### • In UART mode

The SCOMODO<SC1:0> setting determines whether the baud rate generator clock, the internal clock fsys, the match detect signal from TMRA0 or the external clock (SCLK0) is used to generate the basic clock SIOCLK.

### (4) Receiving counter

The receiving counter is a 4-bit binary counter used in UART mode, which counts up the pulses of the SIOCLK clock. It takes 16 SIOCLK pulses to receive 1 bit of data; each data bit is sampled three times on the 7th, 8th and 9th clock cycles.

The value of the data bit is determined from these three samples using the majority rule.

For example, if the data bit is sampled respectively as "1", "0" and "1" on 7th, 8th and 9th clock cycles, the received data bit is taken to be "1". A data bit sampled as "0", "0" and "1" is taken to be "0".

### (5) Receiving control

In I/O interface mode

In SCLK output mode with the setting SC0CR<IOC> = "0", the RXD0 signal is sampled on the rising edge or falling of the shift clock which is output on the SCLK0 pin according to the SC0CR<SCLKS> setting.

In SCLK input mode with the setting SCOCR<IOC> = "1", the RXD0 signal is sampled on the rising or falling edge of the SCLK0 input, according to the SCOCR<SCLKS> setting.

#### In UART mode

The receiving control block has a circuit, which detects a start bit using the majority rule. Received bits are sampled three times; when two or more out of three samples are "0", the bit is recognized as the start bit and the receiving operation commences.

The values of the data bits that are received are also determined using the majority rule.

### (6) The receiving buffers

To prevent overrun errors, the receiving buffers are arranged in a double buffer structure.

Received data is stored one bit at a time in receiving buffer 1 (which is a shift register). When 7 or 8 bits of data have been stored in receiving buffer 1, the stored data is transferred to receiving buffer 2 (SC0BUF); this causes an INTRX0 interrupt to be generated. The CPU only reads receiving buffer 2 (SC0BUF). Even before the CPU reads receiving buffer 2 (SC0BUF), the received data can be stored in receiving buffer 1. However, unless receiving buffer 2 (SC0BUF) is read before all bits of the next data are received by receiving buffer 1, an overrun error occurs. If an overrun error occurs, the contents of receiving buffer 1 will be lost, although the contents of receiving buffer 2 and SC0CR<RB8> will be preserved.

SCOCR<RB8> is used to store either the parity bit—added in 8-bit UART mode – or the most significant bit (MSB) – in 9-bit UART mode.

In 9-bit UART mode the wakeup function for the slave controller is enabled by setting SC0MOD0<WU> to "1"; in this mode INTRX0 interrupts occur only when the value of SC0CR<RB8> is "1".

# SIO interrupt mode is selectable by the register SIMC.

### (7) Transmission counter

The transmission counter is a 4-bit binary counter used in UART mode and which, like the receiving counter, counts the SIOCLK clock pulses; a TXDCLK pulse is generated every 16 SIOCLK clock pulses.

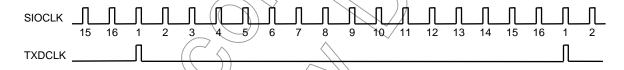



Figure 3.9.5 Generation of the Transmission Clock

#### (8) Transmission controller

#### • In/I/O interface mode

In SCLK output mode with the setting SCOCR<IOC> = "0", the data in the transmission buffer is output one bit at a time to the TXDO pin on the rising or falling edge of the shift clock which is output on the SCLKO pin, according to the SCOCR<SCLKS> setting.

In SCLK input mode with the setting SC0CR<IOC> = "1", the data in the transmission buffer is output one bit at a time on the TXD0 pin on the rising or falling edge of the SCLK0 input, according to the SC0CR<SCLKS> setting.

## • In UART mode

When transmission data sent from the CPU is written to the transmission buffer, transmission starts on the rising edge of the next TXDCLK.

#### Handshake function

Use of  $\overline{\text{CTS}}$  pin allows data to be sent in units of one frame; thus, overrun errors can be avoided. The handshake function is enabled or disabled by the SC0MOD<CTSE> setting.

When the  $\overline{\text{CTS0}}$  pin goes high on completion of the current data send, data transmission is halted until the  $\overline{\text{CTS0}}$  pin goes low again. However, the INTTX0 interrupt is generated, and it requests the next data send from the CPU. The next data is written in the transmission buffer and data sending is halted.

Though there is no RTS pin, a handshake function can be easily configured by setting any port assigned to be the RTS function. The RTS should be output "high" to request send data halt after data receive is completed by software in the RXD interrupt routine.

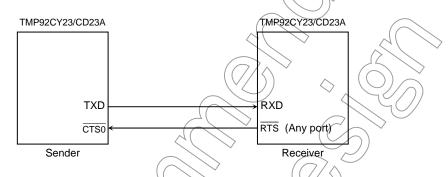
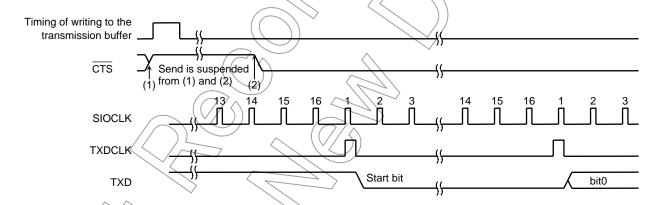




Figure 3.9.6 Handshake Function



Note 1: If the CTS signal goes high during transmission, no more data will be sent after completion of the current transmission.

Note 2: Transmission starts on the first falling edge of the TXDCLK clock after the CTS signal has fallen.

Figure 3.9.7 CTS (Clear to send) Timing

#### (9) Transmission buffer

The transmission buffer (SC0BUF) shifts out and sends the transmission data written from the CPU in order from the least significant bit (LSB). When all the bits are shifted out, the transmission buffer becomes empty and generates an INTTX0 interrupt.

### (10) Parity control circuit

When SCOCR<PE> in the serial channel control register is set to "1", it is possible to transmit and receive data with parity. However, parity can be added only in 7-bit UART mode or 8-bit UART mode. The SCOCR<EVEN> field in the serial channel control register allows either even or odd parity to be selected.

In the case of transmission, parity is automatically generated when data is written to the transmission buffer SC0BUF. The data is transmitted after the parity bit has been stored in SC0BUF<TB7> in 7-bit UART mode or in SC0MOD0<TB8> in 8-bit UART mode. SC0CR<PE> and SC0CR<EVEN> must be set before the transmission data is written to the transmission buffer.

In the case of receiving, data is shifted into receiving buffer 1 (and the parity is added after the data has been transferred to receiving buffer 2 (SC0BUF), and then compared with SC0BUF<RB7> in 7-bit UART mode or with SC0CR<RB8> in 8-bit UART mode. If they are not equal, a parity error is generated and the SC0CR<PERR> flag is set.

### (11) Error flags

Three error flags are provided to increase the reliability of data reception.

#### 1. Overrun error <OERR>

If all the bits of the next data item have been received in receiving buffer 1 while valid data still remains stored in receiving buffer 2 (SC0BUF), an overrun error is generated.

The below is a recommended flow when the overrun-error is generated.

(INTRX interrupt routine)

- 1) Read receiving buffer
- 2) Read error flag

then

- a) Set to disable receiving (Write "0" to SC0MOD0<RXE>)
- b) Wait to terminate current frame
- c) Read receiving buffer
- d) Read error flag
- e) Set to enable receiving (Write "1" to SC0MOD0<RXE>)
- f) Request to transmit again
- 4) Other

### 2. Parity error <PERR>

The parity generated for the data shifted into receiving buffer 2 (SC0BUF) is compared with the parity bit received via the RXD pin. If they are not equal, a parity error is generated.

### 3. Framing error <FERR>

The stop bit for the received data is sampled three times around the center. If the majority of the samples are "0", a framing error is generated.

# (12) Timing generation

#### 1. In UART mode

### Receiving

| Mode                 | 9 Bits<br>(Note)          | 8 Bits + Parity (Note)          | 8 Bits, 7 Bits + Parity,<br>7 Bits |
|----------------------|---------------------------|---------------------------------|------------------------------------|
| Interrupt Timing     | Center of last bit (bit8) | Center of last bit (parity bit) | Center of stop bit                 |
| Framing Error Timing | Center of stop bit        | Center of stop bit              | Center of stop bit                 |
| Parity Error Timing  | -                         | Center of last bit (parity bit) | Center of stop bit                 |
| Overrun Error Timing | Center of last bit (bit8) | Center of last bit (parity bit) | Center of stop bit                 |

Note1: In 9-bit and 8-bit parity modes, interrupts coincide with the ninth bit pulse.

Thus, when servicing the interrupt, it is necessary to wait for a 1-bit period (to allow the stop bit to be transferred) to allow checking for a framing error.

### Transmitting

| Mode             | 9 Bits                              | 8 Bits + Parity                     | 8 Bits, 7 Bits + Parity,<br>7 Bits  |
|------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Interrupt Timing | Just before stop bit is transmitted | Just before stop bit is transmitted | Just before stop bit is transmitted |

# 2. /I/O interface

| Transmission           | SCLK output mode | Immediately after last bit data. (See Figure 3.9.25.)                                                                       |
|------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Interrupt<br>Timing    | SCLK input mode  | immediately after rise of last SCLK signal rising mode, or immediately after fall in falling mode. (See Figure 3.9.26.)     |
| Receiving<br>Interrupt | SCLK output mode | Timing used to transfer received to data receive buffer 2 (SC0BUF) (e.g. immediately after last SCLK). (See Figure 3.9.27.) |
| Timing                 | SCLK input mode  | Timing used to transfer received data to receive buffer 2 (SC0BUF) (e.g. immediately after last SCLK). (See Figure 3.9.28.) |

### 3.9.3 SFR

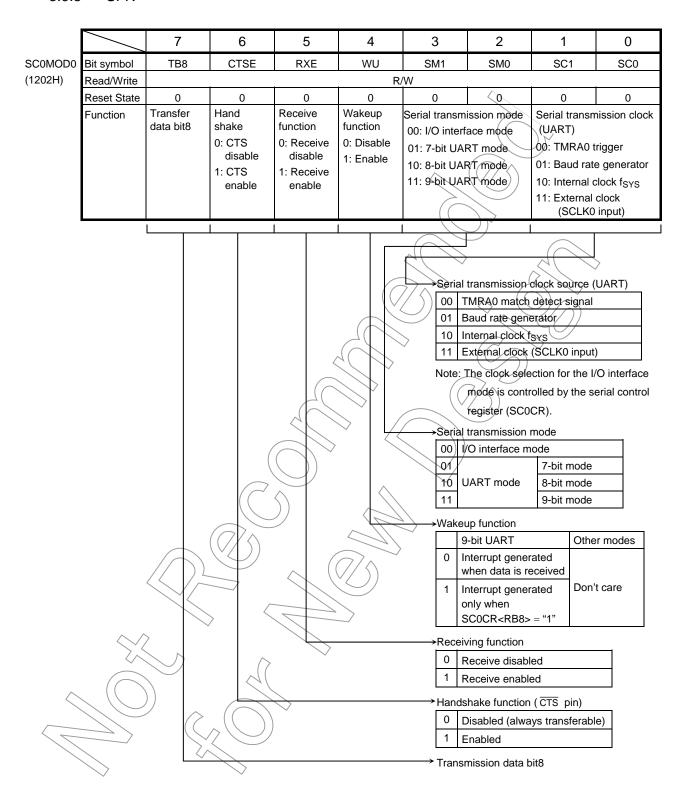
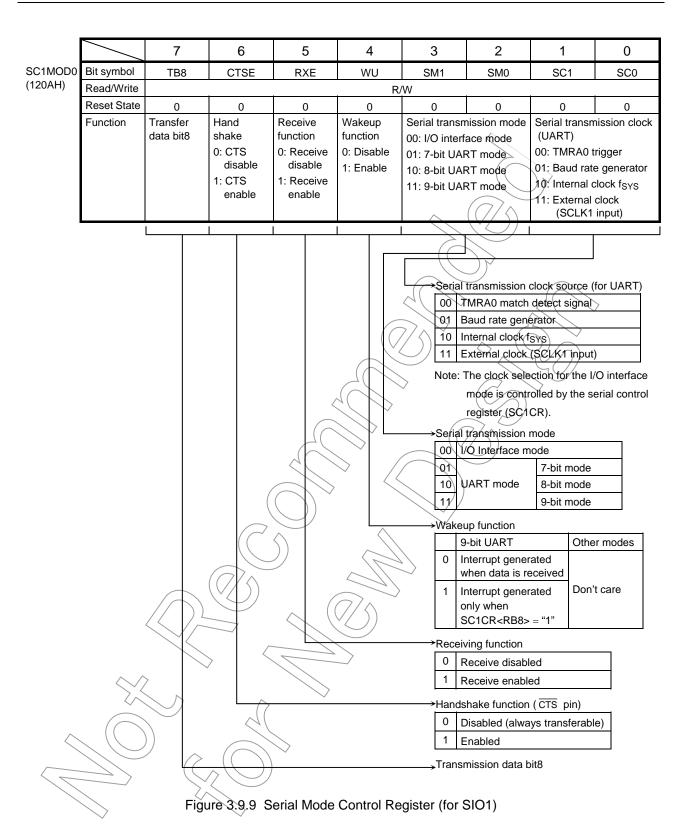
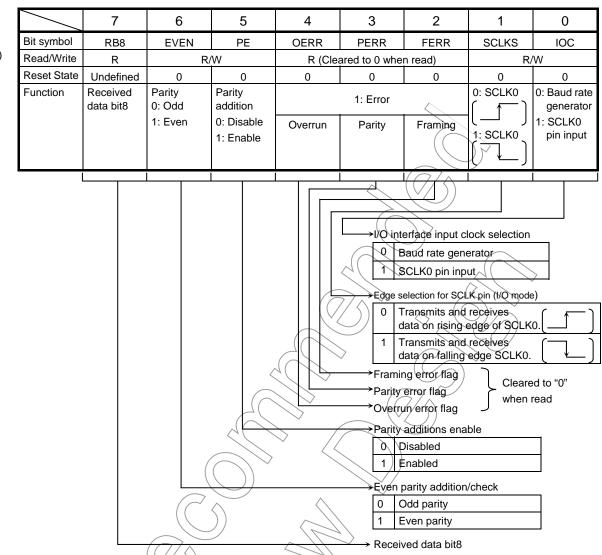
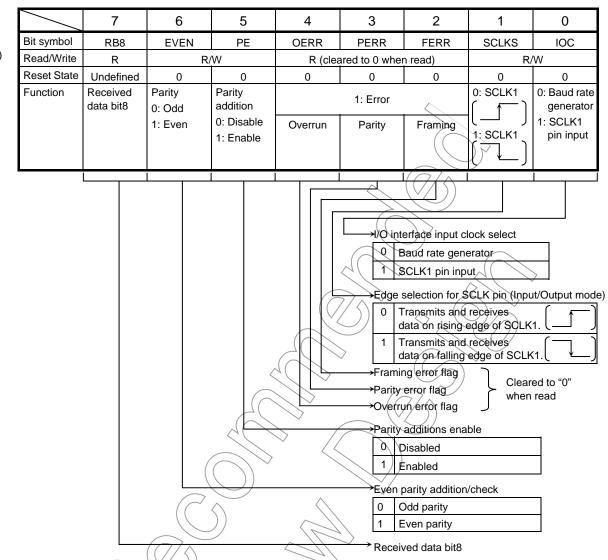





Figure 3.9.8 Serial Mode Control Register (for SIO0)



6 5 4 3 2 1 0 SC2MOD0 Bit symbol TB8 RXE WU SC1 SC0 CTSE SM1 SM0 (1212H) Read/Write R/W Reset State 0 0 0 0 0 0 **Function** Transfer Hand Receive Wakeup Serial transmission mode Serial transmission clock data bit8 shake function function (UART) 00: I/O interface mode 0: CTS 0: Receive 0: Disable 00: TMRA0 trigger 01: 7-bit UART mode disable disable 1: Enable 01: Baud rate generator 10: 8-bit UART mode 1: CTS 1: Receive 10: Internal clock f<sub>SYS</sub> 11: 9-bit UART mode enable enable 11: External clock (SCLK2 input) Serial transmission clock source (for UART) 00 TMRA0 match detect signal Baud rate generator Internal clock fsys External clock (SCLK2 input) Note: The clock selection for the I/O interface mode is controlled by the serial control register (SC2CR). Serial transmission mode 00 I/Q Interface mode **1**0 7-bit mode 10 **VART** mode 8-bit mode 9-bit mode Wakeup function 9-bit UART Other modes Interrupt generated when data is received Don't care Interrupt generated only when SC2CR<RB8> = "1" Receiving function Receive disabled Receive enabled Handshake function ( CTS pin) Disabled (always transferable) Enabled →Transmission data bit8 Figure 3.9.10 Serial Mode Control Register (for SIO2)

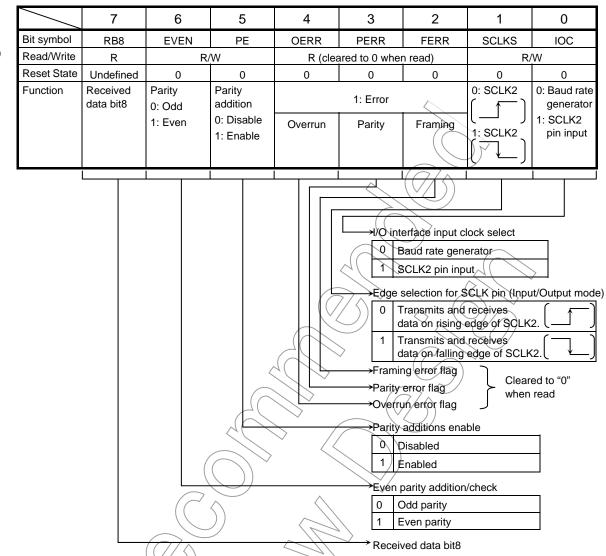
SC0CR (1201H)




Note: As all error flags are cleared after reading do not test only a single bit with a bit testing instruction.

Figure 3.9.11 Serial Control Register (for SIO0)

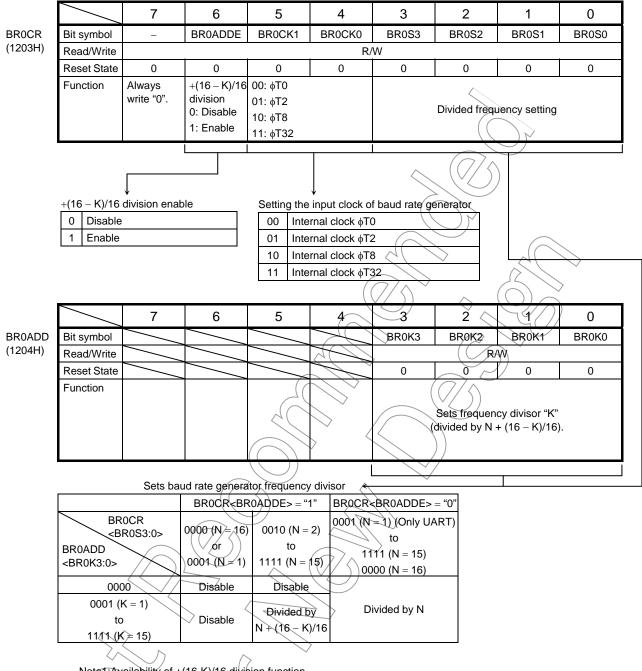



SC1CR (1209H)



Note: As all error flags are cleared after reading do not test only a single bit with a bit testing instruction.

Figure 3.9.12 Serial Control Register (for SIO1)


SC2CR (1211H)

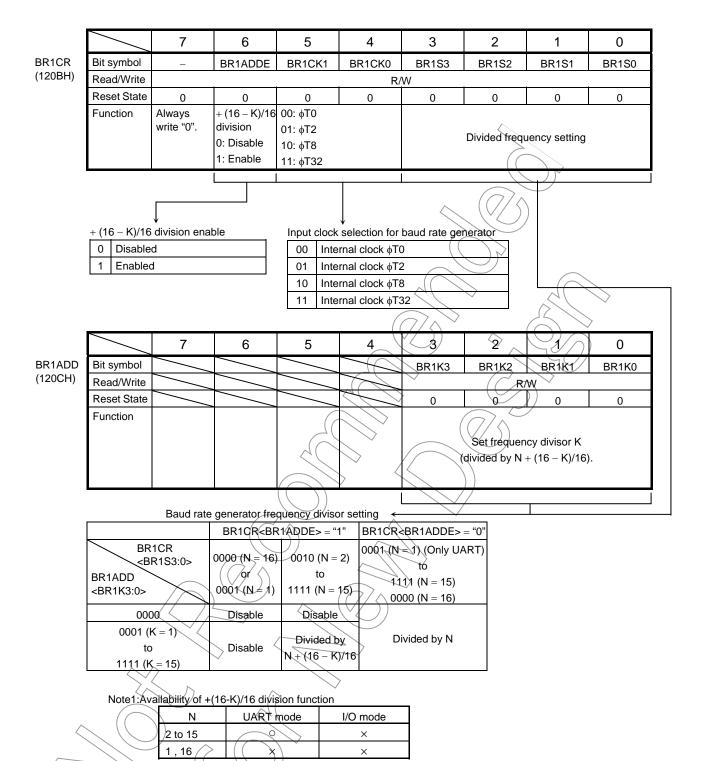


Note: As all error flags are cleared after reading do not test only a single bit with a bit testing instruction.

Figure 3.9.13 Serial Control Register (for SIO2)



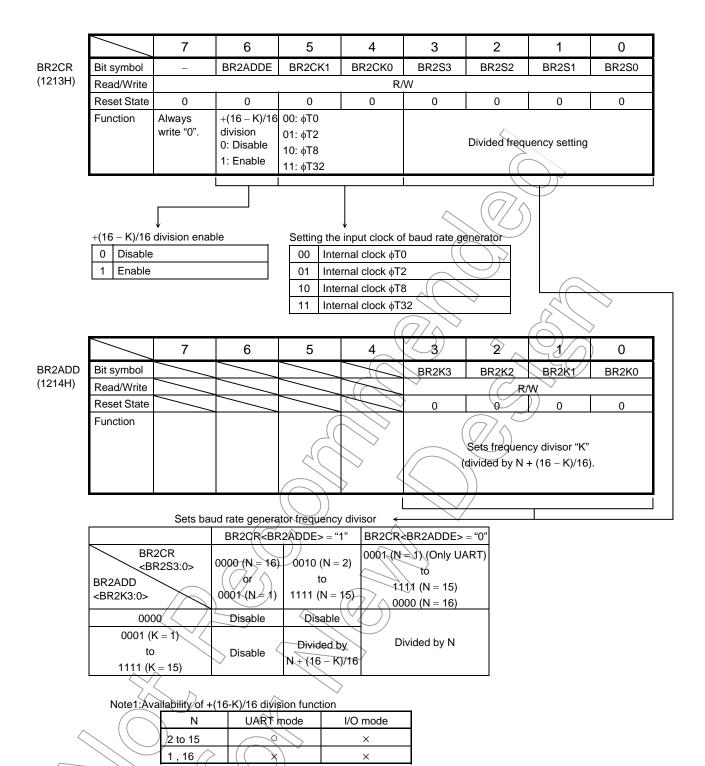



Note1: Availability of +(16-K)/16 division function

| / | N        | UART mode | I/O mode |
|---|----------|-----------|----------|
|   | 2 to 15  |           | ×        |
|   | 1,16(( , | (( ×))    | ×        |

The baud rate generator can be set to "1" in UART mode only when the +(16-K)/16 division function is not used. Do not use in I/O interfaçe mode.

Note2:Set BR0CR <BR0ADDE> to "1" after setting K (K = 1 to 15) to BR0ADD<BR0K3:0> when the +(16-K)/16 division function is used. If the unused bits in the BR0ADD register is written, it does not affect operation. If that bits is read, it becomes undefined..


Figure 3.9.14 Baud Rate Generator Control (for SIO0)



The baud rate generator can be set to "1" in UART mode only when the +(16-K)/16 division function is not used. Do not use in 1/10 interface mode.

Note2:Set BR1CR <BR1ADDE> to "1" after setting K (K = 1 to 15) to BR1ADD<BR1K3:0> when the +(16-K)/16 division function is used. If the unused bits in the BR1ADD register is written, it does not affect operation. If that bits is read, it becomes undefined.

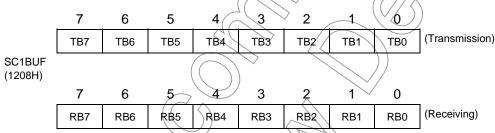
Figure 3.9.15 Baud Rate Generator Control (for SIO1)



The baud rate generator can be set to "1" in UART mode only when the +(16-K)/16 division function is not used. Do not use in 1/10 interface mode.

Note2:Set BR2CR <BR2ADDE> to "1" after setting K (K = 1 to 15) to BR2ADD<BR2K3:0> when the +(16-K)/16 division function is used. If the unused bits in the BR2ADD register is written, it does not affect operation. If that bits is read, it becomes undefined..

Figure 3.9.16 Baud Rate Generator Control (for SIO2)


7 5 6 4 3 2 1 0 (Transmission) TB7 TB1 TB0 TB6 TB5 TB4 ТВ3 TB2 SC0BUF (1200H) 7 6 5 4 3 2 0 1 (Receiving) RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

Note: A read-modify-write operation cannot be performed in SC0BUF.

Figure 3.9.17 Serial Transmission/Receiving Buffer Registers (for SIO0)

|         |             |         |         |   |        |     | \   |           |   |
|---------|-------------|---------|---------|---|--------|-----|-----|-----------|---|
|         |             | 7       | 6       | 5 | 4      | (3) | > 2 | 1         | 0 |
| SC0MOD1 | Bit symbol  | 12\$0   | FDPX0   |   | 7      | //  |     |           | / |
| (1205H) | Read/Write  | R/      | W       |   | Z      |     |     | #         |   |
|         | Reset State | 0       | 0       |   |        | f   |     |           |   |
|         | Function    | IDLE2   | Duplex  |   | ((//<  |     |     |           |   |
|         |             | 0: Stop | 0: Half |   |        | /   |     | $U(\cap)$ |   |
|         |             | 1: Run  | 1: Full |   | $\sim$ |     |     | 70/       |   |

Figure 3.9.18 Serial Mode Control Register 1 (for \$100)



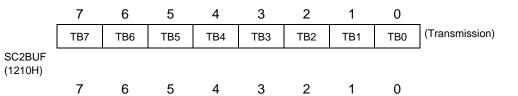

Note: A read-modify-write operation cannot be performed in SC1BUF.

Figure 3.9.19 Serial Transmission/Receiving Buffer Registers (for SIO1)

SC1MOD1 (120DH)

| _ |             | /       |              |                   | / |   |   |   |   |
|---|-------------|---------|--------------|-------------------|---|---|---|---|---|
|   |             | 7       | <b>√6</b>    | 5                 | 4 | 3 | 2 | 1 | 0 |
| I | Bit symbol  | 12S1    | FDPX1        | $\bigg / \bigg /$ |   |   |   |   |   |
|   | Read/Write  | R       | /W           | f                 |   |   |   |   |   |
|   | Reset State | 0       | $\bigcirc$ 0 |                   |   |   |   |   |   |
| 1 | Function    | IDLE2   | Duplex       |                   |   |   |   |   |   |
|   |             | 0: Stop | 0: Half      |                   |   |   |   |   |   |
| \ |             | 1: Run  | 1: Full      |                   |   |   |   |   |   |

Figure 3.9.20 Serial Mode Control Register 1 (for SIO1)



Note: A read-modify-write operation cannot be performed in SC2BUF.

RB4

RB5

Figure 3.9.21 Serial Transmission/Receiving Buffer Registers (for StO2)

RB3

SC2MOD1 (1215H) RB7

RB6

|             | 7       | 6       | 5 | 4     | 3                                     | 2        | 1            | 0 |
|-------------|---------|---------|---|-------|---------------------------------------|----------|--------------|---|
| Bit symbol  | 12S2    | FDPX2   |   |       |                                       |          |              |   |
| Read/Write  | R/      | W       |   | 7     |                                       |          |              |   |
| Reset State | 0       | 0       |   |       |                                       |          |              |   |
| Function    | IDLE2   | Duplex  |   |       |                                       | $\Omega$ |              |   |
|             | 0: Stop | 0: Half |   | ((//< | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |          |              |   |
|             | 1: Run  | 1: Full |   |       | /                                     |          | $2/\bigcirc$ |   |

RB2

RB1

RB0

(Receiving)

Figure 3.9.22 Serial Mode Control Register 1 (for SIO2)

### 3.9.4 Operation in Each Mode

### (1) Mode 0 (I/O interface mode)

This mode allows an increase in the number of I/O pins available for transmitting data to or receiving data from an external shift register.

This mode includes the SCLK output mode to output synchronous clock SCLK and SCLK input mode to input external synchronous clock SCLK

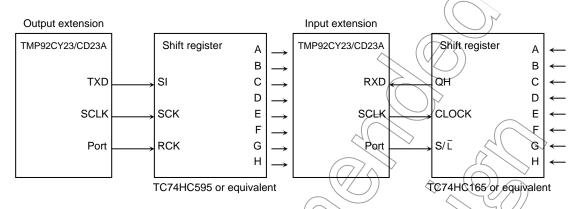



Figure 3.9.23 SCLK Output Mode Connection Example

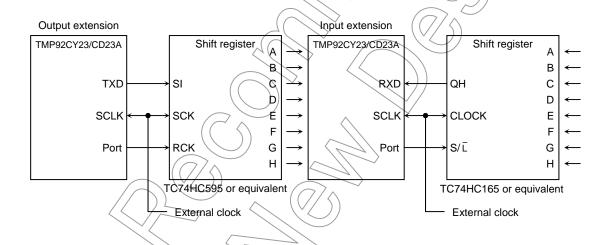



Figure 3.9.24 Example of SCLK Input Mode Connection

#### 1. Transmission

In SCLK output mode 8-bit data and a synchronous clock are output on the TXD0 and SCLK0 pins respectively each time the CPU writes data to the transmission buffer. When all data is output, INTESO<ITX0C> will be set to generate the INTTX0 interrupt.

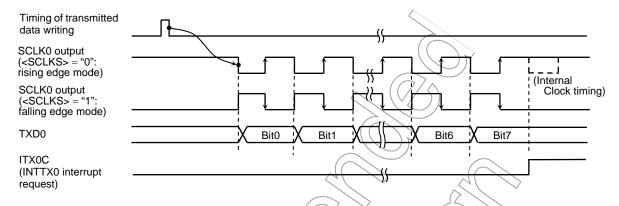



Figure 3.9.25 Transmitting Operation in I/O Interface Mode (SCLKO output mode)

In SCLK input mode, 8-bit data is output on the TXD0 pin when the SCLK0 input becomes active after the data has been written to the transmission buffer by the CPU.

When all data is output, INTESO<ITXOC> will be set to generate an INTTX0 interrupt.

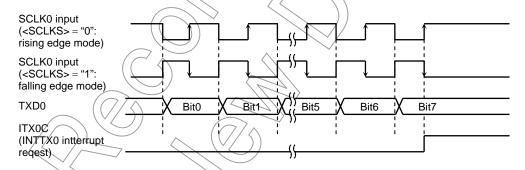



Figure 3.9.26 Transmitting Operation in I/O Interface Mode (SCLK0 input mode)

#### 2. Receiving

In SCLK output mode the synchronous clock is output on the SCLK0 pin and the data is shifted to receiving buffer 1. This is initiated when the receive interrupt flag INTES0<IRX0C> is cleared as the received data is read. When 8-bit data is received, the data is transferred to receiving buffer 2 (SC0BUF) following the timing shown below and INTES0<IRX0C> is set to "1" again, causing an INTRX0 interrupt to be generated.

Setting SC0MOD0<RXE> to "1" initiates SCLK0 output.

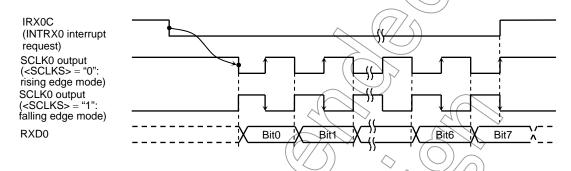



Figure 3.9.27 Receiving Operation in I/O Interface Mode (SCLKO output mode)

In SCLK input mode the data is shifted to receiving buffer 1 when the SCLK input goes active. The SCLK input goes active when the receive interrupt flag INTESO<IRX0C> is cleared as the received data is read. When 8-bit data is received, the data is shifted to receiving buffer 2 (SC0BUF) following the timing shown below and INTESO<IRX0C> is set to "1" again, causing an INTRX0 interrupt to be generated.

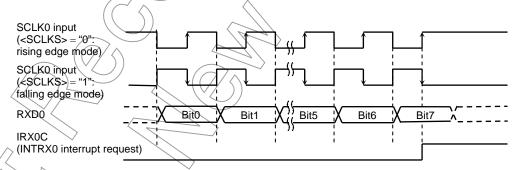



Figure 3.9.28 Receiving Operation in I/O Interface Mode (SCLK0 input mode)

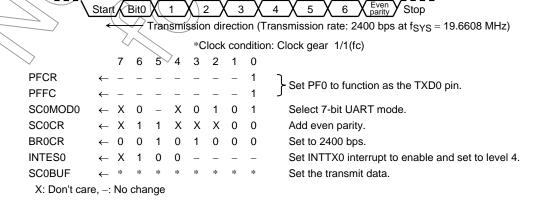
Note: The system must be put in the receive-enable state (SC0MOD0<RXE> = "1") before data can be received.

### Transmission and receiving (Full duplex mode)

When full duplex mode is used, set the receive interrupt level to 0, and only set the interrupt level (from 1 to 6) of the transmig interrupt. Ensure that the program which transmits the interrupt reads the receiving buffer before setting the next transmit data.

The following is an example of this:

| Example: | Channel 0, SCLK output         |
|----------|--------------------------------|
|          | Baud rate = $9600 \text{ bps}$ |
|          | $fc = 14.7456 \; MHz$          |


|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     | *Cl | ock    | co        | ndi                 | tion: C | Clock gear 1/1(fc)                              |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|--------|-----------|---------------------|---------|-------------------------------------------------|
| Main routine    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |     |        |           |                     |         |                                                 |
|                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6    | 5   | 4   | 3      | 2         | 1                   | 0       |                                                 |
| INTES0          | Χ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0    | 0   | 1   | Χ      | 0         | 0                   | 0       | Set the INTTX0 level to 1.                      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |     |        |           |                     |         | Set the INTRX0 level to 0.                      |
| PFCR            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    | _   | _   | _      | 1         | 0                   | 1       | Set PF0, PF1 and PF2 to function as the TXD0,   |
| PFFC            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _    | _   | -   | -      | 1         | 1                   | 1       | RXD0 and SCLK0 pins respectively.               |
| SC0MOD0         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0    | 0   | 0   | 0      | 0         | 0                   | 0(//    | Select I/O interface mode                       |
| SC0MOD1         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    | 0   | 0   | 0      | 0         | 0                   | 0,<     | Select full duplex mode.                        |
| SC0CR           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0    | 0   | 0   | 0      | 0         | (p                  | 0       | Set the SCLK output, transmit on negative edge, |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |     |        |           | 7                   |         | and receive on positive edge.                   |
| BR0CR           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0    | 1   | 1   | 0/     | 10        | 1                   | 1       | Set to 9600 bps.                                |
| SC0MOD0         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0    | 1   | 0   | 0      | 0         | Q                   | ŏ       | Set receive to enable.                          |
| SC0BUF          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *    | *   | * ( | *      | *         | $\langle * \rangle$ | *       | Set the transmit data and start.                |
| INTTX0 interrup | t routi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ne   |     |     |        |           | $\supset$           |         |                                                 |
| ACC ·           | SC     SC | COBI | JF( | 1 ( |        | $\supset$ |                     |         | Read the receiving buffer.                      |
| SC0BUF          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *    | *   | *   | *      | *         | *                   | * <     | Set the next transmit data.                     |
| X: Don't care:  | No c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hand | ne  | //  | $\vee$ |           |                     |         |                                                 |

# (2) Mode 1 (7-bit UART mode)

7-bit UAR/T mode is selected by setting the serial channel mode register SC0MOD0 < SM1:0 > field to "01"

In this mode a parity bit can be added. Use of a parity bit is enabled or disabled by the setting of the serial channel control register SCOCR<PE> bit; whether even parity or odd parity will be used is determined by the SCOCR<EVEN> setting when SCOCR<PE> is set to "1" (enabled).

Setting example: When transmitting data of the following format, the control registers should be set as described below.

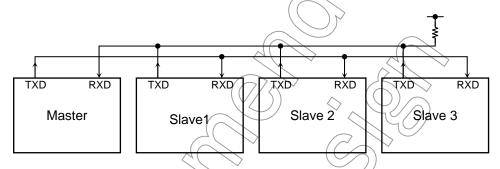


### (3) Mode 2 (8-bit UART mode)

8-bit UART mode is selected by setting SC0MOD0<SM1:0> to "10". In this mode a parity bit can be added (use of a parity bit is enabled or disabled by the setting of SC0CR<PE>); whether even parity or odd parity will be used is determined by the SC0CR<EVEN> setting when SC0CR<PE> is set to "1" (enabled).

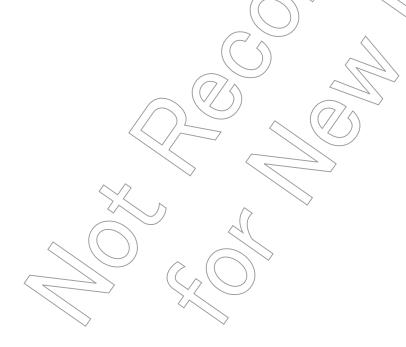
Setting example: When receiving data of the following format, the control registers should be set as described below.




### (4) Mode 3 (9-bit UART mode)

9-bit UART mode is selected by setting SC0MOD0<SM1:0> to "11". In this mode parity bit cannot be added.

In the case of transmission the MSB (9th bit) is written to SC0MOD0<TB8>. In the case of receiving it is stored in SC0CR<RB8>. When the buffer is written or read, the <TB8> or <RB8> is read or written first, before the rest of the SC0BUF data.


### Wakeup function

In 9-bit UART mode, the wakeup function for slave controllers is enabled by setting SC0MOD0<WU> to "1". The interrupt INTRX0 can only be generated when <RB8> = "1".



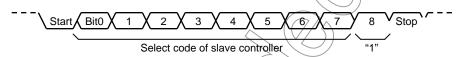
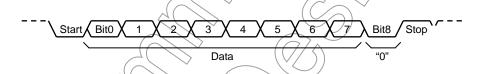

Note: The TXD pin of each slave controller must be in open-drain output mode.

Figure 3.9.29 Serial Link Using Wakeup Function

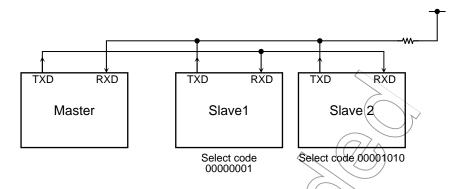



# Protocol

- 1. Select 9-bit UART mode on the master and slave controllers.
- 2. Set the SC0MOD0<WU> bit on each slave controller to "1" to enable data receiving.
- 3. The master controller transmits data one frame at a time. Each frame includes an 8-bit select code which identifies a slave controller. The MSB (bit8) of the data (<TB8>) is set to "1".



- 4. Each slave controller receives the above frame. Each controller checks the above select code against its own select code. The controller whose code matches clears its <WU> bit to "0".
- 5. The master controller transmits data to the specified slave controller (the controller whose SC0MOD0<WU> bit has been cleared to 0). The MSB (bit8) of the data (<TB8>) is cleared to "0".



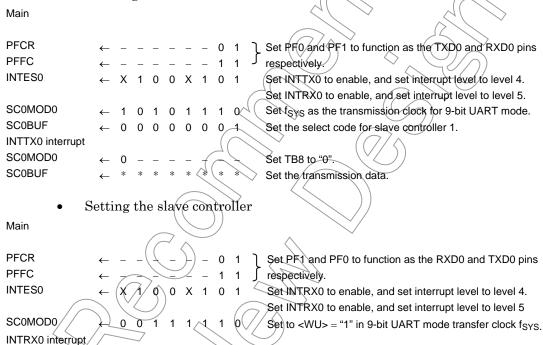

6. The other slave controllers (whose <WU> bits remain at "1") ignore the received data because their MSBs (bit8 or <RB8>) are set to "0", disabling INTRX0 interrupts.

The slave controller whose <WU> bit = "0" can also transmit to the master controller. In this way it can signal the master controller that the data transmission from the master controller has been completed.



Setting example: To link two slave controllers serially with the master controller using the internal clock fsys as the transfer clock.




Setting the master controller

SC0BUF

select code

 $\mathsf{A}_{\mathsf{CC}}$ 

if  $A_{CC}$  = selection SC0MOD0



Clear <WU> to "0"

## 3.9.5 Support for IrDA

SIO0, SIO1 and SIO2 include support for the IrDA 1.0 infrared data communication specification.

Figure 3.9.30 shows the block diagram.

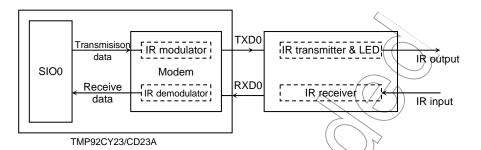



Figure 3.9.30 Block Diagram

### (1) Modulation of the transmission data

When the transmit data is "0", the modem outputs 1 to TXD0 pin with either 3/16 or 1/16 times for width of baud rate. The pulse width is selected by the SIR0CR<PLSEL>.

When the transmit data is "1", the modem outputs "0"

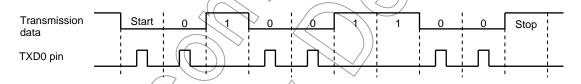



Figure 3.9.31 Transmission Example (SIO0)

### (2) Modulation of the receive data

When the receive data has an effective pulse of "1", the modem outputs "0" to SIO0. Otherwise the modem outputs "1" to SIO0. The effective pulse width is selected by SIROCR<SIROWD3:0>.

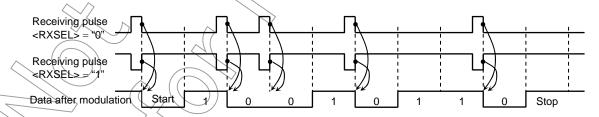



Figure 3.9.32 Receiving Example (SIO0)

### (3) Data format

The data format is fixed as follows:

• Data length: 8 bits

Parity bits: noneStop bits: 1 bit

# (4) SFR

Figure 3.9.33, Figure 3.9.34 and Figure 3.9.35 show the control register SIR0CR, SIR1CR and SIR2CR. Set SIRxCR data while SIOx is stopped. The following example describes how to set this register:

1) SIO setting ; Set the SIO to UART mode.
 2) LD (SIR0CR), 07H ; Set the receive data pulse width to 16×+100ns.

3) LD (SIROCR), 37H ; TXEN, RXEN Enable the transmission and receiving.

4) Start transmission ; The modern operates as follows: and receiving for SIO0 • SIO0 starts transmitting:

IR receiver starts receiving

#### (5) Notes

#### 1. Baud rate for IrDA

When IrDA is operated, set "01" to SC0MOD0<SC1:0> to generate baud rate. Setting other than the above (TA0TRG, f<sub>IO</sub> and SCLK0 input) cannot be used.

2. The pulse width for transmission

The IrDA 1.0 specification is defined in Table 3.9.4

Table 3.9.4 Baud Rate and Pulse Width Specifications

| Baud  | Rate | Modulation | Modulation Rate Tolerance Pulse Width (% of rate) (min) |           | Pulse Width (typ.) | Pulse Width (max) |
|-------|------|------------|---------------------------------------------------------|-----------|--------------------|-------------------|
| 2.4   | kbps | RZI        | ±0.87                                                   | 1.41 μs   | 78.13 µs           | 88.55 μs          |
| 9.6   | kbps | RZI        | ±0.87                                                   | 1.41 μs   | 19.53 µs           | 22.13 μs          |
| 19.2  | kbps | RZI        | ±0.87                                                   | 1.41 μs   | 9.77 μs            | 11.07 µs          |
| 38.4  | kbps | RZI        | ±0.87                                                   | 1.41 μs < | 4.88 μs            | 5,96 μs           |
| 57.6  | kbps | RZI        | ±0.87                                                   | 1.41 µs   | 3.26 μs            | 4.34 μs           |
| 115.2 | kbps | RZI        | ±0.87                                                   | 1.41 µs/  | ↑ 1.63 μs          | 2.23 μs           |

The pulse width is defined as either band rate T  $\times$  3/16 or 1.6  $\mu$ s (1.6  $\mu$ s is equal to 3/16 pulse width when band rate is 115.2 Kbps).

The TMP92CY23/CD23A has a function which can select the pulse width of transmission as either 3/16 or 1/16. However, 1/16 pulse width can only be selected when the baud rate is equal to or less than 38/4 Kbps.

For the same reason, the + (16 - K)/16 division function in the baud rate generator of SIOO cannot be used to generate a 115.2 Kbps baud rate.

The +(16 - K)/16 division function cannot be used also when the baud rate is 38.4 Kbps and the pulse width 1/16.

Table 3.9.5 Baud Rate and Pulse Width for (16 - K)/16 Division Function

| Pulse Width  | Baud Rate  |           |           |           |          |          |  |
|--------------|------------|-----------|-----------|-----------|----------|----------|--|
| ruise vuulii | 115.2 Kbps | 57.6 Kbps | 38.4 Kbps | 19.2 Kbps | 9.6 Kbps | 2.4 Kbps |  |
| T × 3/16     | X          | 6         |           | 0         | 0        | 0        |  |
| T× 1/1,6     | _          | -//       | ×         | 0         | 0        | 0        |  |

: (16 – K)/16 division function can be used.

x: (16 - K)/16 division function cannot be used.

-: 1/16 pulse width cannot be used.

7 6 5 4 3 2 1 SIR0CR PLSEL RXSEL TXEN RXEN SIR0WD3 SIR0WD2 SIR0WD1 Bit symbol (1207H) Read/Write R/W Reset State 0 0 0 0 0 0 0 **Function** Select Receive Transmit Receive Select receive pulse width transmit data 0: Disable 0: Disable Set effective pulse width to equal to or more than  $2x \times$ pulse width 0: "H" pulse (value + 1) + 100 ns 1: Enable 1: Enable 0: 3/16 1: "L" pulse Can be set: 1 to 14 1: 1/16 Cannot be set: 0, 15 Select receive pulse width Formula: Effective pulse width  $\ge 2x \times (value + 1) + 100 \text{ ns}$ x ≥ 1 (f<sub>FPH</sub> 0000 Cannot be set QÓQ1 Equal to or more than 4x + 100 ns to 1110 Equal to or more than 30x + 100 ns 7111 Cannot be set Receive operation Disable (Received input is ignored) Enable

Figure 3.9.33 IrDA Control Register (for SIO0)

Transmit operation

Enable Select transmit pulse width 3/16

1/16

Disable (Input from SIO is ignored)

Note: If a pulse width complying with IrDA1.0 standard (1.6 µs min.) can be guaranteed with a low baud rate, setting this bit to "1" will result in

reduced power dissipation.

0

0

1

0

SIR0WD0

0

7 6 5 4 2 1 PLSEL RXSEL TXEN RXEN SIR1WD3 SIR1WD2 SIR1WD1 SIR1CR Bit symbol (120FH) Read/Write R/W Reset State 0 0 0 0 0 0 0 **Function** Select Receive Transmit Receive Select receive pulse width transmit data 0: Disable 0: Disable Set effective pulse width to equal to or more than  $2x \times$ pulse width 0: "H" pulse (value + 1) + 100 ns 1: Enable 1: Enable 0: 3/16 1: "L" pulse Can be set: 1 to 14 1: 1/16 Cannot be set: 0, 15 Select receive pulse width Formula: Effective pulse width  $\geq 2x \times (value +1) +100 \text{ ns}$ x ≥ 1 (f<sub>FPH</sub> 0000 Cannot be set QÓQ1 Equal to or more than 4x + 100 ns to 1110 Equal to or more than 30x + 100 ns 7111 Cannot be set Receive operation Disable (Received input is ignored) Enable Transmit operation 0 Disable (Input from SIO is ignored)

Figure 3.9.34 IrDA Control Register 1 (for SIO1)

Enable Select transmit pulse width 3/16

1/16

Note: If a pulse width complying with IrDA1.0 standard (1.6 µs min.) can be guaranteed with a low baud rate, setting this bit to "1" will result in

reduced power dissipation.

0

1

0

SIR1WD0

0

7 6 5 4 3 2 1 SIR2CR PLSEL RXSEL TXEN RXEN SIR2WD3 SIR2WD2 SIR2WD1 Bit symbol (1217H) Read/Write R/W Reset State 0 0 0 0 0 0 0 **Function** Select Receive Transmit Receive Select receive pulse width transmit data 0: Disable 0: Disable Set effective pulse to width equal to or more than  $2x \times$ pulse width 0: "H" pulse (value + 1) + 100 ns 1: Enable 1: Enable 0: 3/16 1: "L" pulse Can be set: 1 to 14 1: 1/16 Cannot be set: 0, 15 Select receive pulse width Formula: Effective pulse width  $\ge 2x \times (value + 1) + 100 \text{ ns}$ x ≥ 1 (f<sub>FPH</sub> 0000 Cannot be set QÓQ1 Equal to or more than 4x + 100 ns to 1110 Equal to or more than 30x + 100 ns 7111 Cannot be set Receive operation Disable (Received input is ignored) Enable Transmit operation 0 Disable (Input from SIO is ignored) Enable Select transmit pulse width 3/16 0 1/16 1 Note: If a pulse width complying with IrDA1.0 standard (1.6 µs min.) can be guaranteed with a low baud rate, setting this bit to "1" will result in reduced power dissipation.

Figure 3.9,35 IrDA Control Register 2 (for SIO2)

0

SIR2WD0

0

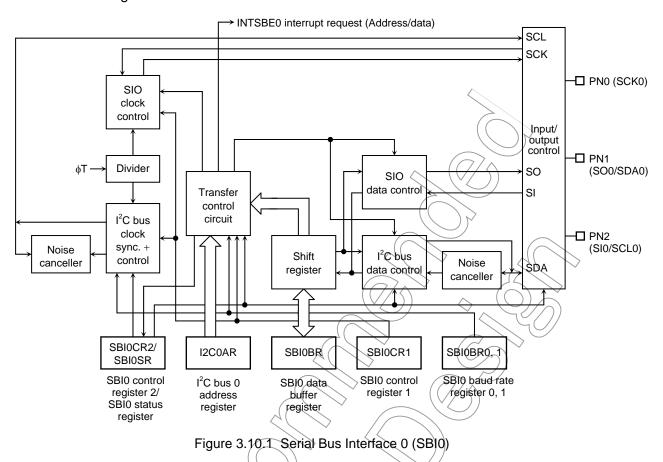
# 3.10 Serial Bus Interface (SBI)

The TMP92CY23/CD23A has 2-channel serial bus interface which employs a clocked-synchronous 8-bit SIO mode and an  $I^2C$  bus mode. They are called SBIO and SBI1.

The serial bus interface is connected to an external device through PN1 (SDA0) and PN2 (SCL0), PN4 (SDA1) and PN5 (SCL1) in the I<sup>2</sup>C bus mode; and through PN0 (SCK0), PN1 (SO0), PN2 (SI0), PN3 (SCK1), PN4 (SO1) and PN5 (SI1) in the clocked-synchronous 8-bit SIO mode.

Each of the channels can be operated independently. Since both SBI0 and SBI1 channels operate in the same manner, a channel explains only the case of SBI0.

| T 1   |      |    | • 0• 1    | 0 11 .      | (ana)  |
|-------|------|----|-----------|-------------|--------|
| Hinch | nin  | 10 | chocition | og tollowe. | CSRIM  |
| Lacii | DIII | 12 | Specified | as follows: | (DDIU) |
|       |      |    |           |             |        |


|                           | PNCR <pn2c, pn0c="" pn1c,=""></pn2c,> | PNFC <pn2f, pn0f="" pn1f,=""></pn2f,> |
|---------------------------|---------------------------------------|---------------------------------------|
| I <sup>2</sup> C Bus Mode | 11X                                   | ( 11X )                               |
| Clocked Synchronous       | 011                                   | X11                                   |
| 8-Bit SIO Mode            | 010                                   | AH (                                  |

Each pin is specified as follows: (SBI1)

|                           | PNCR <pn5c, pn3c="" pn4c,=""></pn5c,> | PNFC <pn5f, pn3f="" pn4f,=""></pn5f,>  |
|---------------------------|---------------------------------------|----------------------------------------|
| I <sup>2</sup> C Bus Mode | 11X                                   | 11X                                    |
| Clocked Synchronous       | 011                                   | Y11                                    |
| 8-Bit SIO Mode            | 010                                   | \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |

X: Don't care

### 3.10.1 Configuration



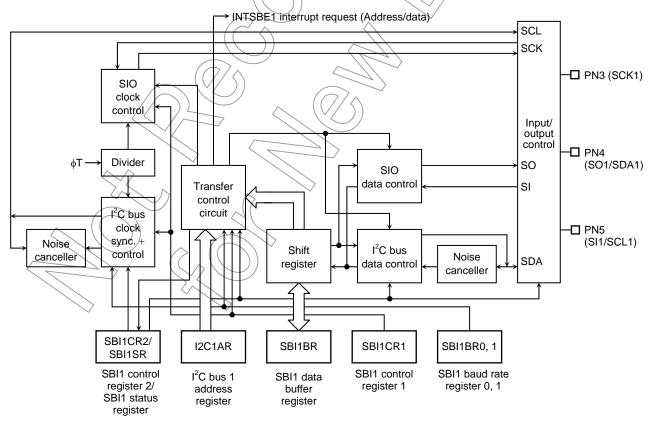
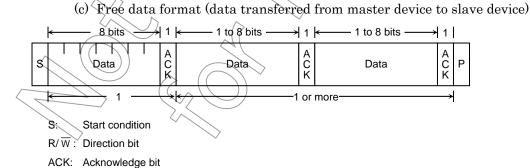



Figure 3.10.2 Serial Bus Interface 1 (SBI1)

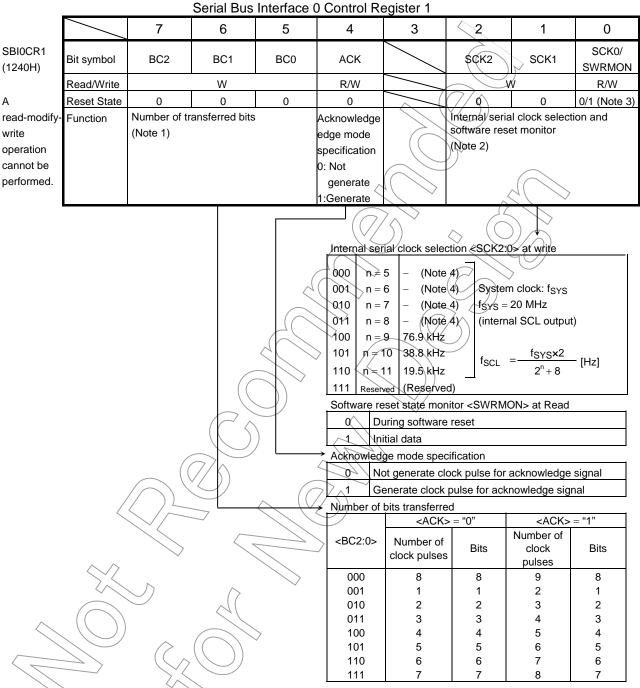

# 3.10.2 Serial Bus Interface (SBI) Control

The following registers are used to control the serial bus interface and monitor the operation status.

- Serial bus interface 0 control register 1 (SBI0CR1), (SBI1CR1)
- Serial bus interface 0 control register 2 (SBI0CR2), (SBI1CR2)
- Serial bus interface 0 data buffer register (SBI0DBR), (SBI1DBR)
- I<sup>2</sup>C bus 0 address register (I2C0AR), (I2C1AR)
- Serial bus interface 0 status register (SBIOSR), (SBI1SR)
- Serial bus interface 0 baud rate register 0 (SBI0BR0), (SBI1BR0)
- Serial bus interface 0 baud rate register 1 (SBI0BR1), (SBI1BR1)

The above registers differ depending on a mode to be used. Refer to section 3.10.4 "I<sup>2</sup>C Bus Mode Control Register" and 3.10.7 "Clocked synchronous 8-Bit SIO Mode Control".

#### 3.10.3 The Data Formats in the I<sup>2</sup>C Bus Mode The data formats in the I<sup>2</sup>C bus mode are shown below. (a) Addressing format 1 to 8 bits 1 to 8 bits A C K Data< Data Slave address S $\frac{/}{W}$ 1 or more (b) Addressing format (with restart) 1 to 8 bits 8 bits 8 bits 1 to 8 bits **1** 1 | R A C W K A C K A C K Slave address Slave address Data Data or more 1 or more



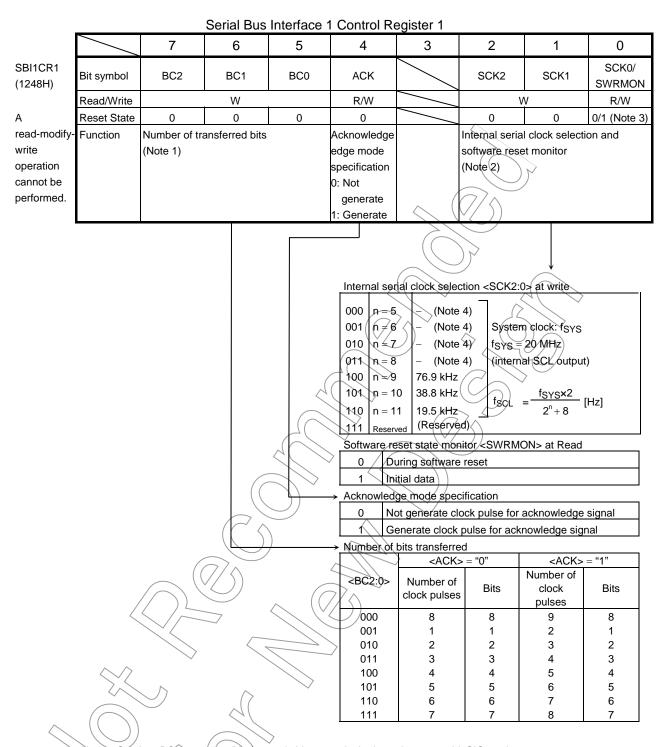

Stop condition

Figure 3.10.3 Data Format in the I<sup>2</sup>C Bus Mode

# 3.10.4 I<sup>2</sup>C Bus Mode Control Register

The following registers are used to control and monitor the operation status when using the serial bus interface (SBI0, SBI1) in the I<sup>2</sup>C bus mode.




Note 1: Set the <BC2:0> to "000" before switching to a clocked-synchronous 8-bit SIO mode.

Note 2: For the frequency of the SCL pin clock, see 3.10.5 (3) "Serial clock".

Note 3: Initial data of SCK0 is "0", SWRMON is "1".

Note 4: This I<sup>2</sup>C bus circuit does not support Fast mode, it supports standard mode only. Although the I<sup>2</sup>C bus circuit itself allows the setting of a baud rate over 100 kbps, the compliance with the I<sup>2</sup>C specification is not guaranteed in that case.

Figure 3.10.4 Registers for the I<sup>2</sup>C Bus Mode (SBI0)



Note 1: Set the <BC2:0> to "000" before switching to a clocked-synchronous 8-bit SIO mode.

Note 2: For the frequency of the SCL pin clock, see 3.10.5 (3) "Serial clock".

Note 3: Initial data of SCK0 is "0", SWRMON is "1".

Note 4: This I<sup>2</sup>C bus circuit does not support Fast mode, it supports standard mode only. Although the I<sup>2</sup>C bus circuit itself allows the setting of a baud rate over 100 kbps, the compliance with the I<sup>2</sup>C specification is not guaranteed in that case.

Figure 3.10.5 Registers for the I<sup>2</sup>C Bus Mode (SBI1)

Serial Bus Interface 0 Control Register 2 7 5 2 0 TRX PIN SWRST1 SWRST0 Bit symbol MST BB SBIM1 SBIM0 W (Note 1) Read/Write W W (Note 1) Reset State 0 0 0 Master/ Transmitter Start/stop Cancel Serial bus interface Software reset generate Function slave /receiver condition INTSBE0 operating mode selection write "10" and "01", then read-modifyselection selection generation interrupt (Note 2) an internal software reset request signal is generated. 00: Port mode 01: SIO mode 10: I2C bus mode 11: (Reserved) Serial bus interface operating mode selection (Note 2) 00 Port mode (Serial bus interface output disabled) Clocked-synchronous 8-bit SIO mode I<sup>2</sup>C bus mode 11 (Reserved) INTSBE0 interrupt request 0 Cancel interrupt request Start/stop condition generation 0 Generates the stop condition Generates the start condition

Note 1: Reading this register function as SBIOSR register.

SBI0CR2

(1243H)

write

operation

cannot be

performed

Note 2: Switch a mode to port mode after confirming that the bus is free.

Switch a mode between 12c bus mode and clocked-synchronous 8-bit SIO mode after confirming that input signals via port are high level.

1

Transmitter/receiver selection

0 Receiver 1 Transmitter Master/slave selection Slave Master

Figure 3.10.6 Registers for the I<sup>2</sup>C Bus Mode (SBI0)



Serial Bus Interface 1 Control Register 2 7 5 2 0 TRX PIN SBIM1 SWRST1 SWRST0 Bit symbol MST BB SBIM0 W (Note 1) Read/Write W W (Note 1) Reset State 0 0 0 Master/ Transmitter Start/stop Cancel Serial bus interface Software reset generate Function slave /receiver condition INTSBE1 operating mode selection write "10" and "01", then read-modifyselection selection generation interrupt (Note 2) an internal software reset request signal is generated. 00: Port mode 01: SIO mode 10: I2C bus mode 11: (Reserved) Serial bus interface operating mode selection (Note 2) 00 Port mode (Serial bus interface output disabled) Clocked-synchronous 8-bit SIO mode I<sup>2</sup>C bus mode 11 (Reserved) (NTSBE) interrupt request Cancel interrupt request Start/stop condition generation 0 Generates the stop condition Generates the start condition

Note 1: Reading this register function as SBI1SR register.

SBI1CR2

(124BH)

write

operation

cannot be

performed.

Note 2: Switch a mode to port mode after confirming that the bus is free.

Switch a mode between 12c bus mode and clocked-synchronous 8-bit SIO mode after confirming that input signals via port are high level.

1

Transmitter/receiver selection

0 Receiver 1 Transmitter Master/slave selection Slave Master

Figure 3.10.7 Registers for the I<sup>2</sup>C Bus Mode (SBI1)

Serial Bus Interface 0 Status Register 7 5 2 1 0 SBI0SR MST TRX ВВ PIN AAS AD0 LRB Bit symbol ΑL (1243H) Read/Write Reset State 0 0 0 Master/ Transmitter I<sup>2</sup>C bus INTSBE0 Arbitration Slave **GENERAL** Last Function Α slave /receiver status interrupt address CALL received bit read-modifydetection detection status status monitor request match monitor write selection selection monitor monitor detection monitor 0: "0" operation monitor monitor monitor 0: -0:Undetected 1: "1" cannot be 0:Undetected 1: Detected 1: Detected performed. 1: Detected Last received bit monitor 0 Last received bit was "0" 1 Last received bit was "1" GENERAL CALL detection monitor 0 Undetected 1 GENERAL CALL detected Slave address match detection monitor 0 Undetected Slave address match or GENERAL CALL detected Arbitration lost detection monitor \Q'\ 1 Arbitration lost INTSBE0 interrupt request monitor 0 Interrupt requested 1 Interrupt canceled I<sup>2</sup>C bus status monitor 0 Free 1 Busy Transmitter/receiver status monitor 0 Receiver 1 Transmitter Master/slave status monitor 0 Slave Master Note: Writing in this register functions as SBI0CR2. Figure 3.10.8 Registers for the I<sup>2</sup>C Bus Mode (SBI0)

Serial Bus Interface 1 Status Register 7 5 4 2 1 0 SBI1SR MST TRX ВВ PIN AL AAS AD0 LRB Bit symbol (124BH) Read/Write Reset State 0 0 0 0 Master/ Transmitter I<sup>2</sup>C bus INTSBE1 Arbitration Slave **GENERAL** Last Function Α slave /receiver status interrupt lost address CALL received bit read-modifydetection match detection status status monitor request monitor write monitor detection selection selection monitor monitor 0: "0" operation monitor monitor monitor 0: -0:Undetected 1: "1" cannot be 0:Undetected 1: Detected 1: Detected performed. 1: Detected Last received bit monitor 0 Last received bit was "0" 1 Last received bit was "1" GENERAL CALL detection monitor 0 Undetected 1 GENERAL CALL detected Slave address match detection monitor 0 Undetected Slave address match or GENERAL CALL detected Arbitration lost detection monitor 1 Arbitration lost INTSBE1 interrupt request monitor 0 Interrupt requested 1 Interrupt canceled · I<sup>2</sup>C bus status monitor 0 Free 1 Busy Transmitter/receiver status monitor 0 Receiver 1 Transmitter Master/slave status monitor 0 Slave Master Note: Writing in this register functions as SBI1CR2. Figure 3.10.9 Registers for the I<sup>2</sup>C Bus Mode (SBI1)

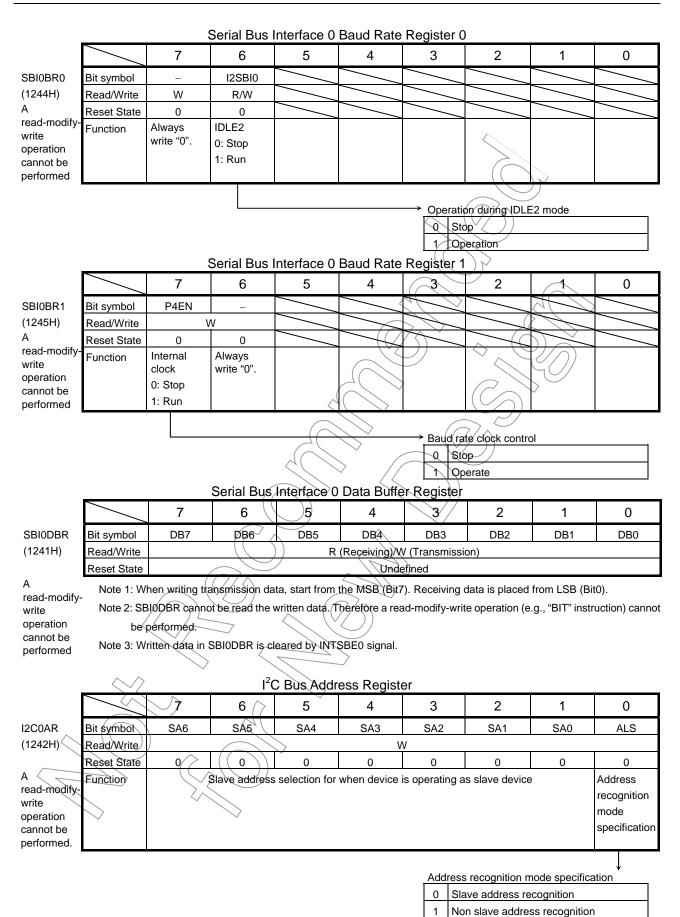



Figure 3.10.10 Registers for the I<sup>2</sup>C Bus Mode (SBI0)

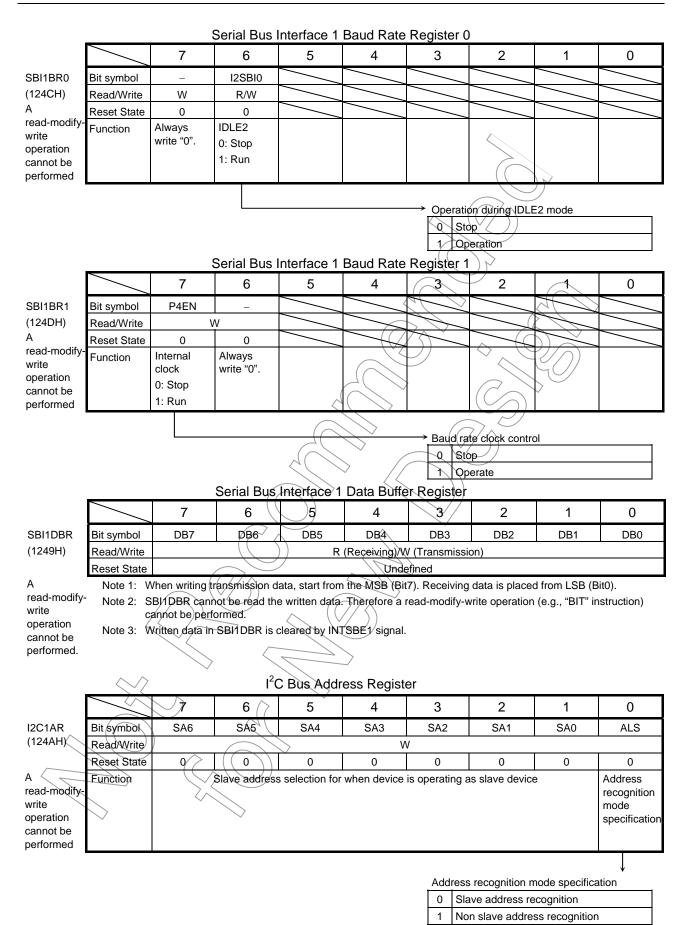


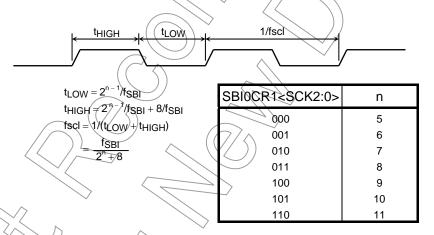

Figure 3.10.11 Registers for the I<sup>2</sup>C Bus Mode (SBI1)

# 3.10.5 Control in I<sup>2</sup>C Bus Mode

## (1) Acknowledge mode specification

Set the SBIOCR1<ACK> to "1" for operation in the acknowledge mode. The TMP92CY23/CD23A generates an additional clock pulse for an acknowledge signal when operating in master mode. In the transmitter mode during the clock pulse cycle, the SDA0 pin is released in order to receive the acknowledge signal from the receiver. In the receiver mode during the clock pulse cycle, the SDA0 pin is set to the low in order to generate the acknowledge signal.

Clear the <ACK> to "0" for operation in the non-acknowledge mode. The TMP92CY23/CD23A does not generate a clock pulse for the acknowledge signal when operating in the master mode.


#### (2) Number of transfer bits

Since the SBI0CR1<BC2:0> is cleared to "000" on start up, a slave address and direction bit transmissions are executed in 8 bits. Other than these, the <BC2:0> retains a specified value.

### (3) Serial clock

#### 1. Clock source

The SBI0CR1<SCK2:0> is used to specify the maximum transfer frequency for output on the SCL pin in the master mode. Set the band rates, which have been calculated according to the formula below, to meet the specifications of the  $I^2C$  bus, such as the smallest pulse width of  $t_L ow$ .



Note1: fSBI shows fSYS.

Note2: In a setup of prescaler of SYSCR0, the fc/16 mode cannot be used at the time of SBI circuit use.

Figure 3.10.12 Clock Source

Internal SCL output (Master A)

Internal SCL output

(Master B) SCL pin

### 2. Clock synchronization

In the I<sup>2</sup>C bus mode, in order to wired-AND a bus, a master device which pulls down a clock line to low level, in the first place, invalidate a clock pulse of another master device which generates a high-level clock pulse. The master device with a high-level clock pulse needs to detect the situation and implement the following procedure.

The TMP92CY23/CD23A has a clock synchronization function for normal data transfer even when more than one master exists on the bus.

The example explains the clock synchronization procedures when two masters simultaneously exist on a bus.

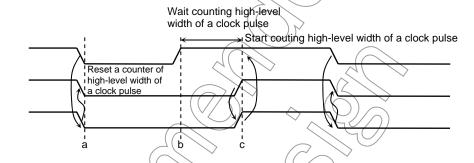



Figure 3.10.13 Clock Synchronization

As master A pulls down the internal SCL output to the low level at point "a", the SCL line of the bus becomes the low level. After detecting this situation, master B resets a counter of high-level width of an own clock pulse and sets the internal SCL output to the low level.

Master A finishes counting low-level width of an own clock pulse at point "b" and sets the internal SCL output to the high level. Since master B holds the SCL line of the bus at the low level, master A waits for counting high-level width of an own clock pulse. After master B finishes counting low-level width of an own clock pulse at point "c" and master A detects the SCL line of the bus at the high level, and starts counting high level of an own clock pulse. The clock pulse on the bus is determined by the master device with the shortest high-level width and the master device with the longest low-level width from among those master devices connected to the bus.

## (4) Slave address and address recognition mode specification

When this device is to be used as a slave device, set the slave address <SA6:0> and <ALS> in I2C0AR.

Clear the <ALS>to "0" for the address recognition mode.

### (5) Master/slave selection

Set the SBI0CR2<MST> to "1" for operating the TMP92CY23/CD23A as a master device. Clear the SBI0CR2<MST> to "0" for operation as a slave device. The <MST> is cleared to "0" by the hardware after a stop condition on the bus is detected or arbitration is lost.

#### (6) Transmitter/receiver selection

Set the SBI0CR2<TRX> to "1" for operating the TMP92CY23/CD23A as a transmitter. Clear the <TRX> to "0" for operation as a receiver. In slave mode, when transfer data in addressing format, when received slave address is same value with setting value to I2C0AR, or GENERAL CALL is received (All 8-bit data are "0" after a start condition), the <TRX> is set to "1" by the hardware if the direction bit  $(R/\overline{W})$  sent from the master device is "1", and <TRX> is cleared to "0" by the hardware if the bit is "0".

In the master mode, after an acknowledge signal is returned from the slave device, the <TRX> is cleared to "0" by the hardware if a transmitted direction bit is "1", and is set to "1" by the hardware if it is "0". When an acknowledge signal is not returned, the current condition is maintained.

The <TRX> is cleared to "0" by the hardware after a stop condition on the bus is detected or arbitration is lost.

## (7) Start/stop condition generation

When the SBIOSR<BB> = "0", slave address and direction bit which are set to SBIODBR is output on the bus after generating a start condition by writing "1111" to the SBIOCR2<MST, TRX, BB, PIN>. It is necessary to set transmitted data to the data buffer register (SBIODBR) and set "1" to the <ACK> beforehand.

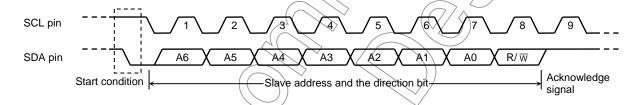



Figure 3.10.14 Start Condition Generation and Slave Address Generation

When the SBIOSR<BB> = "1", the sequence for generating a stop condition can be initiated by writing "111" to the SBIOCR2<MST, TRX, PIN> and writing "0" to the SBIOCR2<BB>. Do not modify the contents of the SBIOCR2<MST, TRX, BB, PIN> until a stop condition has been generated on the bus.

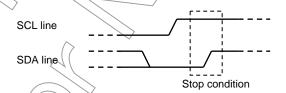



Figure 3.10.15 Stop Condition Generation

The state of the bus can be ascertained by reading the contents of SBI0SR<BB>. SBI0SR<BB> will be set to "1" (Bus busy status) if a start condition has been detected on the bus, and will be cleared to "0" if a stop condition has been detected (Bus free status).

In addition, since there is a restrictions matter about stop condition generating in master mode, please refer to 3.10.6. (4) "Stop condition generation".

## (8) Interrupt service requests and interrupt cancellation

When a serial bus interface interrupt request 0 (INTSBE0) occurs, the SBI0SR2 <PIN> is cleared to "0". During the time that the SBI0SR2<PIN> is "0", the SCL line is pulled down to the low level.

The <PIN> is cleared to "0" when end of transmission or receiving 1 word of data. And when writing data to SBI0DBR or reading data from SBI0DBR, <PIN> is set to "1".

The time from the <PIN> being set to "1" until the SCL line is released takes tLOW.

In the address recognition mode (<ALS> = "0"), <PIN> is cleared to "0" when the received slave address is the same as the value set at the I2COAR or when a GENERAL CALL is received (All 8-bit data are "0" after a start condition). Although SBIOCR2<PIN> can be set to "1" by the program, the <PIN> is not clear it to "0" when it is programmed "0".

## (9) Serial bus interface operation mode selection

The SBI0CR2<SBIM1:0> is used to specify the serial bus interface operation mode. Set the SBI0CR2<SBIM1:0> to "10" when the device is to be used in I<sup>2</sup>C bus mode

after confirming pin condition of serial bus interface to "H".

Switch a mode to port after confirming a bus is free.

### (10) Arbitration lost detection monitor

Since more than one master device can exist simultaneously on the bus in I<sup>2</sup>C bus mode, a bus arbitration procedure has been implemented in order to guarantee the integrity of transferred data.

Data on the SDA pin is used for I<sup>2</sup>C bus arbitration.

The following example illustrates the bus arbitration procedure when there are two master devices on the bus. Master A and master B output the same data until point "a". After master A outputs "L" and master B, "H", the SDA pin of the bus is wire-AND and the SDA pin is pulled down to the low level by master A. When the SCL pin of the bus is pulled up at point "b", the slave device reads the data on the SDA pin, that is, data in master A. Data transmitted from master B becomes invalid. The master B state is known as "ARBITRATION LOST". Master B device which loses arbitration releases the internal SDA output in order not to affect data transmitted from other masters with arbitration. When more than one master sends the same data at the first word, arbitration occurs continuously after the second word.

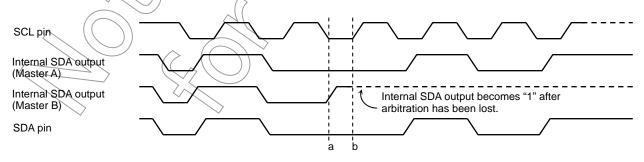



Figure 3.10.16 Arbitration Lost

The TMP92CY23/CD23A compares the levels on the bus's SDA line with those of the internal SDA output on the rising edge of the SCL line. If the levels do not match, arbitration is lost and SBIOSR<AL> is set to "1".

When SBIOSR<AL> is set to "1", SBIOSR<MST, TRX> are cleared to "00" and the mode is switched to slave receiver mode. Thus, clock output is stopped in data transfer after setting <AL> = "1".

SBIOSR <AL> is cleared to "0" when data is written to or read from SBIODBR or when data is written to SBIOCR2.

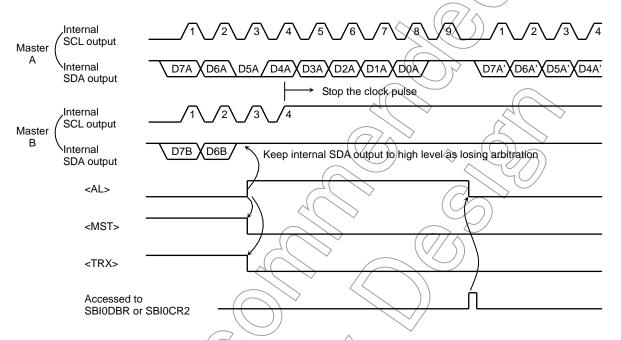



Figure 3.10.17 Example of a Master Device B (D7A = D7B, D6A = D6B)

## (11) Slave address match detection monitor

SBIOSR<AAS> operates following in during slave mode; In address recognition mode (e.g., when I2COAR<ALS> = "0"), when received GENERAL CALL or same slave address with value set to I2COAR, SBIOSR<AAS> is set to "1". When <ALS> = "1", SBIOSR<AAS> is set to "1" after the first word of data has been received. SBIOSR<AAS> is cleared to "0" when data is written to SBIODBR or read from SBIODBR.

# (12) GENERAL CALL detection monitor

SBIOSR<ADO operates following in during slave mode; when received GENERAL CALL (all 8-bit data is "0", after a start condition), SBIOSR<ADO is set to "1". And SBIOSR<ADO is cleared to "0" when a start condition or stop condition on the bus is detected.

### (13) Last received bit monitor

The value on the SDA line detected on the rising edge of the SCL line is stored in the SBI0SR<LRB>. In the acknowledge mode, immediately after an INTSBE0 interrupt request has been generated, an acknowledge signal is read by reading the contents of the SBI0SR<LRB>.

#### (14) Software reset function

The software reset function is used to initialize the SBI circuit, when SBI is rocked by external noises, etc.

When write first "10" next "01" to SBIOCR2<SWRST1:0>, reset signal is inputted to serial bus interface circuit, and circuit is initialized. All command registers except SBIOCR2<SBIM1:0> and status flag except SBIOCR2<SBIM1:0> are initialized to value of just after reset. SBIOCR1<SWRMON> is set to "1" automatically when completed initialization of serial bus interface.

## (15) Serial bus interface data buffer register (SBI0DBR)

The received data can be read and transmission data can be written by reading or writing SBI0DBR.

In the master mode, after the slave address and the direction bit are set in this register, the start condition is generated.

## (16) I2C bus address register (I2C0AR)

I2C0AR<SA6:0> is used to set the slave address when the TMP92CY23/CD23A functions as a slave device.

The slave address outputted from the master device is recognized by setting the I2COAR<ALS> to "0". And, the data format becomes the addressing format. When set <ALS> to "1", the slave address is not recognized, the data format becomes the free data format.

## (17) Baud rate register (SBIOBRI)

Write "1" to baud rate circuit control register SBIOBR1<P4EN> before using I2C bus.

# (18) Setting register for IDLE2 mode operation (SBIOBRO)

SBI0BR0<I2SBI0> is the register setting operation/stop during IDLE2 mode. Therefore, setting <I2SBI0> is necessary before the HALT instruction is executed.



## 3.10.6 Data Transfer in I<sup>2</sup>C Bus Mode

### (1) Device initialization

In first, set the SBI0BR1<P4EN>, SBI0CR1<ACK, SCK2:0>. Set SBI0BR1<P4EN> to "1" and clear bits 7 to 5 and 3 in the SBI0CR1 to "0".

Next, set a slave address <SA6:0> and the <ALS> (<ALS> = "0" when an addressing format) to the I2C0AR.

And, write "000" to SBI0CR2<MST, TRX, BB>, "1" to <PIN>, "10" to <SBIM1:0> and "00" to <SWRST1:0>. Set initialization status to slave receiver mode by this setting.

# (2) Start condition generation and slave address generation

#### Master mode

In the master mode, the start condition and the slave address are generated as follows.

In first, check a bus free status (when \$BIOSR < BB> = "0").

Set the SBIOCR1<ACK> to "1" (Acknowledge mode) and specify a slave address and a direction bit to be transmitted to the \$BIODBR,

When SBIOSR<BB> = "0", the start condition are generated by writing "1111" to SBIOCR2<MST, TRX, BB, PIN>. Subsequently to the start condition, nine clocks are output from the SCL pin. While eight clocks are output, the slave address and the direction bit which are set to the SBIODBR. At the 9th clock, the SDA line is released and the acknowledge signal is received from the slave device.

An INTSBE0 interrupt request generate at the falling edge of the 9th clock. The <PIN> is cleared to "0". In the master mode, the SCL pin is pulled down to the low level while <PIN> is "0". When an interrupt request is generated, the <TRX> is changed according to the direction bit only when an acknowledge signal is returned from the slave device.

### 2. Slave mode.

In the slave mode, the start condition and the slave address are received.

After the start condition is received from the master device, while eight clocks are output from the SCL pin, the slave address and the direction bit that are output from the master device are received.

When a GENERAL CALL or the same address as the slave address set in I2COAR is received, the SDA line is pulled down to the low level at the 9th clock, and the acknowledge signal is output.

An INTSBEO interrupt request is generated on the falling edge of the 9th clock. The <PIN> is cleared to "0". In slave mode the SCL line is pulled down to the low level while the <PIN> = "0".



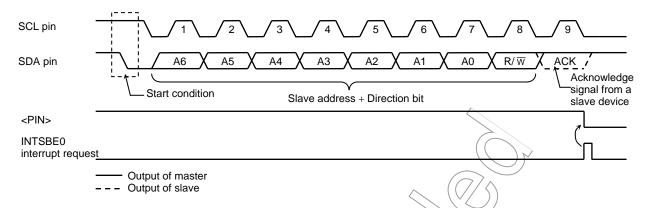



Figure 3.10.18 Start Condition Generation and Slave Address Transfer

#### (3) 1-word data transfer

Check the <MST> by the INTSBE0 interrupt process after the 1-word data transfer is completed, and determine whether the mode is a master or slave.

1. If  $\langle MST \rangle = "1"$  (Master mode)

Check the <TRX> and determine whether the mode is a transmitter or receiver.

# When the <TRX> = "1" (Transmitter mode)

Check the <LRB>. When <LRB> is "1", a receiver does not request data. Implement the process to generate a stop condition (Refer to (4)) and terminate data transfer.

When the <LRB> is "0", the receiver is requests new data. When the next transmitted data is 8 bits, write the transmitted data to SBI0DBR. When the next transmitted data is other than 8 bits, set the <BC2:0> <ACK> and write the transmitted data to SBI0DBR. After written the data, <PIN> becomes "1", a serial clock pulse is generated for transferring a new 1-word of data from the SCL0 pin, and then the 1-word data is transmitted. After the data is transmitted, an INTSBE0 interrupt request generates. The <PIN> becomes "0" and the SCL0 line is pulled down to the low level. If the data to be transferred is more than one word in length, repeat the procedure from the <LRB> checking above.

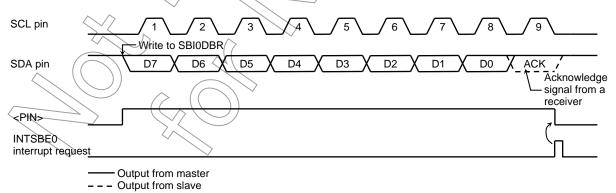
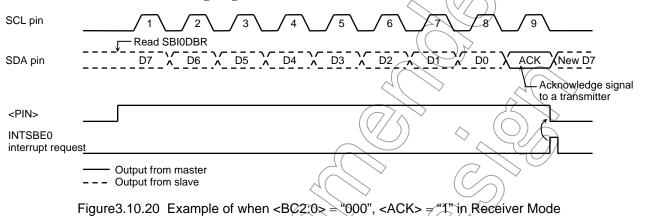




Figure 3.10.19 Example in which <BC2:0> = "000" and <ACK> = "1" in Transmitter Mode

## When the <TRX> is "0" (Receiver mode)

When the next transmitted data is other than 8 bits, set <BC2:0> <ACK> and read the received data from SBI0DBR to release the SCL0 line (Data which is read immediately after a slave address is sent is undefined). After the data is read, <PIN> becomes "1". Serial clock pulse for transferring new 1 word of data is defined SCL and outputs "L" level from SDA0 pin with acknowledge timing.

An INTSBE0 interrupt request then generates and the <PIN> becomes "0", Then the TMP92CY23/CD23A pulls down the SCL pin to the low level. The TMP92CY23/CD23A outputs a clock pulse for 1 word of data transfer and the acknowledge signal each time that received data is read from the SBI0DBR.



In order to terminate the transmission of data to a transmitter, clear <ACK> to "0" before reading data which is 1 word before the last data to be received. The last data word does not generate a clock pulse as the acknowledge signal. After the data has been transmitted and an interrupt request has been generated, set <BC2:0> to "001" and read the data. The TMP92CY23/CD23A generates a clock pulse for a 1-bit data transfer. Since the master device is a receiver, the SDA0 line on the bus remains high. The transmitter receives the high signal as an ACK signal. The receiver indicates to the transmitter that the data transfer is completed.

After the one data bit has been received and an interrupt request has been generated, the TMP92CY23/CD23A generates a stop condition (See section (4)) and terminates data transfer.

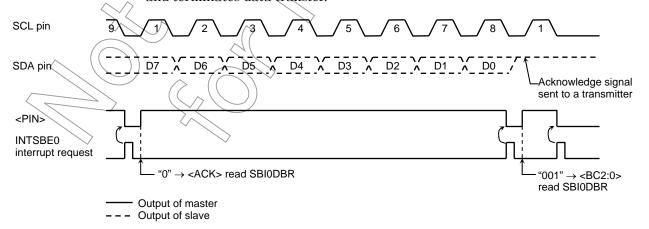


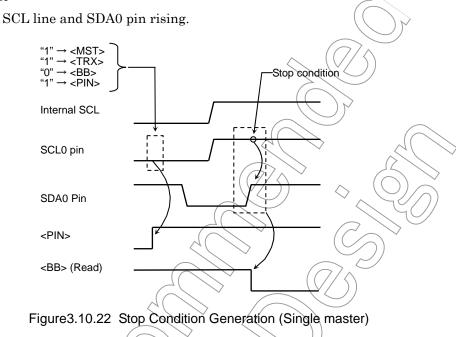

Figure 3.10.21 Termination of Data Transfer in Master Receiver Mode

### 2. When the <MST> is "0" (Slave mode)

In the slave mode the TMP92CY23/CD23A operates either in normal slave mode or in slave mode after losing arbitration.

In the slave mode, an INTSBE0 interrupt request generate when the TMP92CY23/CD23A receives a slave address or a GENERAL CALL from the master device, or when a GENERAL CALL is received and data transfer is completed, or after matching received address. In the master mode, the TMP92CY23/CD23A operates in a slave mode if it losing arbitration. An INTSBE0 interrupt request is generated when a word data transfer terminates after losing arbitration. When an INTSBE0 interrupt request is generated the <PIN> is cleared to "0" and the SCL pin is pulled down to the low level. Either reading/writing from/to the SBI0DBR or setting the <PIN> to "1" will release the SCL pin after taking tLOW time.

Check the SBIOSR<AL>, <TRX>, <AAS>, and <ADO> and implements processes according to conditions listed in the next table.


Table 3.10.1 Operation in the Slave Mode

| <trx></trx> | <al></al> | <aas></aas> | <ad0></ad0> | Conditions                                                                                                                                                                                             | Process                                                                                                                                                                                                                                                                                                                          |
|-------------|-----------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1           | 1         | 1           | 0           | The TMP92CY23/CD23A detects arbitration lost when transmitting a slave address, and receives a slave address for which the value of the direction bit sent from another master is "1".                 | Set the number of bits of single word to <bc2:0>, and write the transmit data to SBI0DBR.</bc2:0>                                                                                                                                                                                                                                |
|             | 0         | 1           | 0           | In slave receiver mode, the TMP92CY23/CD23A receives a slave address for which the value of the direction bit sent from the master is "1".                                                             |                                                                                                                                                                                                                                                                                                                                  |
|             |           | 0           | 0           | In salve transmitter mode, transmission of data of single word is terminated.                                                                                                                          | Check the <lrb>, If <lrb> is set to "1", set <p[n> to "1", reset "0" to <trx> and release the bus for the receiver no request next data. If <lrb> was cleared to "0", set bit number of single word to <bc2:0> and write the transmit data to SBIODBR for the receiver requests next data.</bc2:0></lrb></trx></p[n></lrb></lrb> |
| 0           | 1         | 1           | 1/0         | The TMP92CY23/CD23A detects arbitration lost when transmitting a slave address, and receives a slave address or GENERAL CALL for which the value of the direction bit sent from another master is "0". | Read the SBI0DBR for setting the <pin> to "1" (Reading dummy data) or set the <pin> to "1".</pin></pin>                                                                                                                                                                                                                          |
|             |           | 0           | 0           | The TMP92CY23/CD23A detects arbitration lost when transmitting a slave address or data, and transfer of word terminates.                                                                               |                                                                                                                                                                                                                                                                                                                                  |
|             | 0         | 1           | 1/0         | In slave receiver mode the TMP92CY23/CD23A receives a slave address or GENERAL CALL for which the value of the direction bit sent from the master is "0".                                              |                                                                                                                                                                                                                                                                                                                                  |
|             |           | 0           | 1/0         | In slave receiver mode the TMP92CY23/CD23A terminates receiving word data.                                                                                                                             | Set bit number of single word to <bc2:0>, and read the receiving data from SBI0DBR.</bc2:0>                                                                                                                                                                                                                                      |

**TOSHIBA** 

## (4) Stop condition generation

When SBIOSR < BB > = "1", the sequence for generating a stop condition is started by writing "111" to SBIOCR2 < MST, TRX, PIN > and "0" to SBIOCR2 < BB >. Do not modify the contents of SBIOCR2 < MST, TRX, PIN, BB > until a stop condition has been generated on the bus. When the bus's SCL line has been pulled low by another device, the TMP92CY23/CD23A generates a stop condition when the other device has released the



"1" → <MST>
"1" → <TRX>
"0" → <BB>
"1" → <PIN>

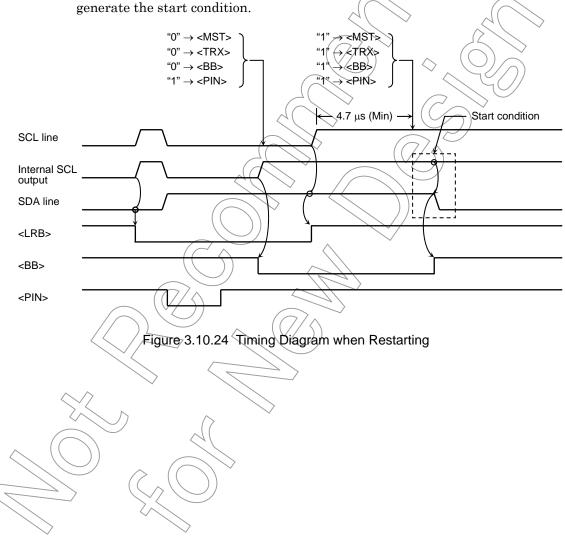
Stop condition

The case of pulled low by another device

SDA0 Pin

SDA0 Pin

SDA0 Pin


Figure 3.10.23 Stop Condition Generation (Multi master)

#### (5) Restart

Restart is used during data transfer between a master device and a slave device to change the data transfer direction. The following description explains how to restart when this device is in the master mode.

Clear the SBI0CR2<MST, TRX, BB> to "000" and set the SBI0CR2<PIN> to "1" to release the bus. The SDA0 line remains the high level and the SCL0 pin is released. Since a stop condition is not generated on the bus, other devices assume the bus to be in a busy state. Check the SBI0SR<BB> until it becomes "0" to check that the SCL0 pin of this device is released. Check the <LRB> until it becomes "1" to check that the SCL line on a bus is not pulled down to the low level by other devices. After confirming that the bus stays in a free state, generate a start condition with procedure described in (2).

In order to meet setup time when restarting, take at least  $4.7 \mu s$  of waiting time by software from the time of restarting to confirm that the bus is free until the time to



# 3.10.7 Clocked-synchronous 8-Bit SIO Mode Control

The following registers are used to control and monitor the operation status when the serial bus interface (SBI) is being operated in clocked-synchronous 8-bit SIO mode.

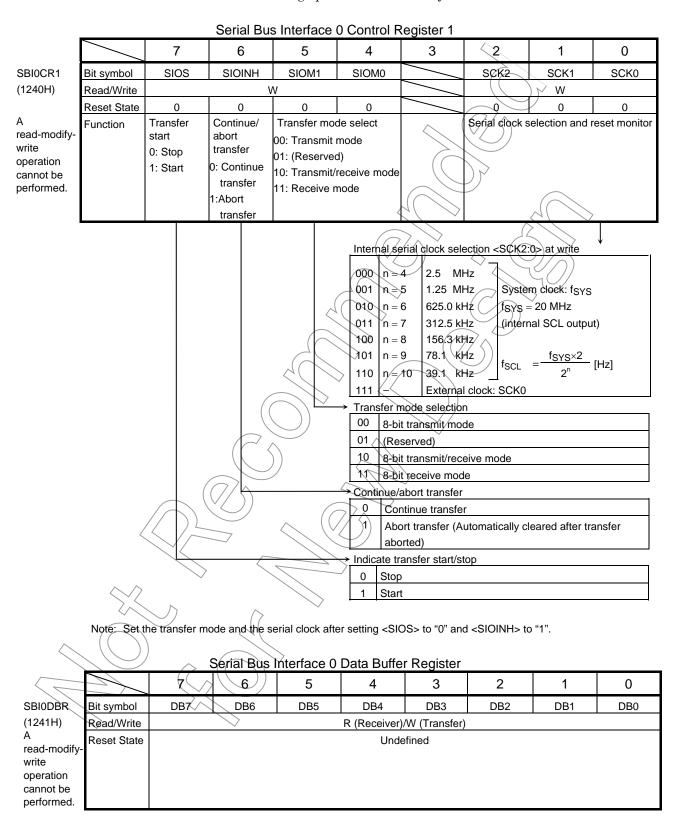



Figure 3.10.25 Register for the SIO Mode (SBI0)

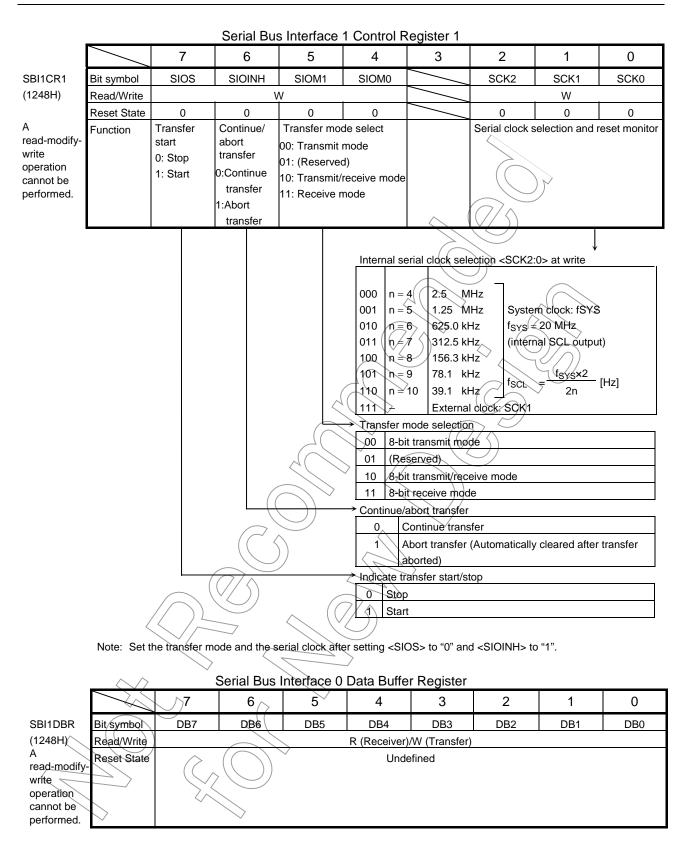



Figure 3.10.26 Register for the SIO Mode (SBI1)

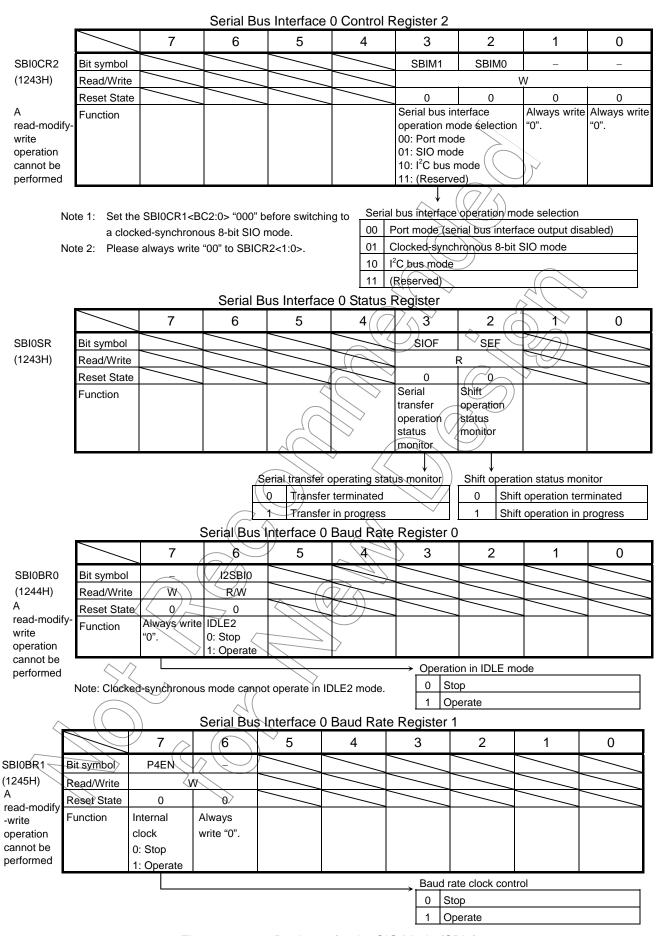



Figure 3.10.27 Registers for the SIO Mode (SBI1)

**TOSHIBA** 

|                                                   |              |                                            | Serial B             | us Interface    | 1 Control I                                                                        | Registe                                              | r 2                                     |                                                      |                     |  |  |
|---------------------------------------------------|--------------|--------------------------------------------|----------------------|-----------------|------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|------------------------------------------------------|---------------------|--|--|
|                                                   |              | 7                                          | 6                    | 5               | 4                                                                                  | 3                                                    | 2                                       | 1                                                    | 0                   |  |  |
| SBI1CR2                                           | Bit symbol   |                                            |                      |                 |                                                                                    | SBIM                                                 | 11 SBIM0                                | -                                                    | -                   |  |  |
| (124BH)                                           | Read/Write   |                                            |                      |                 |                                                                                    |                                                      |                                         | W                                                    | JI.                 |  |  |
|                                                   | Reset Stat   | ie                                         |                      |                 |                                                                                    | 0                                                    | 0                                       | 0                                                    | 0                   |  |  |
| A read-modif write operation cannot be performed. |              |                                            |                      |                 |                                                                                    | operation<br>00: Port<br>01: SIO                     | mode<br>ous mode                        | Always write "0".                                    | Always writ<br>"0". |  |  |
|                                                   |              |                                            |                      |                 |                                                                                    |                                                      | (7/5)                                   |                                                      |                     |  |  |
| 1                                                 |              |                                            |                      | before switchir | ig to                                                                              |                                                      | face operation mo                       |                                                      |                     |  |  |
|                                                   |              | cked-synchro                               |                      |                 | 00                                                                                 | - /                                                  | e (serial bus inter                     |                                                      | sabled)             |  |  |
| 1                                                 | Note 2: Plea | se always writ                             | e "00" to SBIC       | CR2<1:0>.       | 01                                                                                 |                                                      | synchronous 8-bit                       | SIO mode                                             |                     |  |  |
|                                                   |              |                                            |                      |                 |                                                                                    | I <sup>2</sup> C bus n                               |                                         |                                                      |                     |  |  |
|                                                   |              |                                            |                      |                 |                                                                                    | (Reserved)                                           |                                         |                                                      |                     |  |  |
|                                                   |              |                                            |                      | Bus Interfac    | e 1 Status                                                                         |                                                      | ,                                       | <u> </u>                                             | 1                   |  |  |
|                                                   |              | 7                                          | 6                    | 5               | 4(()                                                                               | $\sqrt{3}$                                           | 2 (                                     | // J/>                                               | 0                   |  |  |
| SBI1SR                                            | Bit symbol   |                                            |                      |                 |                                                                                    | SIOI                                                 | SEF                                     |                                                      |                     |  |  |
| (124BH)                                           | Read/Write   | e                                          |                      |                 |                                                                                    |                                                      | R                                       | 764                                                  |                     |  |  |
|                                                   | Reset Stat   | е                                          |                      |                 |                                                                                    | 0                                                    | (0                                      |                                                      |                     |  |  |
|                                                   | Function     |                                            |                      |                 |                                                                                    | Serial<br>transfer<br>operation<br>status<br>monitor | Shift<br>operation<br>status<br>monitor |                                                      |                     |  |  |
|                                                   |              |                                            |                      |                 | terminated in progress                                                             |                                                      | 0 Shif                                  | on status mon<br>t operation ten<br>t operation in p | minated             |  |  |
|                                                   |              | 7                                          | 6                    | 5               | (A)                                                                                | 3                                                    | 2                                       | 1                                                    | 0                   |  |  |
| SBI1BR0                                           | Bit symbol   |                                            | /I2SBI1              |                 |                                                                                    |                                                      |                                         |                                                      |                     |  |  |
| (124CH)                                           | Read/Write   | / _ \                                      | R/W                  |                 |                                                                                    |                                                      |                                         |                                                      |                     |  |  |
| Α                                                 | Reset Stat   | // 11                                      | 0                    | 2               |                                                                                    |                                                      |                                         |                                                      |                     |  |  |
| read-modif<br>write<br>operation<br>cannot be     | Function     | Always wri<br>"0".                         |                      |                 | >                                                                                  |                                                      |                                         |                                                      |                     |  |  |
| performed                                         |              |                                            | _                    |                 |                                                                                    |                                                      | aration in IDI E ma                     | ada                                                  |                     |  |  |
| <                                                 | Note: Clock  | ed-synchrono                               |                      |                 | operation in IDLE mode  in IDLE2 mode.  0 Stop 1 Operate  e 1 Baud Rate Register 1 |                                                      |                                         |                                                      |                     |  |  |
|                                                   |              | 7                                          | ^ / /                | 5               |                                                                                    |                                                      |                                         | 4                                                    |                     |  |  |
| DIABBA                                            |              | 7                                          | (6)                  | <u>ن</u>        | 4                                                                                  | 3                                                    | 2                                       | 1                                                    | 0                   |  |  |
|                                                   | Bit symbol   | P4EN V                                     |                      |                 |                                                                                    | _                                                    |                                         |                                                      |                     |  |  |
| 124DH)<br>\                                       | Read/Write   | V                                          |                      |                 |                                                                                    | $\overline{}$                                        |                                         |                                                      |                     |  |  |
| ead-modify-                                       | Reset State  | 0                                          | 0                    |                 |                                                                                    |                                                      |                                         |                                                      |                     |  |  |
| vrite eperation eannot be eerformed.              | Function     | Internal<br>clock<br>0: Stop<br>1: Operate | Always<br>write "0". |                 |                                                                                    |                                                      |                                         |                                                      |                     |  |  |
|                                                   |              |                                            |                      |                 |                                                                                    |                                                      | Baud rate clock control                 |                                                      |                     |  |  |
|                                                   |              |                                            |                      |                 |                                                                                    | 0                                                    | Stop                                    |                                                      |                     |  |  |
|                                                   |              |                                            |                      |                 |                                                                                    |                                                      | 1 Operate                               |                                                      |                     |  |  |

Figure 3.10.28 Registers for the SIO Mode (SBI1)

### (1) Serial clock

### 1. Clock source

SBI0CR1<SCK2:0> is used to select the following functions:

### Internal clock

In an internal clock mode, any of seven frequencies can be selected. The serial clock is output to the outside on the SCK pin.

When the device is writing (in the transmit mode) or reading (in the receive mode) data cannot follow the serial clock rate, an automatic wait function is executed to stop the serial clock automatically and holds the next shift operation until reading or writing is complete.

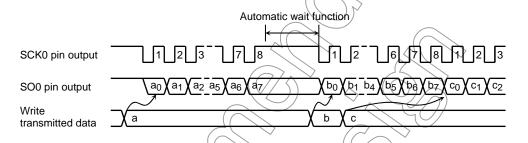



Figure 3.10.29 Automatic Wait Function

# External clock (<SCK2:0> = "111")

An external clock input via the SCK pin is used as the serial clock. In order to ensure the integrity of shift operations, both the high and low-level serial clock pulse widths shown below must be maintained. The maximum data transfer frequency is  $125 \, \text{MHz}$  (when fsys = 20 MHz).

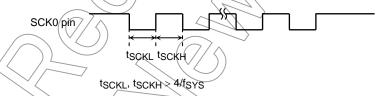
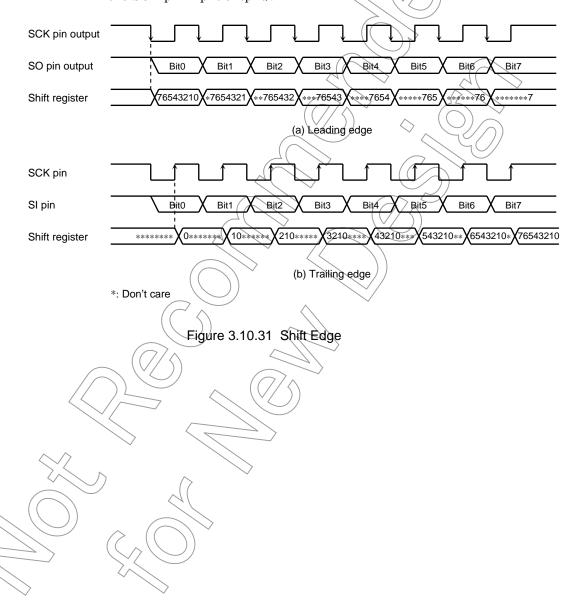



Figure 3.10.30 Maximum Data Transfer Frequency when External Clock Input

## 2. Shift edge


Data is transmitted on the leading edge of the clock and received on the trailing edge.

## (a) Leading edge shift

Data is shifted on the leading edge of the serial clock (on the falling edge of the SCK pin input/output).

# (b) Trailing edge shift

Data is shifted on the trailing edge of the serial clock on the rising edge of the SCK pin input/output).



### (2) Transfer modes

The SBI0CR1<SIOM1:0> is used to select a transmit, receive or transmit/receive mode.

### 1. 8-bit transmit mode

Set a control register to a transmit mode and write transmission data to the SBI0DBR.

After the transmit data has been written, set the SBIOCR1<SIOS> to "1" to start data transfer. The transmitted data is transferred from the SBIODBR to the shift register and output, starting with the least significant bit (LSB), via the SO pin and synchronized with the serial clock. When the transmission data has been transferred to the shift register, the SBIODBR becomes empty. The INTSBEO (Buffer empty) interrupt request is generated to request new data.

When the internal clock is used, the serial clock will stop and the automatic wait function will be initiated if new data is not loaded to the data buffer register after the specified 8-bit data is transmitted. When new transmission data is written, the automatic wait function is canceled.

When the external clock is used, data should be written to the SBI0DBR before new data is shifted. The transfer speed is determined by the maximum delay time between the time when an interrupt request is generated and the time when data is written to the SBI0DBR by the interrupt service program.

When the transmit is started, after the SBI0\$R SIOF > goes "1" output from the SO pin holds final bit of the last data until falling edge of the SCK.

Data transmission ends when the <SIOS> is cleared to "0" by the INTSBE0 interrupt service program or when the <SIOINH> is set to "1". When the <SIOS> is cleared to "0", the transmitted mode ends when all data is output. In order to confirm whether data is being transmitted properly by the program, the <SIOF> (Bit3 of the SBIOSR) to be sensed. The SBIOSR<SIOF> is cleared to "0" when transmission has been completed. When the <SIOINH> is set to "1", transmitting data stops./The <SIOF> turns "0".

When the external clock is used, it is also necessary to clear the <SIOS> to "0" before new data is shifted; otherwise, dummy data is transmitted and operation ends.



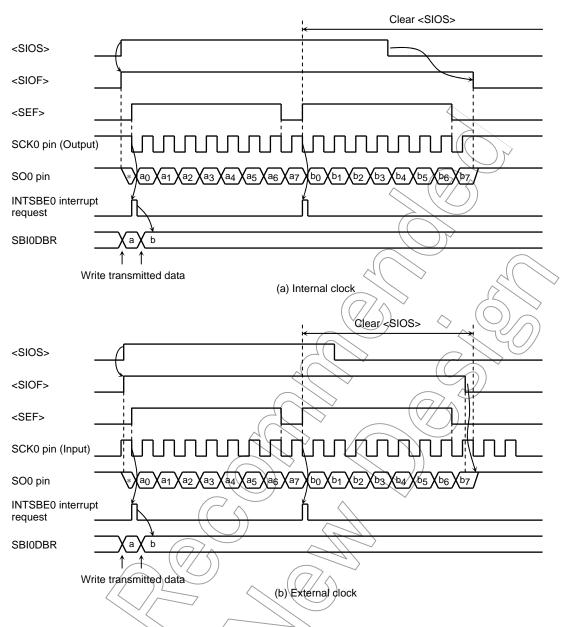



Figure 3.10.32 Transfer Mode

Example: Program to stop data transmission (when an external clock is used)

STEST1: 2, (SBIOSR) BIT If <SEF> = "1" then loop

NZ, STEST1 STEST2: 0 (PN) BIT/ If SCK0 = "0" then loop

Z, STEST2 JR

JR

; <SIOS> ← "0" LD (SBI0CR1), 00000111B

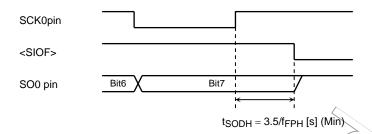



Figure 3.10.33 Transmitted Data Hold Time at End of Transmission

### 2. 8-bit receive mode

Set the control register to receive mode and set the SBI0CR1<SIOS> to "1" for switching to receive mode. Data is received into the shift register via the SI pin and synchronized with the serial clock, starting from the least significant bit (LSB). When the 8-bit data is received, the data is transferred from the shift register to the SBI0DBR. The INTSBEO (Buffer full) interrupt request is generated to request that the received data be read. The data is then read from the SBI0DBR by the interrupt service program.

When the internal clock is used, the serial clock will stop and the automatic wait function will be in effect until the received data is read from the SBI0DBR.

When the external clock is used, since shift operation is synchronized with an external clock pulse, the received data should be read from the SBI0DBR before the next serial clock pulse is input. If the received data is not read, further data to be received is canceled. The maximum transfer speed when an external clock is used is determined by the delay time between the time when an interrupt request is generated and the time when the received data is read.

Receiving of data ends when the <SIOS> is cleared to "0" by the INTSBE0 interrupt service program or when the <SIOINH> is set to "1". If <SIOS> is cleared to "0", received data is transferred to the SBI0DBR in complete blocks. The received mode ends when the transfer is complete. In order to confirm whether data is being received properly by the program, the SBI0SR<SIOF> to be sensed. The <SIOF> is cleared to "0" when receiving is complete. When it is confirmed that receiving has been completed, the last data is read. When the <SIOINH> is set to "1", data receiving stops. The <SIOF> is cleared to "0". (The received data becomes invalid, therefore no need to read it.)

Note: When the transfer mode is changed, the contents of the SBI0DBR will be lost. If the mode must be changed, conclude data receiving by clearing the <SIOS> to "0", read the last data, then change the mode.

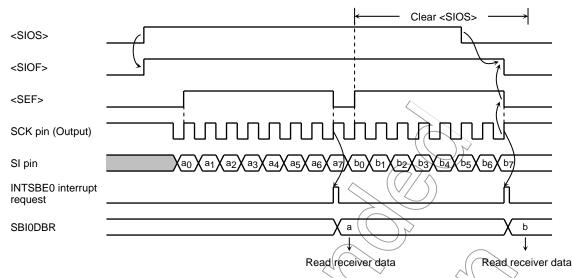



Figure 3.10.34 Receiver Mode (Example: Internal clock)

### 3. 8-bit transmit/receive mode

Set a control register to a transmit/receive mode and write data to the SBI0DBR. After the data is written, set the SBI0CR<SIOS> to "1" to start transmitting/receiving. When data is transmitted, the data is output from the SO0 pin, starting from the least significant bit (LSB) and synchronized with the leading edge of the serial clock signal. When data is received, the data is input via the SI pin on the trailing edge of the serial clock signal. 8-bit data is transferred from the shift register to the SBI0DBR and the INTSBE0 interrupt request is generated. The interrupt service program reads the received data from the data buffer register and writes the data which is to be transmitted. The SBI0DBR is used for both transmitting and receiving. Transmitted data should always be written after received data is read.

When the internal clock is used, the automatic wait function will be in effect until the received data is read and the next data is written.

When the external clock is used, since the shift operation is synchronized with the external clock, the received data is read and transmitted data is written before a new shift operation is executed. The maximum transfer speed when the external clock is used is determined by the delay time between the time when an interrupt request is generated and the time at which received data is read and transmitted data is written.

When the transmit is started, after the SBI0SR<SIOF> goes "1" output from the SO pin holds final bit of the last data until falling edge of the SCK.

Transmitting/receiving data ends when the <SIOS> is cleared to "0" by the INTSBEO interrupt service program or when the SBIOCR1<SIOINH> is set to "1". When the <SIOS> is cleared to "0", received data is transferred to the SBIODBR in complete blocks. The transmit/receive mode ends when the transfer is complete. In order to confirm whether data is being transmitted/received properly by the program, set the SBIOSR to be sensed. The <SIOF> is set to "0" when transmitting/receiving is completed. When the <SIOINH> is set to "1", data transmitting/receiving stops. The <SIOF> is then cleared to "0".

Note: When the transfer mode is changed, the contents of the SBI0DBR will be lost. If the mode must be changed, conclude data transmitting/receiving by clearing the <SIOS> to "0", read the last data, then change the transfer mode.

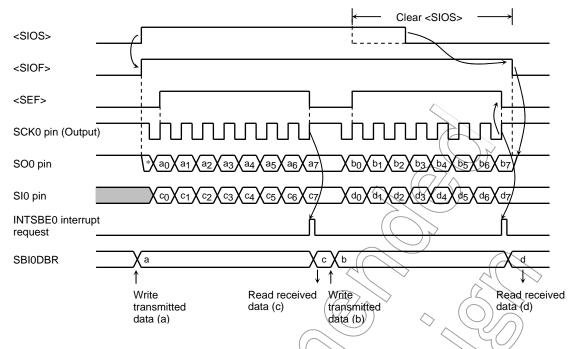



Figure 3.10.35 Transmit/Received Mode (Example: Internal clock)

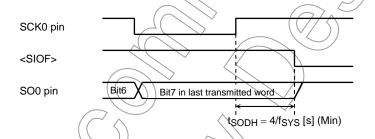
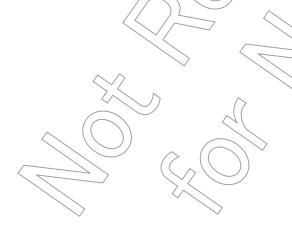




Figure 3.10.36 Transmitted Data Hold Time at End of Transmit/Receive



# 3.11 High Speed SIO (HSC)

Multifunction High Speed SIO (HSC) for 1 channel is contained (Note). HSC supports only the master mode in I/O interface mode (synchronous transmission).

Note: HSC circuit is not built into TMP92CY23.

Its features are summarized as follows:

- 1) Double buffer (Transmit/Receive)
- 2) Generates the CRC-7 and CRC-16 values for transmission and reception
- 3) Baud Rate: 10Mbps (max)
- 4) Selects the MSB/LSB-first
- 5) Selects the 8/16-bit data length
- 6) Selects the Clock Rising/Falling edge
- 7) One types of interrupt: INTHSC

Select Read/Mask/Clear interrupt/Clear enable for 4 interrupts:

RFR0 (Receive buffer of HSC0RD: Full),

RFW0 (Transmission buffer of HSC0TD: Empty),

RENDO (Receive buffer of HSCORS: Full),

TENDO (Transmission buffer of HSCOTS: Empty).

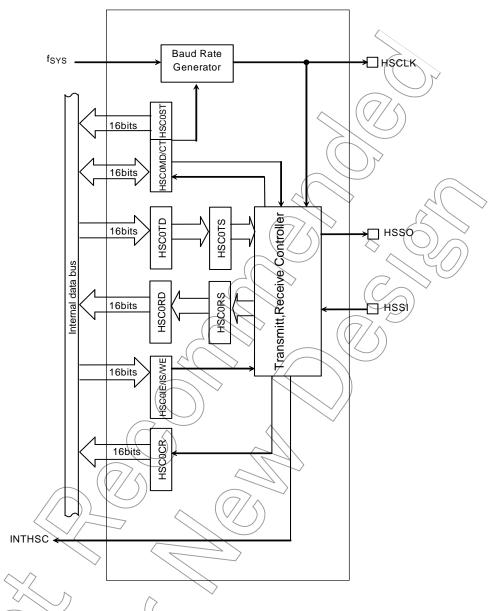

RFR0,RFW0 can be processed data at high speeed by using micro DMA.

Table 3.11.1 Registers and Pins for HSC

|                   |                          | HSC                |
|-------------------|--------------------------|--------------------|
|                   | Pin name                 | HSSO (PF3)         |
|                   |                          | HSSI (PF4)         |
|                   | $\langle \wedge \rangle$ | HSCLK (PF5)        |
| \(\sigma\)        | SFR                      | HSCOMD (C00H/C01H) |
|                   | (address)                | HSC0CT (C02H/C03H) |
|                   |                          | HSCOST (C04H/C05H) |
|                   |                          | HSCOCR (C06H/C07H) |
| $\rightarrow$     |                          | HSCOIS (C08H/C09H) |
| $\langle \rangle$ |                          | HSC0WE (C0AH/C0BH) |
|                   | _                        | HSC0IE (C0CH/C0DH) |
|                   | ^((                      | HSC0IR (C0EH/C0FH) |
| ^                 | (1)                      | HSC0TD (C10H/C11H) |
|                   |                          | HSC0RD (C12H/C13H) |
|                   |                          | HSC0TS (C14H/C15H) |
|                   |                          | HSC0RS (C16H/C17H) |
|                   |                          |                    |

# 3.11.1 Block diagram

Figure 3.11.1 shows a block diagram of the HSC.



Note: The HSSO, HSSI, HSCLK pins are set to configured as input ports (Ports PF3, PF4 and PF5) by upon reset. Thus, these pins require pull-up resistors to fix their voltage levels.

Figure 3.11.1 HSC Block diagram

### 3.11.2 SFR

This section describes the SFRs of the HSC are as follows. These area connected to the CPU with 16 bit data buses.

## (1) Mode setting register

The HSCOMD register specifies the operating mode, clock operation, etc.

|         |             |                                                |                                                               | HSC0                                                                      | MD Regis   | ter                                                                               |                                                                                                                |                                                                         |                                                               |
|---------|-------------|------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|
|         |             | 7                                              | 6                                                             | 5                                                                         | 4          | 3                                                                                 | 2 (                                                                                                            |                                                                         | 0                                                             |
| HSC0MD  | bit Symbol  |                                                | XEN0                                                          |                                                                           |            |                                                                                   | CLKSEL02                                                                                                       | CLKSEL01                                                                | CLKSEL00                                                      |
| (0C00H) | Read/Write  |                                                | R/W                                                           |                                                                           |            |                                                                                   | (0)                                                                                                            | ∕ R/W                                                                   |                                                               |
|         | Reset State |                                                | 0                                                             |                                                                           |            |                                                                                   |                                                                                                                | )) o                                                                    | 0                                                             |
|         | Function    |                                                | SYSCK<br>0: Disable<br>1: Enable                              |                                                                           |            |                                                                                   | Select baud<br>000: Reserv<br>001: f <sub>SYS</sub> /2<br>010: f <sub>SYS</sub> /4<br>011: f <sub>SYS</sub> /8 | ed 100: f <sub>SY</sub><br>101: f <sub>SY</sub><br>111: f <sub>SY</sub> | <sub>YS</sub> /32                                             |
|         |             | 15                                             | 14                                                            | 13                                                                        | 12         | 113                                                                               | > 10                                                                                                           | 9                                                                       | 8                                                             |
| (0C01H) | bit Symbol  | LOOPBACK0                                      | MSB1ST0                                                       | DOSTAT0                                                                   |            | TCPOLO                                                                            | RCPQL0                                                                                                         | TOINYO                                                                  | RDINV0                                                        |
|         | Read/Write  |                                                | R/W                                                           |                                                                           | \<br>\<br> | R/W                                                                               |                                                                                                                |                                                                         |                                                               |
|         | Reset State | 0                                              | 1                                                             | 1                                                                         | $\neq$     | 0                                                                                 | 0                                                                                                              | 100                                                                     | 0                                                             |
|         | Function    | LOOPBACK<br>test Mode<br>0:Disbale<br>1:Enable | Start Bit for<br>Transmission<br>/Reception<br>0:LSB<br>1:MSB | HSSO0 Pin<br>When Not<br>Transmitting<br>0:Fixed to "0"<br>1:Fixed to "1" |            | Synchronization Clock Edge Select For Transmission 0: Falling edge 1: Rising edge | tion Clock Edge Select for Reception                                                                           | Data<br>Inversion for<br>Transmission<br>0: Disable<br>1: Enable        | Data<br>Inversion<br>for Reception<br>0: Disable<br>1: Enable |

Figure 3.11.2 HSC0MD Register

## (a) <LOOPBACK0>

The internal HSSO output to be internally connected to the HSSI input. This setup can be used for testing.

Also, a clock signal is generated from the HSCLK pin, regardless of whether data transmission or reception is in progress when setting the XENO and LOOPBACKO bits to "1" enables.

Data transmission or reception must not be performed while changing the state of this bit.

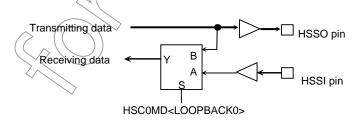



Figure 3.11.3 < LOOPBACK0 > Register Function

### (b) <MSB1ST0>

This bit specifies whether to transmit/receive byte with the MSB first or with the LSB first. Data transmission or reception must not be performed while changing the state of this bit.

#### (c) <DOSTAT0>

This bit specifies the status of the HSSO pin of when data transmission is not performed (i.e., after completing data transmission or during data reception). Data transmission or reception must not be performed while changing the state of this bit.

#### (d) <TCPOL0>

This bit specifies the polarity of the active edge of the synchronization clock for data transmission.

The XEN0 bit should be cleared to "0" for changing the state of this bit. At the same time, RCPOL0 should also be cleared to "0".

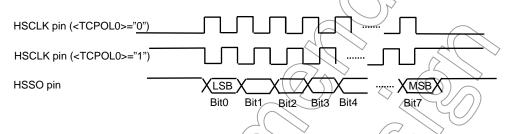



Figure 3.11.4 <TCPOL0> Register function

#### (e) <RCPOL0>

This bit specifies the polarity of the active edge of the synchronization clock during for data reception.

The <XENO> bit should be cleared to "0" for changing the state of this bit. TCPOLO should also be cleared to "0"

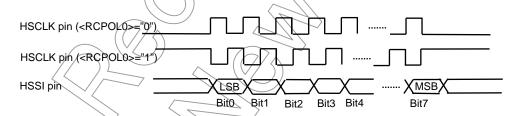



Figure 3.11.5 < RCPOL0 > Register function

# (f) <TDHV0>

This bit specifies whether to logically invert the data transmitted from the HSSO pin or not. Data transmission or reception must not be performed while changing the state of this bit.

Data which is inputted to CRC calculation circuit is transmission data which is written to HSC0TD. This input data is not corresponded to <TDINV0>.

<TDINV0> is not corresponded to <DOSTAT0>: it set condition of HSSO pin when it is not transferred.

#### (g) <RDINV0>

This bit specifies whether to logically invert the data received from the HSSI pin or not. Data transmission or reception must not be performed while changing the state of this bit.

Data which is inputted to CRC calculation circuit is selected by <RDINV0>.

# (h) <XEN0>

This bit enables or disables the internal clock signal.

# (i) <CLKSEL02:00>

This bit selects the baud rate. The baud rate is generated using the system clock  $f_{\rm SYS}$  and is programmable as shown below according to the system clock settings.

Data transmission or reception must not be performed while changing the state of these bits

Table 3.11.2 Example of baud rate

|                             | Ī                       | Baud rate [Mbps]        | )>                      |
|-----------------------------|-------------------------|-------------------------|-------------------------|
| <clksel02:00></clksel02:00> | f <sub>SYS</sub> =12MHz | f <sub>SYS</sub> =16MHz | f <sub>SYS</sub> =20MHz |
| f <sub>SYS</sub> /2         | 6                       | <a>⟨8</a>               | 10 🗸                    |
| f <sub>SYS</sub> /4         | 3                       | 4                       | 5                       |
| f <sub>SYS</sub> /8         | 1.5                     | ((// 2)                 | 2.6                     |
| f <sub>SYS</sub> /16        | 0.75                    | 1/                      | 1.25                    |
| f <sub>SYS</sub> /32        | 0.375                   | 0.5                     | 0.625                   |
| f <sub>SYS</sub> /64        | 0.1875                  | 0.25                    | 0.3125                  |

#### (2) Control Register

The HSCOCT register specifies data length, CRC, etc.

**HSC0CT** Register

HSC0CT (0C02H)

(0C03H)

|             | 7                    | 6                    | 5                              | 4  | 3                   | 2                        | 1                         | 0               |
|-------------|----------------------|----------------------|--------------------------------|----|---------------------|--------------------------|---------------------------|-----------------|
| bit Symbol  | -                    | -                    | UNIT160                        |    |                     | ALGNEN0                  | RXWEN0                    | RXUEN0          |
| Read/Write  |                      | R/W                  |                                |    |                     |                          | R/W                       |                 |
| Reset State | 0                    | 1                    | 0                              |    |                     | 0 (                      | ( 0)                      | 0               |
| Function    | Always<br>write "0". | Always<br>write "1". | Data Length 0: 8 bits          |    |                     | Full Duplex<br>Alignment | Sequential<br>Reception0: | Receive<br>UNIT |
|             |                      | willo 1.             | 1: 16 bits                     |    |                     | 0: Disable               | Disable                   | 0: Disable      |
|             | 15                   | 14                   | 13                             | 12 | 11 (                | 1: Enable                | 1: Enable<br>9            | 1: Enable<br>8  |
| bit Symbol  | CRC16_7_B0           | CRCRX_TX_B0          | CRCRESET_B0                    |    | 4                   |                          | DMAERFW0                  | DMAERFR0        |
| Read/Write  |                      | R/W                  | •                              |    | #                   |                          | R/W                       | R/W             |
| Reset State | 0                    | 0                    | 0                              |    |                     |                          | 0                         | 0               |
| Function    | CRC Select           | CRC Data             | CRC                            | (  | $\bigcap \bigwedge$ | >                        | Micro DMA                 | Micro DMA       |
|             | 0: CRC7              | 0: Transmit          | Calculation                    | (  | (                   | $\Diamond$               | 0: Disable                | 0: Disable      |
|             | 1: CRC16             | 1: Receive           | Register                       |    |                     | <                        | 1: Enable                 | 1/: Enable      |
|             |                      |                      | 0:Reset<br>1: Reset<br>Release |    | $\rightarrow$       | C                        |                           | r               |

Figure 3.11,6 HSC0CT Register

(a) <CRC16\_7\_B0>

This bit selects the CRC calculation algorithm from the CRC7 and CRC16.

(b) <CRCRX\_TX\_B0>

This bit selects the data to be sent to the CRC generator.

(c) <CRCRESET\_B0>

This bit is used to initialize the CRC calculation register.

This section describes how to calculate the CRC16 of the transmit data and to append the calculated CRC value at the end of the transmit data. Figure 3.11.7 below illustrates the flow chart of the CRC calculation procedures.

- a. Program the HSCOCT CRC16\_7\_B> bit to select the CRC algorithm from CRC7 and CRC16. Then, also program the CRCRX\_TX\_B bit to specify the data on which the CRC calculation is performed.
- b. To reset the HSCOCR register, write "0" to the CRCRESET\_B bit and then write "1" to the same bit.
- c. Load the HSC0TD register with the transmit data, and wait until transmission of all data is completed.
- d. Read the HSC0CR register and obtain the result of the CRC calculation.
- e. Transmit the CRC obtained in step (d) in the same way as step (c).

The CRC calculation on the receive data can be performed in the same procedures.

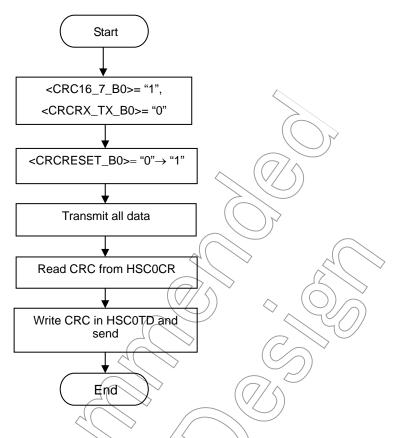



Figure 3.11.7 Flow Chart of the CRC Calculation Procedures

#### (d) <DMAERFW0>

This bit sets the interrupt clearing using to unnecessary because be supported RFW0 interrupt to Micro DMA. If this bit is set to "1", it is set to one-shot interrupt, clearing interrupt by HSCOWE register become to unnecessary. HSCOST<RFW0> flag generate 1-shot interrupt when change from "0" to "1" (Rising).

#### (e) <DMAERFR0>

This bit sets the interrupt clearing using CPU to unnecessary because be supported RFR0 interrupt to Micro DMA. If this bit is set to "1", it is set to one-shot interrupt, clearing interrupt by HSC0WE register become to unnecessary. HSC0ST<RFR0> flag generate 1-shot interrupt when change from "0" to "1"(Rising).

# (f) <UNIT160>

This bit selects the data length for transmission and reception. The data length is hereafter referred to as the UNIT. Data transmission or reception must not be performed while changing the state of this bit

#### (g) <ALGNEN0>

This bit should be set to "1" when performing the full-duplex communication. This bit specifies whether to align the transmit and receive data on the UNIT-size boundaries.

Data transmission or reception must not be performed while changing the state of this bit.

### (h) <RXWEN0>

This bit enables or disables the Sequential mode reception.

#### (i) <RXUEN0>

This bit enables or disables the Unit mode reception.

For <RXWEN0> = "1", this bit is disabled. Data transmission or reception must not be performed while changing the state of this bit.

# [Data Transmission/Reception Modes]

This HSC Controller supports six operating modes as listed below.

These are specified by the <ALGNENO>, <RXWENO>, <RXUENO> bits.

Table 3.11.3 transmit/receive operation mode

|                             |                     | Bit Settings      |                   |                                      |
|-----------------------------|---------------------|-------------------|-------------------|--------------------------------------|
| Operation mode              | <algnen0></algnen0> | <rxwen0></rxwen0> | <rxuen0></rxuen0> | Description                          |
| (1) UNIT transmission       | 0                   | 0                 | > 0 /             | Transmit written data per UNIT       |
| (2) Sequential transmission | 0                   | \(\lambda(0)\)    | 0 (               | Transmit written data sequentially   |
| (3) UNIT reception          | 0                   | 0                 | 1                 | Receive only one UNIT-size data      |
| (4) Sequential reception    | 0                   |                   | 0((//             | Automatically receive data if buffer |
|                             | 0                   |                   |                   | has any empty space                  |
| (5) UNIT transmission and   | ~(                  |                   |                   | Transmit/receive one UNIT-size       |
| reception                   | 1                   | $\rightarrow$ 0   | 1))               | data with the addresses of           |
|                             |                     |                   |                   | transmit/receive data aligned on     |
|                             |                     | /                 | ~                 | UNIT-size boundaries                 |
| (6)Sequential transmission  |                     | $\wedge$          |                   | Transmit/receive data sequentially   |
| and reception               | ( ( 1 ) )           | 1                 | 0                 | with the addresses of                |
|                             |                     |                   |                   | transmit/receive data aligned on     |
| ( (                         | // <                |                   |                   | UNIT-size boundaries                 |

#### Difference between the UNIT-mode and Sequential-mode transmission

UNIT mode transmission transmits one-UNIT by writing data after confirming HSC0ST<TEND0> = "1".

In the Sequential-mode transmission, transmit data written into the HSC0TD is loaded sequentially.

In hard ware, this mode of transmission keeps transmitting data as long as the transmit data exists. This mode of transmission keeps transmitting data as long as the transmit data exists. Therefore, the Sequential-mode transmission continues as long as the next data is written to it when HSCOST<RENDO> = "1".

Unit-mode transmission and Sequential-mode transmission depend on the way of using. Hardware doesn't depend on.

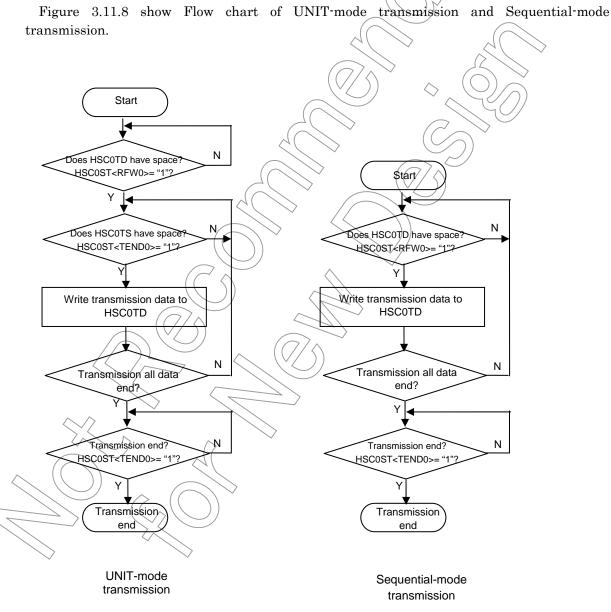



Figure 3.11.8 Flow chart of UNIT-mode transmission and Sequential-mode transmission

#### <u>Differences Between the UNIT-mode and Sequential-mode Receptions</u>

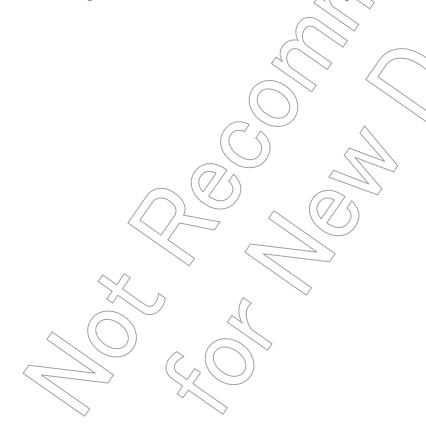
The UNIT-mode reception receives only one UNIT-size data.

Writing "1" to the HSCOCT<RXUENO> bit initiates a receive operation of one UNIT data. Then, it is stored the received data into the receive data register (HSCORD).

Reading the HSCORD register after writing "0" to the HSCOCT<RXUENO> bit.

If the HSCORD register is read again when the HSCOCT<RXUENO> bit is set to "1", one-UNIT data is additionally received.

In hardware, this mode receives sequentially by Single buffer.


HSC0ST<REND0> is changed during UNIT receiving.

The Sequential-mode reception automatically receives the data as long as the receive Buffer has any empty space.

This mode of reception keeps receiving the next data automatically unless the data receive Buffer becomes full. Therefore, the reception continues sequentially without stopping at every UNIT-sized reception by reading it after data is loaded in HSCORD.

In hardware, this mode receives sequentially by Double buffer.

Figure 3.11.9 show Flow chart of UNIT reception and Sequential mode reception.



**TOSHIBA** 

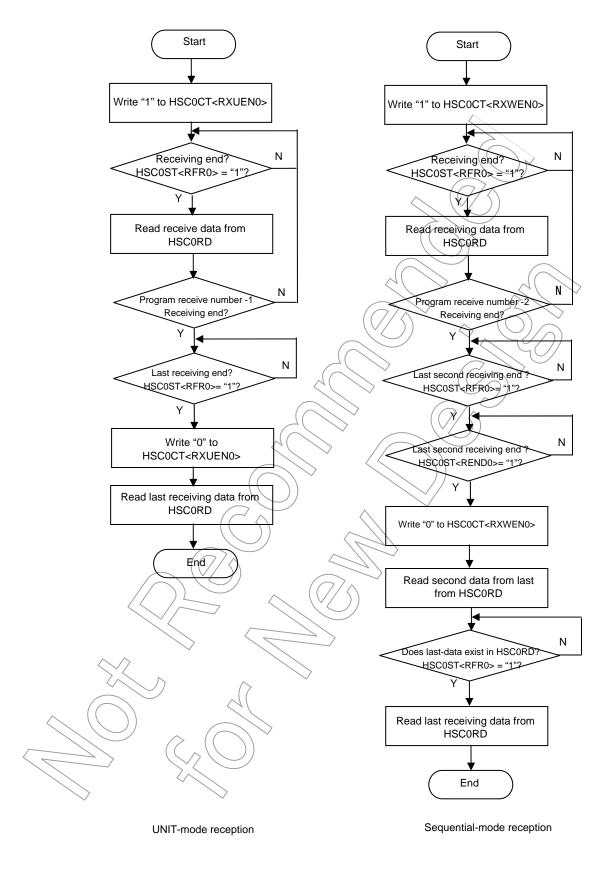



Figure 3.11.9 Flow chart of UNIT-mode reception and Sequential-mode reception

# (3) Interrupt, Status register

Read of condition, Mask of condition, Clear interrupt and Clear enable can control each 4 interrupts; RFR0 (HSC0RD receiving buffer is full), RFW0 (HSC0TD transmission buffer is empty), REND0 (HSC0RS receiving buffer is full), TEND0 (HSC0TS transmission buffer is empty).

RFR0, RFW0 can high-speed transaction by micro DMA.

Following is description of Interrupt · status (example RFW0).

Status register HSCOST<RFW0> show RFW0 (internal signal that show whether transmission data register exist or not). This register is "0" when transmission data exist. This register is "1" when transmission data doesn't exist. It can read internal signal directly. Therefore, it can confirm transmission data at any time.

Interrupt status register HSC0IS<RFWIS0> is set by rising edge of RFW0. This register keeps that condition until write "1" to this register and reset when HSC0WE<RFWWE0> is "1".

RFW0 interrupt generate when interrupt enable register HSC0IE<RFWIE0> is "1". When it is "0", interrupt is not generated.

Interrupt request register HSC0IR<RFWIRO> show whether interrupt is generating or not.

Interrupt status write enable register HSC0WE<RFWWE0>set that enables reset for reset interrupts status register by mistake.

Circuit config of transmission data shift register (HSC0TS), receiving register (HSC0RD), receiving data shift register (HSC0RS) are same with above register.

Control register HSCOCT<DMAERFW0>, HSCOCT<DMAERFR0> is register for using micro DMA. When micro DMA transfer is executed by using RFW0 interrupt, set "1" to <DMAERFW0>, and when it is executed by using RFR0 interrupt, set "1" to <DMAERFR0>, and prohibit other interrupt.

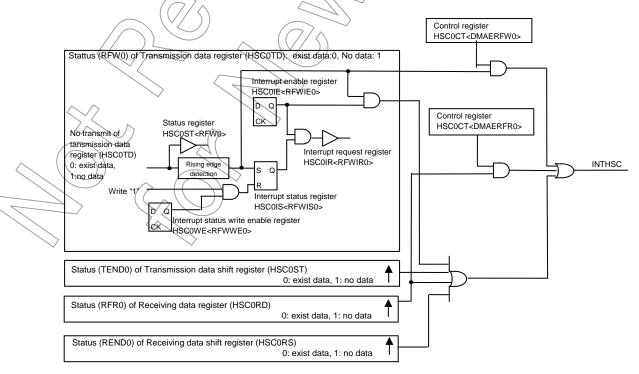



Figure 3.11.10 Figurer for interrupt, status

(0C04H)

(0C05H)

#### (3-1) Status register

This register contains four bits that indicates the status of data communication.

**HSCOST Register** 7 3 6 5 2 1 0 TEND0 REND0 RFW0 RFR0 HSC0ST oit Symbol Read/Write Reset State Function Receiving Receive Transmit Receive 0:operation Shift buffer buffer 1: no 0:untransm 0:no valid register operation -itted data 0: no data data exist 1: valid 1: exist data no data exist Untransmitted data ⁄11<sup>′</sup> 15 14 13 12 10 (9) 8 oit Symbol Read/Write Reset State Function

Figure 3.11.11 HSC0ST Register

#### (a) <TEND0>

This bit is cleared to "0" when the transmit register (HSC0TS) contains valid data; otherwise, it is set to "1".

# (b) < RENDO>

This bit is set to "1" when completing the data reception and valid data is stored into the receive data register (if there is any valid data). This bit is cleared to "0" when the receive register (HSCORS) contains no valid data, or when the reception is in progress.

 $\dot{M}$ t is cleared to "0", when  $\dot{C}PU$  read the data and shift to receive read register.

# <RFW0>

After wrote the received data to receive data write register, shift the data to receive data shift register. This bit keeps "0" until all valid data has moved. And this bit is set to "1" when it can accept the next data and contains no valid data.

#### (d) <RFR0>

This bit is set to "1" when received data is shifted from received data shift register to received data read register and there is any valid data. It is set to "0" when the data is read and contains no valid data.

## (3-2) Interrupt status register

This register is used for reading four interrupts status and clearing interrupts.

This register is cleared to "0" by writing "1" to applicable bit. Status of this register show interrupt source state. This register can confirm changing of interrupt condition, even if interrupt enable register is masked.

|         |             | 7  | 6  | 5    | 4         | 3            | 2                                      |                   | 0             |
|---------|-------------|----|----|------|-----------|--------------|----------------------------------------|-------------------|---------------|
| HSC0IS  | bit Symbol  |    |    |      |           | TENDIS0      | RENDISO                                | ⟨RFWIS0           | RFRIS0        |
| (0C08H) | Read/Write  |    |    |      |           |              | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | XV                |               |
|         | Reset State |    |    |      |           | 0 /          | 0                                      | 0                 | 0             |
|         | Function    |    |    |      |           | Read         | Read )                                 | Read              | Read          |
|         |             |    |    |      |           | 0:no         |                                        | 0:no              | 0:nointerrupt |
|         |             |    |    |      |           | interrupt    | interrupt                              |                   | 1:interrupt   |
|         |             |    |    |      |           | 1:interrupt  | 1:interrupt                            | 1:interrupt       | $\overline{}$ |
|         |             |    |    |      |           |              | <b>\</b>                               |                   | Write         |
|         |             |    |    |      |           | Write        | Write<br>0:Don't                       | Write             | 0:Don't care  |
|         |             |    |    |      |           | 0:Don't care | care                                   | 0:Don't           | ricieal       |
|         |             |    |    |      |           | 1:clear      | 1:clear                                | 1:clear           |               |
|         |             | 15 | 14 | 13   | (12)      | <u> </u>     | 10                                     | 9                 | 8             |
| (0C09H) | bit Symbol  |    |    | /    | 7/1       |              |                                        | <del>&gt;</del> / |               |
|         | Read/Write  |    | /  |      |           |              |                                        |                   |               |
|         | Reset State |    |    | \$   |           |              | W.                                     |                   |               |
|         | Function    |    |    |      |           |              |                                        |                   |               |
|         |             |    |    |      | $\supset$ |              |                                        |                   |               |
|         |             |    |    | (()) |           |              |                                        |                   |               |
|         |             |    |    |      |           |              | /                                      |                   |               |

Figure 3.11.12 HSC0IS Register

## (a) <TENDISO

This bit is used for reading the status of TEND interrupt and clearing interrupt. If writing this bit, set "1" to HSCOWE<TENDWEO>.

#### (b) <REMDIS0>

This bit is used for reading the status of REND interrupt and clearing interrupt. If writing this bit, set "1" to HSC0WE<RENDWE0>.

### (c) <RFWDIS0>

This bit is used for reading the status of RFW interrupt and clearing interrupt. If writing this bit, set "1" to HSCOWE<RFWWE0>.

#### (d) <RFRIS0>

This bit is used for reading the status of RFR interrupt and clearing interrupt. If writing this bit, set "1" to HSCOWE<RFRWEO>.

(0C0AH)

(0C0BH)

### (3-3) Interrupt status write enable register

This register enables or disables the clearing status bit of four types of interrupts.

**HSCOWE** Register 7 6 5 3 2 0 TENDWE0 RENDWE0 RFWWE0 RFRWE0 **HSCOWE** bit Symbol Read/Write 0 0) Reset State Function Clear Clear Clear Clear/ HSCOIS HSC0IS HSC0IS HSCOIS ∠TFWIS0> <RFRIS0> <TENDIS0> ≥RENDIS0> 0: Disable 0: Disable 0: Disable 0: Disable 1: Enable 1: Enable 1: Enable 1: Enable 15 14 13 12 1/1/ 10 9 8 bit Symbol Read/Write Reset State Function

Figure 3.11.13 HSCOWE Register

(a) <TENDWE0>

This bit enables or disables clearing the HSC0IS</TENDISO>.

(b) <RENDWE0>

This bit enables or disables clearing the HSC0IS<RENDISO>.

(c) <RFWWE0>

This bit enables or disables clearing the HSC0IS<RFWIS0>.

(d) <RFRWE0>

This bit enables or disables clearing the HSC0IS<RFRIS0>.

# (3-4) Interrupt enable register

This register enables or disables the generation of four types of interrupts.

|         |             |    |    | HSC | IE Registe | er                                     |            |                      |               |
|---------|-------------|----|----|-----|------------|----------------------------------------|------------|----------------------|---------------|
|         |             | 7  | 6  | 5   | 4          | 3                                      | 2 <        | 1                    | 0             |
| HSC0IE  | bit Symbol  |    |    |     |            | TENDIE0                                | RENDIE0    | RFWIE0               | RFRIE0        |
| (0C0CH) | Read/Write  |    |    |     |            |                                        | R/         | W                    |               |
|         | Reset State |    |    |     |            | 0                                      | 0          |                      | 0             |
|         | Function    |    |    |     |            | TEND0                                  | RENDO      | RFW0                 | RFR0          |
|         |             |    |    |     |            | interrupt 🔷                            | interrupt  | interrupt            | interrupt     |
|         |             |    |    |     |            | 0: Disable                             | 0: Disable | 0: Disable           | 0: Disable    |
|         |             |    |    |     |            | 1: Enable                              | 1: Enable  | 1: Enable            | 1: Enable     |
|         |             | 15 | 14 | 13  | 12         | 11                                     | 10         | 9                    | 8             |
| (0C0DH) | bit Symbol  |    |    |     |            | $\mathcal{A}$                          |            | 4                    |               |
|         | Read/Write  |    |    |     |            |                                        |            |                      |               |
|         | Reset State |    |    |     |            |                                        |            | $\frac{1}{\sqrt{2}}$ |               |
|         | Function    |    |    |     |            |                                        | $\Diamond$ |                      | $\frac{1}{2}$ |
|         |             |    |    |     |            | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |            |                      |               |

Figure 3.11.14 HSCOE Register

(a) <TENDIE0>

This bit enables or disables the TENDO interrupt.

(b) <RENDIE0>

This bit enables or disables the RENDO interrupt.

(c) <RFWIE0>

This bit enables or disables the RFW0 interrupt.

(d) <RFRIE0>

This bit enables or disables the RFR0 interrupt.

### (3-5) Interrupt request register

This register is used for showing generation condition for 4 interrupts.

This register is set to the reading "0" (interrupt doesn't generate) always when Interrupt enable register is masked.

1

|         |             |    |    | HSC | IR Registe | er         |                                       |                                              |                                              |
|---------|-------------|----|----|-----|------------|------------|---------------------------------------|----------------------------------------------|----------------------------------------------|
|         |             | 7  | 6  | 5   | 4          | 3          | 2 (                                   |                                              | 0                                            |
| HSC0IR  | bit Symbol  |    |    |     |            | TENDIR0    | RENDIRO                               | RFWIR0                                       | RFRIR0                                       |
| (0C0EH) | Read/Write  |    |    |     |            | ^          | ( / f                                 | ₹\                                           |                                              |
|         | Reset State |    |    |     |            | 0          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | // o                                         | 0                                            |
|         | Function    |    |    |     |            | TEND0      | REND0                                 | RFW0                                         | RFR0                                         |
|         |             |    |    |     |            | interrupt  | interrupt                             | interrupt                                    | interrupt                                    |
|         |             |    |    |     |            | 0: None    | 0: None                               | 0: None                                      | 0: None                                      |
|         |             |    |    |     |            | 1:Generate | 1:Generate                            | 1:Generate                                   | 1:Generate                                   |
|         |             | 15 | 14 | 13  | 12         | 11         | 10                                    | 9                                            | 8                                            |
| (0C0FH) | bit Symbol  |    |    |     |            | THA        |                                       | A                                            | <i>A</i>                                     |
|         | Read/Write  |    |    |     |            | W.         |                                       | K. K. C. |                                              |
|         | Reset State |    |    |     | 4          |            | Ţ,                                    |                                              | <i>*************************************</i> |
|         | Function    |    |    |     |            |            | C                                     |                                              |                                              |
|         |             |    |    |     |            | <b>V</b>   |                                       |                                              |                                              |

Figure 3.11.15 HSC0IR Register

(a) <TENDIR0>

This bit is used for showing the condition of TEND0 interrupt generation.

(b) <TENDIR0>

This bit is used for showing the condition of RENDO interrupt generation.

(c) <RFWIR0>

This bit is used for showing the condition of RFW0 interrupt generation.

(d) <RFRIR0>

This bit is used for showing the condition of RFR0 interrupt generation.

#### (4) HSC0CR (HSC0 CRC register)

This register contains the CRC calculation result for transmit/receive data.

|         |             |         |                                            | HSC     | CR registe    | er              |           |         |             |  |  |
|---------|-------------|---------|--------------------------------------------|---------|---------------|-----------------|-----------|---------|-------------|--|--|
|         |             | 7       | 6                                          | 5       | 4             | 3               | 2 <       | 1       | 0           |  |  |
| HSC0CR  | bit Symbol  | CRCD007 | CRCD006                                    | CRCD005 | CRCD004       | CRCD003         | CRCD002   | CRCD001 | CRCD000     |  |  |
| (0C06H) | Read/Write  |         |                                            |         | F             | ₹               | (         |         |             |  |  |
|         | Reset State | 0       | 0                                          | 0       | 0             | 0               | 0         |         | 0           |  |  |
|         | Function    |         | CRC calculation result load register [7:0] |         |               |                 |           |         |             |  |  |
|         |             | 15      | 14                                         | 13      | 12            | 11 (            |           | 9       | 8           |  |  |
| (0C07H) | bit Symbol  | CRCD015 | CRCD014                                    | CRCD013 | CRCD012       | CRCD011         | CRCD010   | CRCD009 | CRCD008     |  |  |
|         | Read/Write  |         |                                            |         | F             | ?               |           | 6       |             |  |  |
|         | Reset State | 0       | 0                                          | 0       | 0             | 70/             | 0         | 0 <     | S           |  |  |
|         | Function    |         |                                            | CRC cal | culation resu | It load registe | er [15:8] |         | $\geqslant$ |  |  |

Figure 3.11.16 HSCOCR register

#### (a) <CRCD015:000>

The CRC result which is calculated according to the settings of the CRC16\_7\_b0, CRCRX\_TX\_B0 and CRCRESET\_B0 bits in the HSC0CT register are loaded into this register. When using the CRC16 algorithm, all the bits participate in the CRC generation. When using the CRC7 algorithm, only the lower seven bits participates in the CRC generation. The following describes the steps required to calculate the CRC16 for the transmit data.

First, initialize the CRC calculation register by writing "1" to the CRCRESET\_B0 bit after programming three bits as follows:  $CRC16_{-}7_{-}b0 = "1"$ ,  $CRCRX_{-}TX_{-}B0 = "0"$ , and  $CRCRESET_{-}B0 \neq "0"$ .

Then, by writing the transmit data into the HSCOTD register, complete the transmission of all bits, for which the CRC should be calculated.

The HSCOST<TEND0> bit should be checked to confirm whether the reception is completed.

By reading the HSCOCR register after the transmission is completed, the CRC16 for the transmit data can be obtained.

### (5) Transmit Data Register

This register is used for writing the transmit data.

**HSC0TD** Register

|         |             |                           |                          |        | . =    | _                                      |              |         |        |  |  |
|---------|-------------|---------------------------|--------------------------|--------|--------|----------------------------------------|--------------|---------|--------|--|--|
|         |             | 7                         | 6                        | 5      | 4      | 3                                      | 2 <          | 1       | 0      |  |  |
| HSC0TD  | bit Symbol  | TXD007                    | TXD006                   | TXD005 | TXD004 | TXD003                                 | TXD002       | ≻TXD001 | TXD000 |  |  |
| (0C10H) | Read/Write  |                           |                          |        | R/     | W                                      | (            |         |        |  |  |
|         | Reset State | 0                         | 0                        | 0      | 0      | 0                                      | 0            |         | 0      |  |  |
|         | Function    |                           | Transmit data bits [7:0] |        |        |                                        |              |         |        |  |  |
|         |             | 15                        | 14                       | 13     | 12     | 11 (                                   | 10           | 9       | 8      |  |  |
| (0C11H) | bit Symbol  | TXD015                    | TXD014                   | TXD013 | TXD012 | TXD011                                 | TXD010       | TXD009  | TXD008 |  |  |
|         | Read/Write  |                           |                          |        | R/     | W (                                    |              | 6       |        |  |  |
|         | Reset State | 0                         | 0                        | 0      | 0      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | $\searrow$ 0 | 0 // (  | 0      |  |  |
|         | Function    | Transmit data bits [15:8] |                          |        |        |                                        |              |         |        |  |  |

Figure 3.11.17 HSCOTD Register

### (a) <TXD015:000>

This register is used for writing the transmit data. When this register is read, the last-written data is read out.

This register is overwritten if the next data is written with this register being full.

Please check the state of the RFW0 bit before starting a write operation.

HSC0CT<UNIT160>="1", all bits are valid.

HSCOCT<UNIT160>\\(\sigma\)", lower 7 bits are valid.

**TOSHIBA** 

### (6) Receive Data Register

This register is used for reading the received data.

### **HSC0RD** Register

HSC0RD (0C12H)

(0C13H)

|             | 7      | 6                           | 5      | 4            | 3              | 2 <      | 1      | 0      |  |
|-------------|--------|-----------------------------|--------|--------------|----------------|----------|--------|--------|--|
| bit Symbol  | RXD007 | RXD006                      | RXD005 | RXD004       | RXD003         | RXD002   | RXD001 | RXD000 |  |
| Read/Write  |        |                             |        | F            | ₹              |          |        |        |  |
| Reset State | 0      | 0                           | 0      | 0            | 0              | 0        | 0      | 0      |  |
| Function    |        | Receive data register [7:0] |        |              |                |          |        |        |  |
|             | 15     | 14                          | 13     | 12           | 11 (           | 10       | 9      | 8      |  |
| bit Symbol  | RXD015 | RXD014                      | RXD013 | RXD012       | RXD011         | RXD010   | RXD009 | RXD008 |  |
| Read/Write  |        |                             |        | F            | ?              |          | 6      |        |  |
| Reset State | 0      | 0                           | 0      | 0            | <9/            | >> 0     | 0~(    | 0      |  |
| Function    |        |                             | R      | Receive data | register [15:8 | <u> </u> |        |        |  |

Figure 3.11.18 HSCORD Register

### (a) <RXD015:000>

The HSCORD register is used for reading the received data. Please check the state of the RFRO bit before starting a read operation.

HSC0CT<UNIT160> = 1, all bits are yalid.

HSC0CT<UNIT160>="0", lower 7 bits are valid.

**TOSHIBA** 

HSC0TS

(0C14H)

(0C15H)

# (7) Transmit data shift register

This register is used for changing the transmission data to serial. This register is used for confirming the changing condition when LSI test.

**HSC0TS** Register 7 1 6 4 3 2 0 TSD004 TSD007 TSD006 TSD005 TSD003 TSD002 TSD001 TSD000 oit Symbol R Read/Write 0 0 0 0 0 0 Reset State Transmit data shift register [7:0] Function 10 15 14 13 12 11 9 8 TSD015 TSD014 TSD013 TSD012 TSD011 TSD010 TSD009 TSD008 it Symbol Read/Write 0 0 0 0 0 0 0 Reset State Transmit data shift register [15:8] Function

Figure 3.11.19 HSCOTS Register

## (a) <TSD015:000>

This register is used for reading the status of transmission data shift register.

HSC0CT<UNIT160> = "1", all bits are yalid.

HSC0CT<UNIT160>="0", lower 7 bits are valid.



### (8) Receive data shift register

This register is used for reading the receive data shift register.

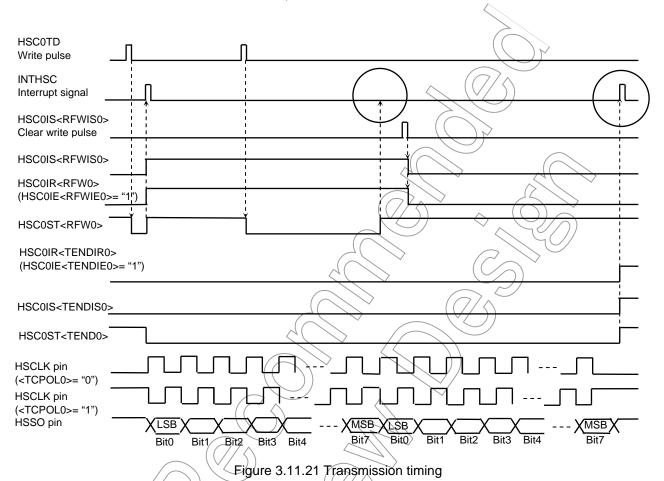
**HSCORS** Register 7 6 5 4 3 2 1 0 RSD007 RSD006 RSD003 RSD002 RSD001 RSD000 HSC0RS bit Symbol RSD005 RSD004 (0C16H) Read/Write -0' 0 0 0 Reset State Receive data shift register [7:0] Function 15 14 13 12 10 9 8 11 RSD015 RSD014 RSD013 RSD012 RSD011 RSD010 RSD009 RSD008 (0C17H) bit Symbol Read/Write 0 0 0 <∂ 0/ 0 Reset State Receive data shift register [15;8] function

Figure 3.11.20 HSCORS Register

### (a) <RSD015:000>

This register is used for reading the status of receive data shift register.

HSCOCT<UNIT160> = "1", all bits are valid.


HSC0CT<UNIT160> = "0" lower 7 bits are valid.

## 3.11.3 Operation timing

Following examples show operation timing.

#### • Setting condition 1:

Transmission in UNIT=8bit, LSB first



In above condition, HSCOST<RFWO> flag is set to "0" just after wrote transmission data. When data of HSCOTD register finish shifting to transmission register (HSCOTS), HSCOST<RFWO> is set to "1", it is informed that can write next transmission data, start transmission clock and data from HSCLK pin and HSSO pin at same time with inform.

In this case, HSC0IS, HSC0IR change and INTHSC interrupt generate by synchronization to rising of HSC0ST<RFW0> flag. When HSC0IR register is setting to "1", interrupt is not generated even if HSC0ST<RFW0> was set to "1".

When finish transmission and lose data that must to transmit to HSC0TD register and HSC0TS register, transmission data and clock are stopped by setting "1" to HSC0ST<TENDO>, and INTHSC interrupt is generated at same time. In this case, if HSC0ST<TENDO> is set to "1" at different interrupt source, INTHSC is not generated. Therefore must to clear HSC0IS<RFWO> to "0".

 Setting condition 2: UNIT transmission in UNIT=8bit, LSB first

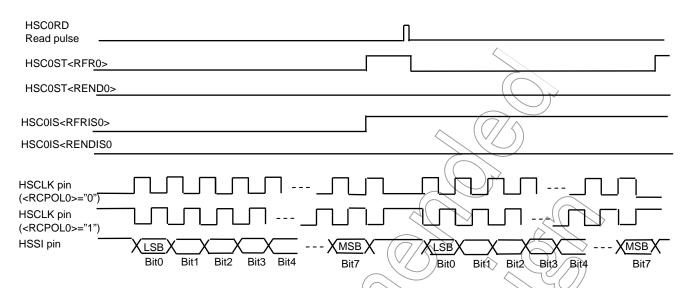



Figure 3.11.22 UNIT receiving (HSC0CT<RXUEN0>=1)

If set HSCOCT<RXUENO> to "1" without valid receiving data to HSCORD register (HSCOST<RFRO>=0), UNIT receiving is started. When receiving is finished and stored receiving data to HSCORD register, HSCOST<RFRO> flag is set to "1", and inform that can read receiving data. Just after read HSCORD register, HSCOST<RFRO> flag is cleared to "0" and it start receiving next data automatically.

If be finished UNIT receiving, set HSCOCT<RXUENO> to "0" after confirmed that HSCOST<RFRO> was/set to "1".



• Setting condition 3: Sequential receiving in UNIT=8 bit, LSB first

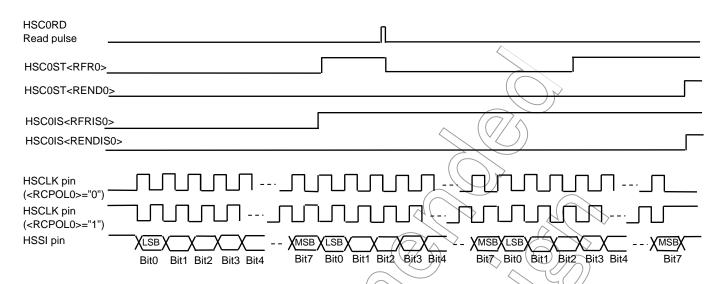
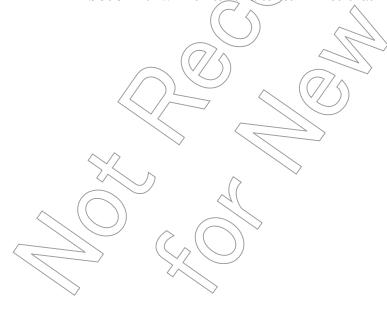




Figure 3.11.23 continuous receiving (HSC0CT<RXWEN0>=1)

If set HSC0CT<RXWEN0> to "1" without valid receiving data in HSC0RD register (HSC0ST<RFR0>=0), sequential receiving is started. When first receiving is finished and stored receiving data to HSC0RD register, HSC0ST<RFR0> flag is set to "1", and inform that can read receiving data. Sequential receiving is received until receiving data is stored to HSC0RD and HSC0RS registers If finished sequential receiving, set HSC0CT<RXWEN0> to "0" after confirmed that HSC0ST<REND0> was set to "1".



# • Setting condition 4:

Transmission by using micro DMA in UNIT=8bit, LSB first

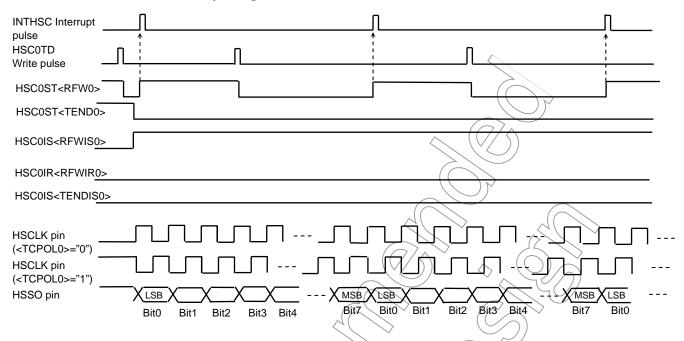
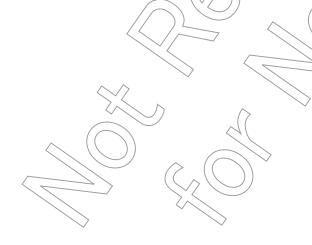




Figure 3.11.24 Micro DMA transmission (transmission)

If all bits of HSC0IE register are "0" and HSC0CT<DMAERFW0> is "1", transmission is started by writing transmission data to HSC0TD register.

If data of HSC0TD register is shifted to HSC0TS register and HSC0ST<RFW0> is set to "1" and can write next transmission data, INTHSC interrupt (RFW0 interrupt) is generated. By starting Micro DMA at this interrupt, can transmit sequential data automatically.

However, If transmit it at Micro DMA, set Micro DMA beforehand.



• Setting condition 5: Receiving by using micro DMA in UNIT=8bit, LSB first

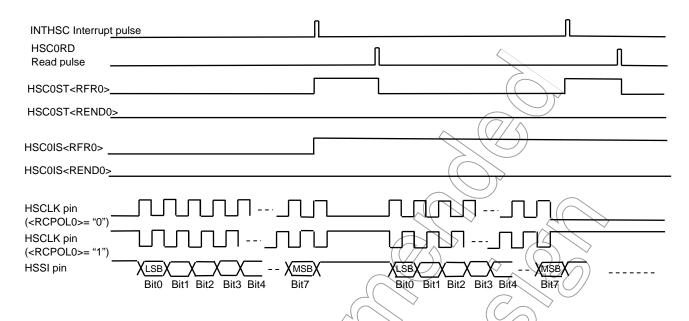




Figure 3.11.25 Micro DMA transmission (UNIT receiving (HSCOCT<REVEN0>=1))

If all bits of HSC0IE register is "0" and HSC0CT<DMAERFR0> is "1", UNIT receiving is started by setting HSC0CT<RXUEN0> to "1". If receiving data is stored to HSC0RD register and can read receiving data, INTHSC interrupt (RFR0 interrupt) is generated. By starting Micro DMA at this interrupt, it can be received sequential data automatically.

However, If receive it at Micro DMA, set Micro DMA beforehand.



## 3.11.4 Example

Following is discription of HSC setting method.

#### (1) UNIT transmission

This example shows the case of transmission is executed by following setting, and it is generated INTHSC interrupt by finish transmission.

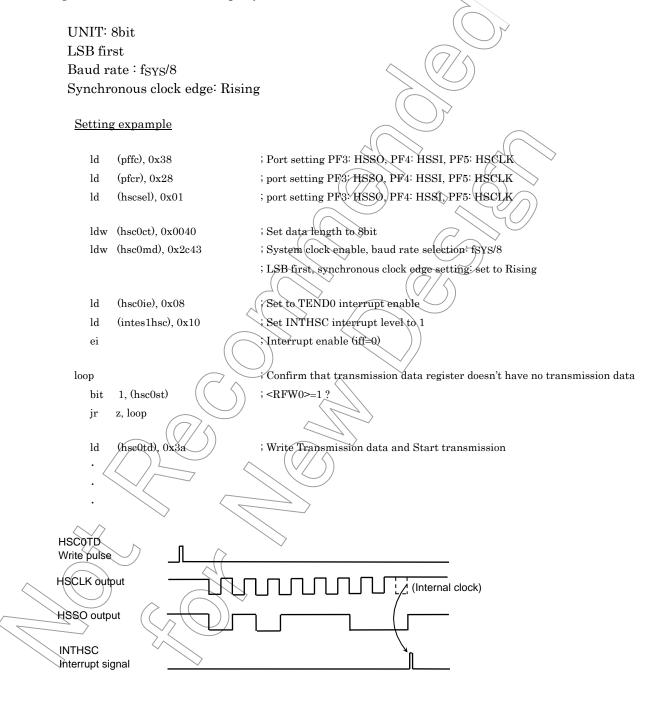
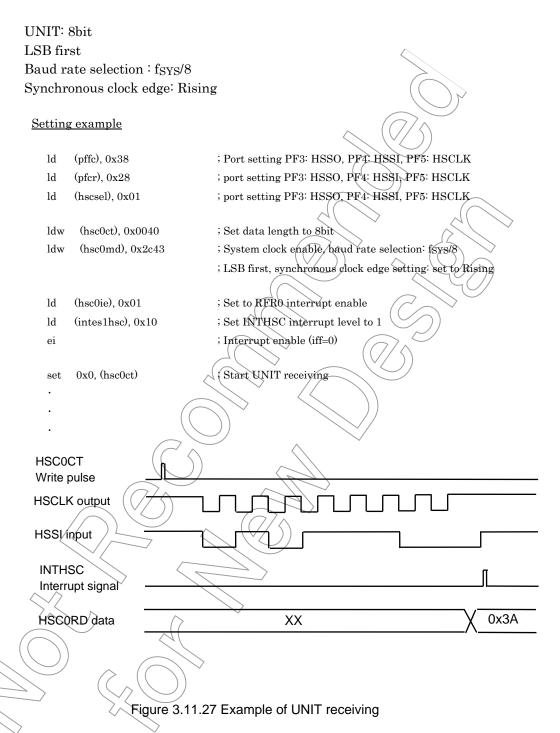
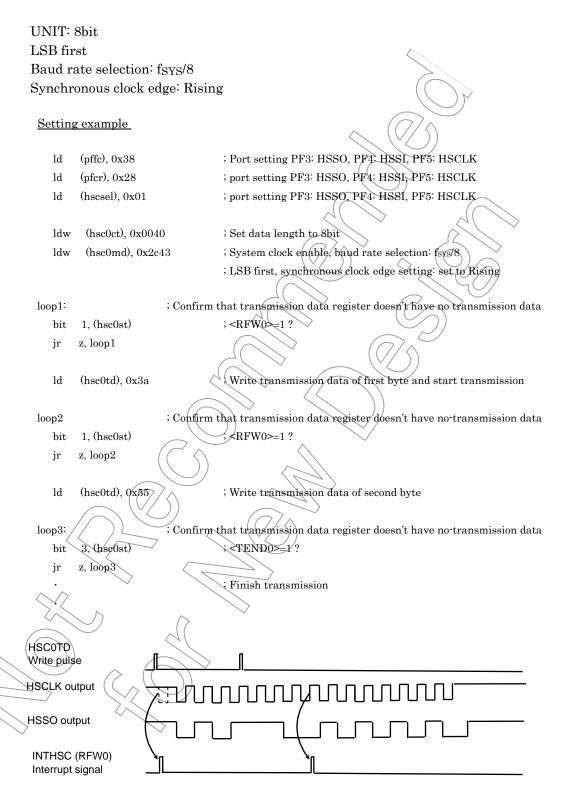




Figure 3.11.26 Example of UNIT transmission


### (2) UNIT receiving

This example shows case of receiving is executed by following setting, and it is generated INTHSC interrupt by finish receiving.



# (3) Sequential transmission

This example shows case of transmission is executed by following setting, and it is executed 2byte sequential transmission.



Note: Timing of this figure is an example. There is also that transmission interbal between first byte and sescond byte generate. (High baud rate etc.)

Figure 3.11.28 Example of sequential transmission

# (4) Sequential receiving

This example shows case of receiving is executed by following setting, and it is executed 2byte sequential receiving.

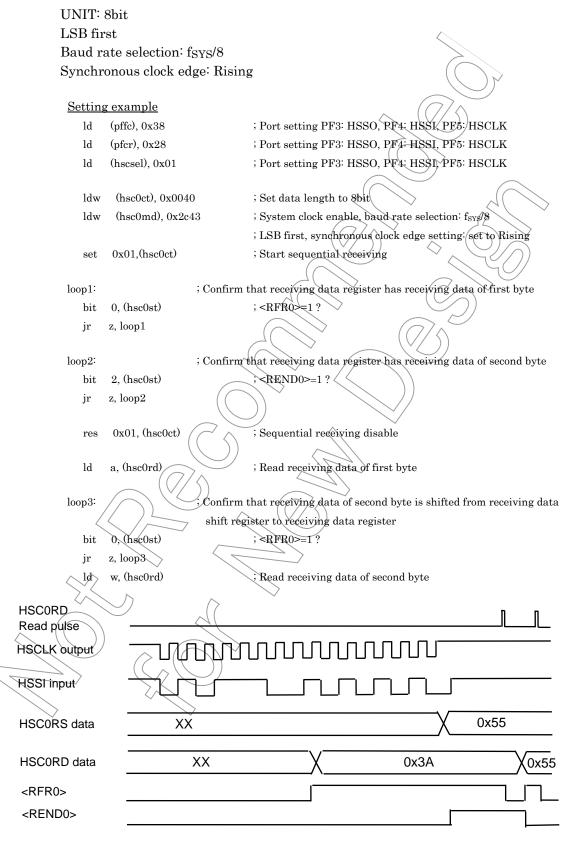



Figure 3.11.29 Example of sequential receiving

# (5) Sequeintial Transmission by using micro DMA

This example shows case of sequential transmission of 4byte is executed at using micro DMA by following setting.

UNIT: 8bit LSB first

Baud rate: fsys/8

Synchronous clock edge: Rising

#### Setting example

#### Main routine

ld

;-- micro DMA setting --

ld (dma0v), 0x1D

; Set micro DMA0 to INTHSC ; Set number of micro DMA transmission to that number 1 (third time) wa, 0x0003

ldc dmac0, wa

ld a. 0x08 ; micro DMA mode setting: source INC mode, T byte transfer

ldc dmam0, a

ld xwa, 0x806000

ldc dmas0, xwa

xwa, 0xC10 ld

; Set source address to HSCOTD register

ldc dmad0, xwa

;-- HSC setting --

ldw

(pffc), 0x38

(pfcr), 0x28 ld

ld (hscsel), 0x01

; Set data length to 8bit

; Set source address

(hsc0ct), 0x0040 ldw (hseQmd), 0x2c43

; System clock enable, baud rate selection: fsys/8

Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK

Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK

; Port setting PF3; HSSO, PF4: HSSI, PF5: HSCLK

; LSB first, synchronous clock edge setting: set to Rising

(hsc0ie), 0x00 ld

1, (hsc0ct+1) set

(intetc01), 0x01

; Set micro DMA operation by RFW0 to enable

Set INTTC0 interrupt level to 1

; Interrupt enable (iff=0)

; Set to interrupt disable

loop1 bit

ld)

ei

Confirm that transmission data register doesn't have no transmission data

1, (hsc0st) ; <RFW0>=1?

z, loop 1

ld (hsc0td), 0x3a

; Write Transmission data and Start transmission

#### Interrupt routine (INTTC0)

#### loop2:

bit 1, (hsc0st) ; <RFW0> = 1 ?

z, loop2 jr

3, (hsc0st)

; < TEND0 > = 1 ?

z, loop2 jr

nop

# (6) UNIT receiving by using micro DMA

This example shows case of UNIT receiving sequentially 4byte is executed at using micro DMA by following setting.

UNIT: 8bit LSB first

Baud rate: fsys/8

Synchronous clock edge: Rising

#### Setting example

#### Main routine

;-- micro DMA setting --

ld (dma0v), 0x1D

ld wa, 0x0003

ldc dmac0, wa

ld a. 0x00

ldc dmam0, a

ld xwa, 0xC12

ldc dmas0, xwa

ld xwa, 0x807000

ldc dmad0, xwa

;-- HSC setting --

ld (pffc), 0x38

ld (pfcr), 0x28

ld (hscsel), 0x01

ldw (hsc0ct), Øx0040

ldw (hsc0md), 0x2c43

ld (hsc0ie), 0x00

set 0, (hsc0ct+1)

\d\ (intetc01), 0x01

⟨êi∖

0x0, (hsc0ct)

Interrupt routine (INTTC)

loop2:

bit 0, (hsc0st)

jr z, loop2

res 0, (hsc0ct) ld a, (hsc0rd)

Nop

; Set micro DMA0 to INTHSC

; Set number of micro DMA transmission to that number 1 (third time)

; micro DMA mode setting: source INC mode, T byte transfer

; Set source address to HSC0RD register

; Set source address

Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK

Port setting PF3: HSSO, PF4: HSSI, PF5: HSCLK

; Port setting PF3; HSSO, PF4: HSSI, PF5: HSCLK

; Set data length to 8bit

; System clock enable, baud rate selection: fsys/8

; LSB first, synchronous clock edge setting: set to Rising

; Set to interrupt disable

; Set micro DMA operation by RFR0 to enable

Set INTTC0 interrupt level to 1

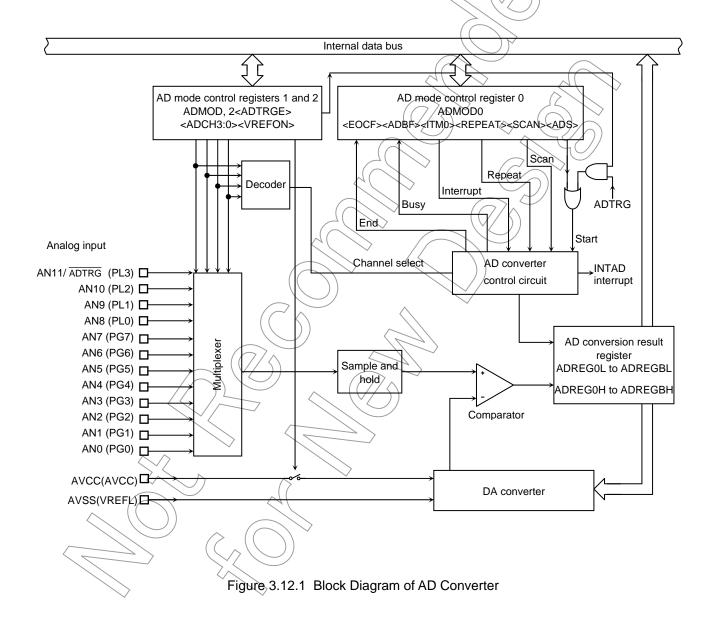
; Interrupt enable (iff=0)

; Start UNIT receiving

; Wait receiving finish case of UNIT receiving  $\,$ 

; < RFR0 > = 1 ?

; UNIT receiving disable


; Read last receiving data

# 3.12 Analog/Digital Converter

The TMP92CY23/CD23A incorporates a 10-bit successive approximation type analog/digital converter (AD converter) with 12-channel analog input.

Figure 3.12.1 is a block diagram of the AD converter. The 12-channel analog input pins (AN0 to AN11) are shared with the input only port (Port G and Port L) so they can be used as an input port.

Note: When IDLE2, IDLE1 or STOP mode is selected, in order to reduce the power consumption, the system may enter a stand-by mode with some timings even though the internal comparator is still enabled. Therefore be sure to check that AD converter operations are halted before a HALT instruction is executed.



# 3.12.1 Analog/Digital Converter Registers

The AD converter is controlled by the three AD mode control registers: ADMOD0, ADMOD1 and ADMOD2. The 24 AD conversion data result registers (ADREG0H/L to ADREGBH/L) store the results of AD conversion.

Figure 3.12.2 to Figure 3.12.10 show the registers related to the AD converter.

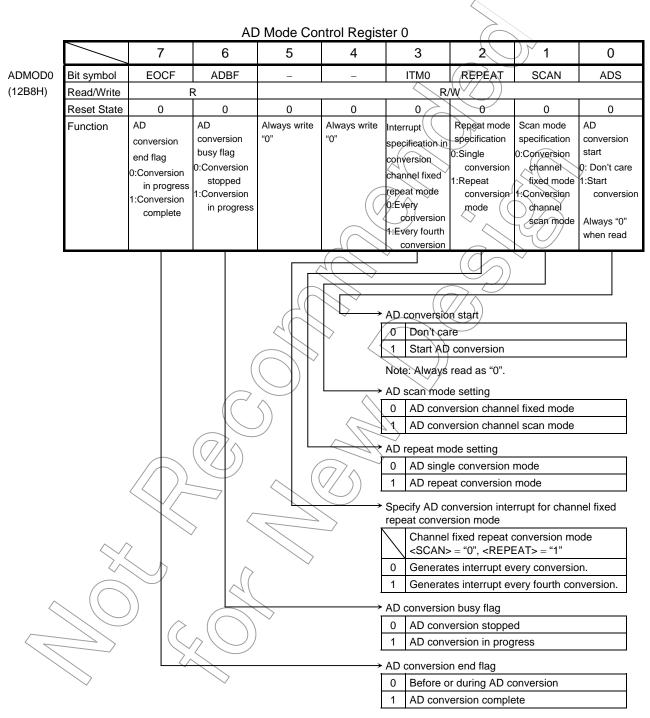



Figure 3.12.2 Register for AD Converter

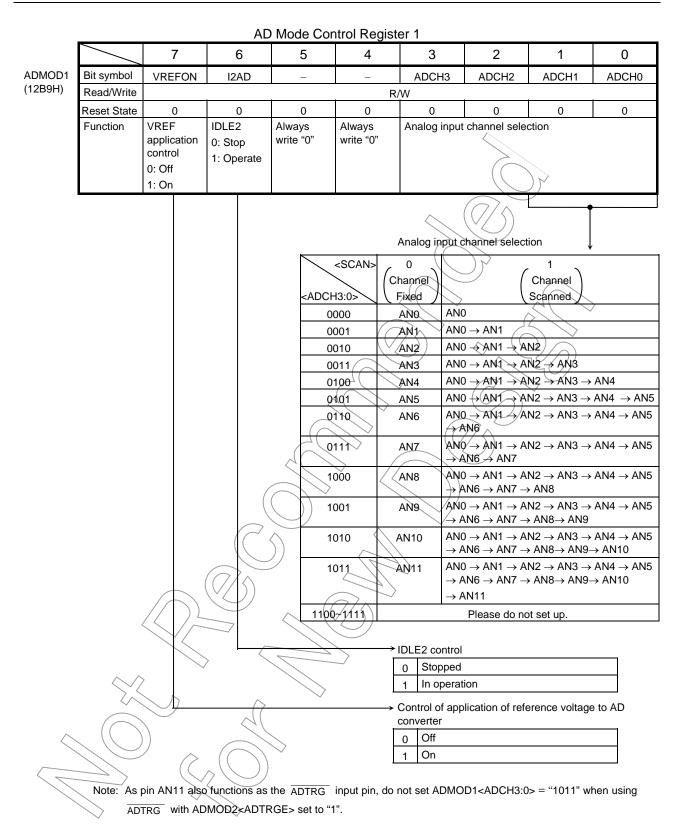



Figure 3.12.3 Register for AD Converter

AD Mode Control Register 2 2 7 6 5 4 3 1 0 ADMOD2 Bit symbol **ADTRGE** (12BAH) Read/Write R/W Reset State 0 0 0 0 0 0 0 Always Always Always Always Always Always Always AD external Function write "0" trigger start control 0: Disable 1: Enable AD conversion start control by external trigger ( ADTRG input) Disabled 0 Enabled Figure 3.12.4 Register for AD Converter

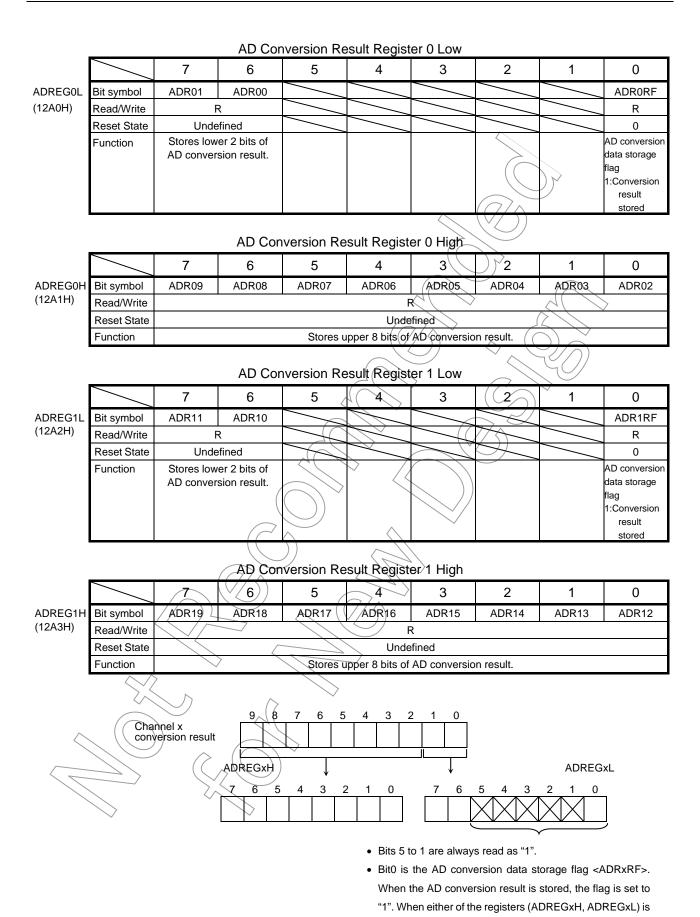



Figure 3.12.5 Register for AD Converter

read, the flag is cleared to "0".

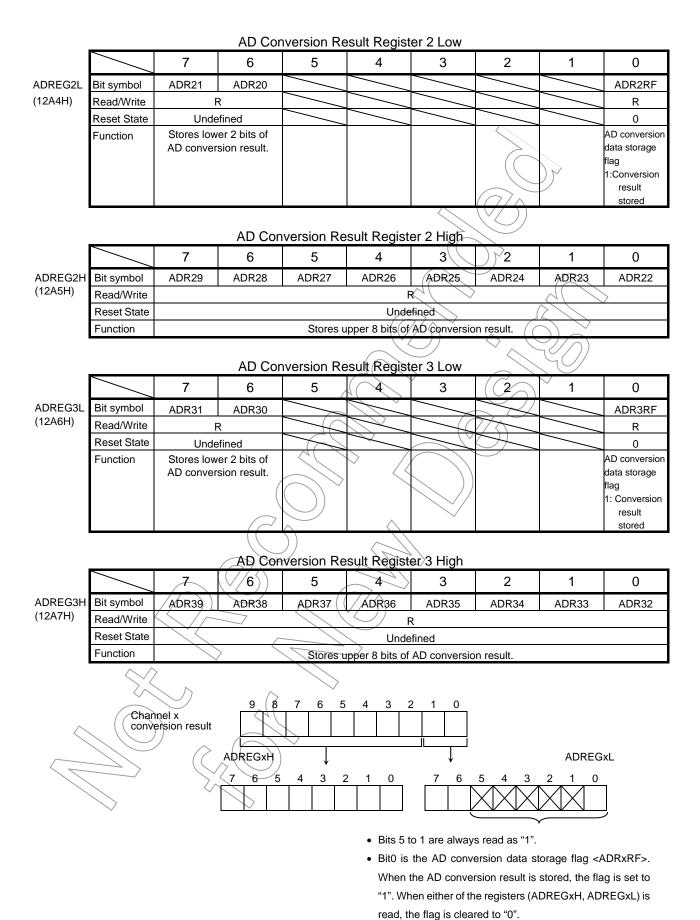



Figure 3.12.6 Register for AD Converter

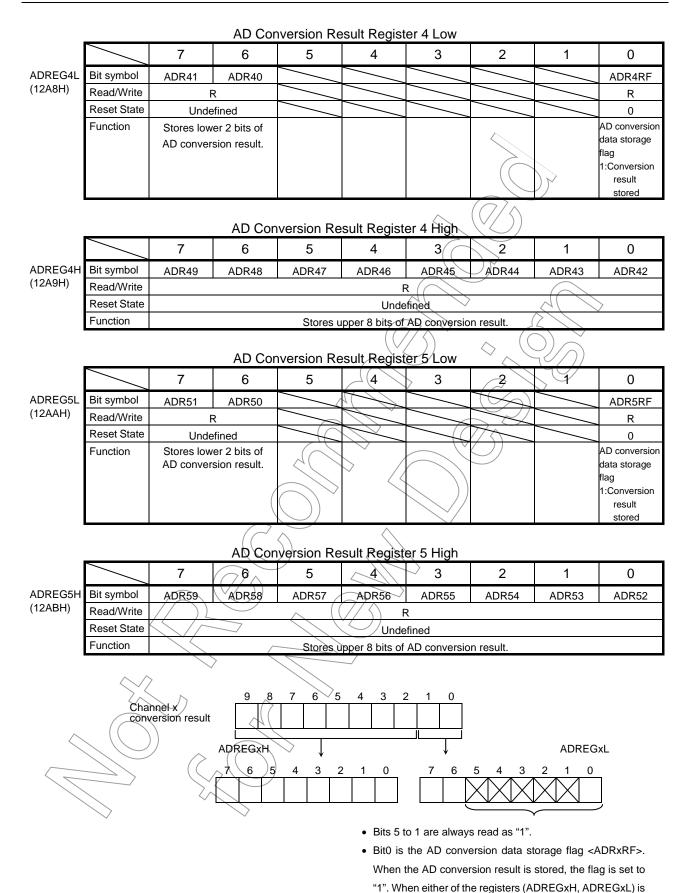



Figure 3.12.7 Register for AD Converter

read, the flag is cleared to "0".

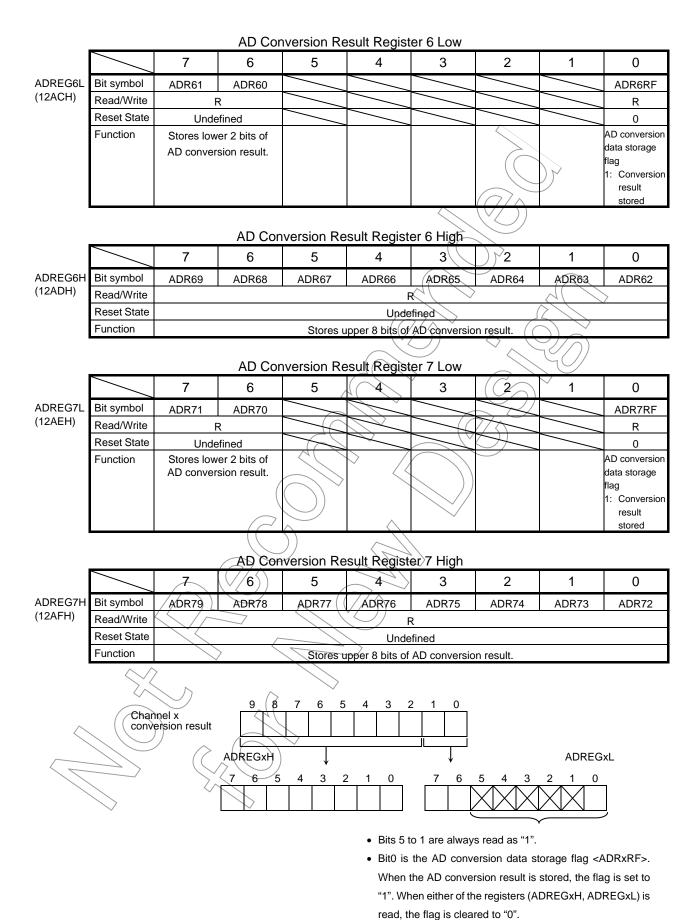



Figure 3.12.8 Register for AD Converter

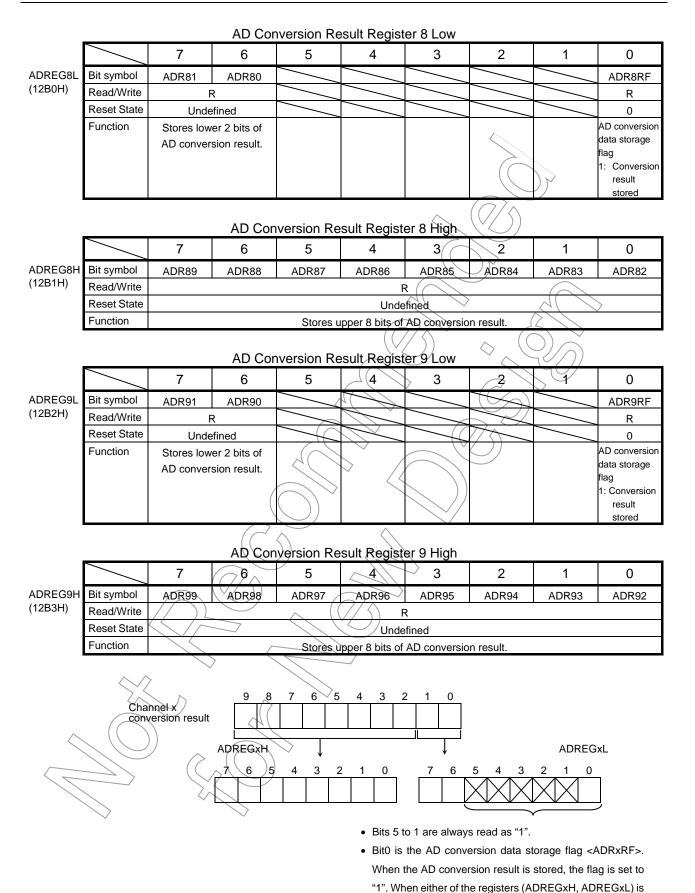



Figure 3.12.9 Register for AD Converter

read, the flag is cleared to "0".

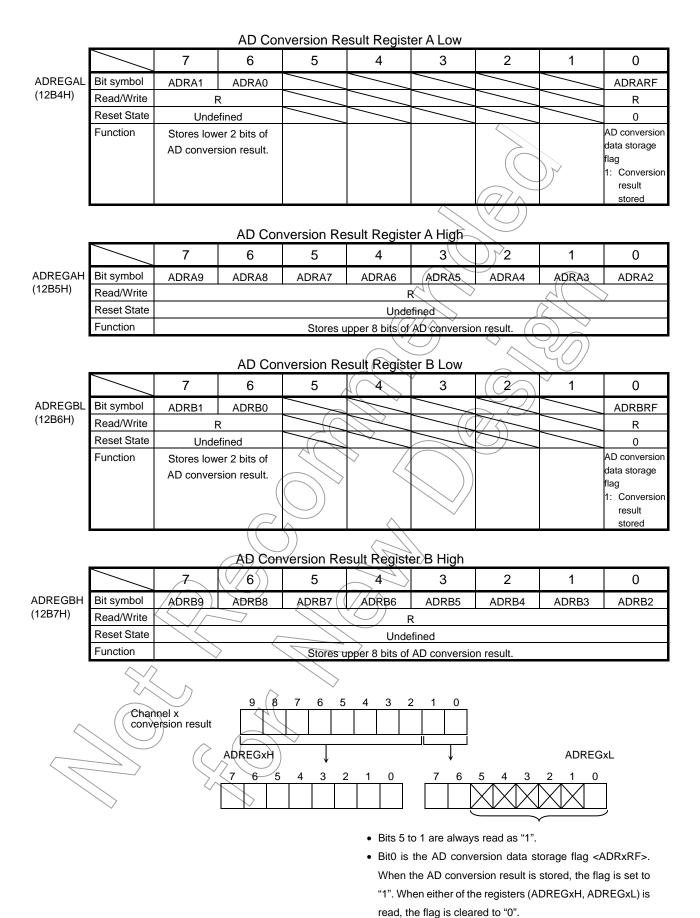



Figure 3.12.10 Register for AD Converter

## 3.12.2 Description of Operation

#### (1) Analog reference voltage

A high level analog reference voltage is applied to the AVCC pin; a low level analog reference voltage is applied to the AVSS pin. To perform AD conversion, the reference voltage, the difference between AVCC and AVSS, is divided by 1024 using string resistance. The result of the division is then compared with the analog input voltage.

To turn off the switch between AVCC and AVSS, write "0" to ADMOD1 <VREFON> in AD mode control register 1. To start AD conversion in the OFF state, first write "1" to ADMOD1<VREFON>, wait 3 μs until the internal reference voltage stabilizes (this is not related to fc), then set ADMOD0<ADS> to "1"

## (2) Analog input channel selection

The analog input channel selection varies depending on the operation mode of the AD converter.

- In analog input channel fixed mode (ADMODO<SCAN> = "0")

  Setting ADMOD1<ADCH1:0> selects one of the input pins ANO to AN3 as the input channel.
- In analog input channel scan mode (ADMOD0<SCAN> = "1")
  Setting ADMOD1<ADCH1:0> selects one of the four scan modes.

Table 3.12.1 illustrates analog input channel selection in each operation mode.

On a reset, ADMOD0<SCAN> is set to 0 and ADMOD1<ADCH3:0> is initialized to "00". Thus pin AN0 is selected as the fixed input channel. Pins not used as analog input channels can be used as standard input port pins.

Table 3.12.1 Analog Input Channel Selection

|     |                     |                                      | V                                                                                                                                  |  |  |  |
|-----|---------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | <adch3:0></adch3:0> | Channel Fixed<br><scan> = "0"</scan> | Channel Scan<br><scan> = "1"</scan>                                                                                                |  |  |  |
|     | 0000                | AN0                                  | ANO                                                                                                                                |  |  |  |
|     | 0001/ ))            | AN1                                  | AN0 → AN1                                                                                                                          |  |  |  |
|     | 0010                | AN2 // ^                             | $AN0 \rightarrow AN1 \rightarrow AN2$                                                                                              |  |  |  |
| 4   | 0011                | AN3                                  | $AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$                                                                              |  |  |  |
|     | 0100                | AN4                                  | $\begin{array}{l} AN0 \to AN1 \to AN2 \to AN3 \\ \to AN4 \end{array}$                                                              |  |  |  |
| >   | 0101                | AN5                                  | $AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$<br>$\rightarrow AN4 \rightarrow AN5$                                         |  |  |  |
| /// | 0110                | AN6                                  | $\begin{array}{c} AN0 \to AN1 \to AN2 \to AN3 \\ \to AN4 \to AN5 \to AN6 \end{array}$                                              |  |  |  |
| )   | 0111                | AN7                                  | $\begin{array}{c} AN0 \to AN1 \to AN2 \to AN3 \\ \to AN4 \to AN5 \to AN6 \to AN7 \end{array}$                                      |  |  |  |
|     | 1000                | AN8                                  | $\begin{array}{l} AN0 \to AN1 \to AN2 \to AN3 \\ \to AN4 \to AN5 \to AN6 \to AN7 \\ \to AN8 \end{array}$                           |  |  |  |
|     | 1001                | AN9                                  | $\begin{array}{c} ANO \to AN1 \to AN2 \to AN3 \\ \to AN4 \to AN5 \to AN6 \to AN7 \\ \to AN8 \to AN9 \end{array}$                   |  |  |  |
|     | 1010                | AN10                                 | $\begin{array}{c} AN0 \to AN1 \to AN2 \to AN3 \\ \to AN4 \to AN5 \to AN6 \to AN7 \\ \to AN8 \to AN9 \to AN10 \end{array}$          |  |  |  |
|     | 1011                | AN11                                 | $\begin{array}{c} AN0 \to AN1 \to AN2 \to AN3 \\ \to AN4 \to AN5 \to AN6 \to AN7 \\ \to AN8 \to AN9 \to AN10 \to AN11 \end{array}$ |  |  |  |

#### (3) Starting AD conversion

To start AD conversion, write "1" to ADMOD0<ADS> in AD mode control register "0" or ADMOD2<ADTRGE> in AD mode control register 2, and input falling edge on ADTRG pin. When AD conversion starts, the AD conversion busy flag ADMOD0<ADBF> will be set to "1", indicating that AD conversion is in progress.

During AD conversion, a falling edge input on the ADTRG pin will be ignored.

(4) AD conversion modes and the AD conversion end interrupt

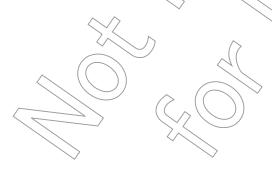
The four AD conversion modes are:

- Channel fixed single conversion mode
- Channel scan single conversion mode
- Channel fixed repeat conversion mode
- Channel scan repeat conversion mode

The ADMODO<REPEAT> and ADMODO<SCAN> settings in AD mode control register 0 determine the AD mode setting.

Completion of AD conversion triggers an INTAD AD conversion end interrupt request. Also, ADMOD0<EOCF> will be set to "1" to indicate that AD conversion has been completed.

1. Channel fixed single conversion mode


Setting ADMODO<REPEAT> and ADMODO<SCAN> to "00" selects conversion channel fixed single conversion mode.

In this mode, data on one specified channel is converted once only. When the conversion has been completed, the ADMODO<EOCF> flag is set to "1", ADMODO<ADBF> is cleared to "0", and an INTAD interrupt request is generated.

2. Channel scan single conversion mode

Setting ADMODO<REPEAT> and ADMODO<SCAN> to "01" selects conversion channel scan single conversion mode.

In this mode, data on the specified scan channels is converted once only. When scan conversion has been completed, ADMOD0<EOCF> is set to "1", ADMOD0<ADBF> is cleared to "0", and an INTAD interrupt request is generated.



#### 3. Channel fixed repeat conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to "10" selects conversion channel fixed repeat conversion mode.

In this mode, data on one specified channel is converted repeatedly. When conversion has been completed, ADMOD0<EOCF> is set to "1" and ADMOD0<ADBF> is not cleared to "0" but held at "1". INTAD interrupt request generation timing is determined by the setting of ADMOD0<ITM0>.

Clearing <ITM0> to "0" generates an interrupt request every time an AD conversion is completed.

Setting <ITM0> to "1" generates an interrupt request on completion of every fourth conversion.

## 4. Channel scan repeat conversion mode

Setting ADMODO<REPEAT> and ADMODO<SCAN> to "11" selects conversion channel scan repeat conversion mode.

In this mode, data on the specified scan channels is converted repeatedly. When each scan conversion has been completed, ADMODO<EQCF> is set to "1" and an INTAD interrupt request is generated. ADMODO<ADBF> is not cleared to "0" but held at "1".

To stop conversion in a repeat conversion mode (e.g., in cases 3. and 4.), write "0" to ADMODO<REPEAT>. After the current conversion has been completed, the repeat conversion mode terminates and ADMODO<ADBF> is cleared to "0".

Switching to a halt state (IDLE2 mode with ADMOD1<I2AD> cleared to "0", IDLE1 mode or STOP mode) immediately stops operation of the AD converter even when AD conversion is still in progress. In repeat conversion modes (e.g., in cases 3. and 4.), when the halt is released, conversion restarts from the beginning. In single conversion modes (e.g., in cases 1. and 2.), conversion does not restart when the halt is released (the converter remains stopped).

Table 3.12.2 shows the relationship between the AD conversion modes and interrupt requests.

Table 3.12.2 Relationship between AD Conversion Modes and Interrupt Requests

| Mode                                 | Interrupt Request                         | ADMOD0        |                   |               |  |  |
|--------------------------------------|-------------------------------------------|---------------|-------------------|---------------|--|--|
| Mode                                 | Generation                                | <itm0></itm0> | <repeat></repeat> | <scan></scan> |  |  |
| Channel fixed single conversion mode | After completion of conversion            | Х             | 0                 | 0             |  |  |
| Channel scan single conversion mode  | After completion of scan conversion       | Х             | 0                 | 1             |  |  |
| Channel fixed repeat                 | Every conversion                          | 0             | 1                 | 0             |  |  |
| conversion mode                      | Every fourth conversion                   | 1             | l                 | U             |  |  |
| Channel scan repeat conversion mode  | After completion of every scan conversion | Х             | 1                 | 1             |  |  |

X: Don't care

#### (5) AD conversion time

84 states (4.2µs at fSYS = 20 MHz) are required for the AD conversion of one channel.

(6) Storing and reading the results of AD conversion

The AD conversion data upper and lower registers (ADREG0H/L to ADREGBH/L) store the results of AD conversion. (ADREG0H/L to ADREGBH/L are read-only registers.)

In channel fixed repeat conversion mode, the conversion results are stored successively in registers from ADREGOH/L to ADREGBH/L. In other modes from AN0 to AN11 conversion results are stored in from ADREGOH/L to ADREGBH/L respectively.

Table 3.12.3 shows the correspondence between the analog input channels and the registers which are used to hold the results of AD conversion.

Table 3.12.3 Correspondence between Analog Input Channels and AD Conversion Result Registers

| Analog Input               | AD Conversion                           | AD Conversion Result Register                           |  |  |  |  |  |  |
|----------------------------|-----------------------------------------|---------------------------------------------------------|--|--|--|--|--|--|
| Channel<br>(Port G/Port L) | Conversion Modes Other<br>than at Right | Channel Fixed Repeat Conversion Mode (ADMOD0< TM0>="1") |  |  |  |  |  |  |
| AN0                        | ADREG0H/L                               |                                                         |  |  |  |  |  |  |
| AN1                        | ADREG1H/L                               | $((// \land)$                                           |  |  |  |  |  |  |
| AN2                        | ADREG2H/L                               |                                                         |  |  |  |  |  |  |
| AN3                        | ADREG3H/L                               | ADREG0H/L ←                                             |  |  |  |  |  |  |
| AN4                        | ADREG4H/L                               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                 |  |  |  |  |  |  |
| AN5                        | (ADREG5H/L                              | ADREG1H/L                                               |  |  |  |  |  |  |
| AN6                        | ADREG6H/L                               | <b>→ →</b>                                              |  |  |  |  |  |  |
| AN7                        | ADREG7H/L                               | ADREG2H/L                                               |  |  |  |  |  |  |
| AN8                        | ADREG8H/L                               | \\ \ \ \                                                |  |  |  |  |  |  |
| AN9                        | ADREG9H/L                               | ADREG3H/L —                                             |  |  |  |  |  |  |
| AN10 (                     | ADREGAH/L                               |                                                         |  |  |  |  |  |  |
| AN14 \V                    | ADREGBH/L                               | $\checkmark$                                            |  |  |  |  |  |  |

The AD conversion data storage flag <ADRxRF> indicates whether the AD conversion result register has been read or not. When a conversion result is stored in the AD conversion result register, the flag is set to "1". When either of the AD conversion result registers (ADREGxH or ADREGxL) is read, the flag is cleared to "0".

Reading the AD conversion result also clears the AD conversion end flag ADMOD0 EOCF to "0".

**TOSHIBA** 

#### Setting example:

1. Convert the analog input voltage on the AN3 pin and write the result to memory address 2800H using the AD interrupt (INTAD) processing routine.

#### Main routine:

**INTEPAD** ADMOD1 ADMOD0

Interrupt routine processing example: ← ADREG3H/L

WA > > 6

(2800H) ← WA Enable INTAD and set it to interrupt level 4.

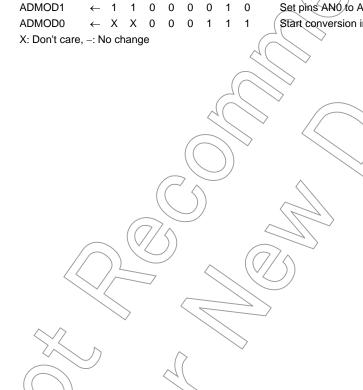
Set pin AN3 to be the analog input channel.

Start conversion in channel fixed single conversion mode.

Read value of ADREG3L and ADREG3H into 16-bits

general-purpose register WA.

Shift contents read into WA six times to right and "0" fill upper


Write contents of WA to memory address 2800H.

2. This example repeatedly converts the analog input voltages on the three pins ANO, AN1 and AN2 using channel scan repeat conversion mode.

**INTEPAD** ADMOD1 0 0 0 ADMOD0 0 Χ Χ 0

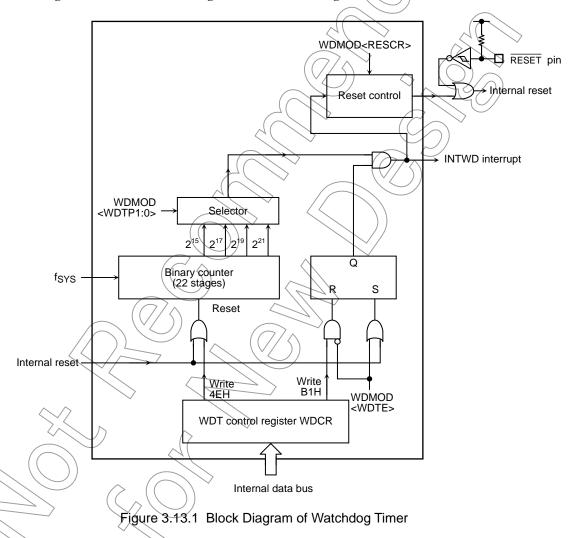
Disable INTAD.

Set pins ANO to AN2 to be the analog input channels. Start conversion in channel scan repeat conversion mode.



# 3.13 Watchdog Timer (Runaway detection timer)

The TMP92CY23/CD23A contains a watchdog timer of runaway detecting.


The watchdog timer (WDT) is used to return the CPU to the normal state when it detects that the CPU has started to malfunction (runaway) due to causes such as noise. When the watchdog timer detects a malfunction, it generates a non-maskable interrupt INTWD to notify the CPU of the malfunction.

Connecting the watchdog timer output to the reset pin internally forces a reset.

(The level of external  $\overline{RESET}$  pin is not changed.)

# 3.13.1 Configuration

Figure 3.13.1 is a block diagram of the watchdog timer (WDF).



Note: Care must be exercised in the overall design of the apparatus since the watchdog timer may fail to function correctly due to external noise, etc.

## 3.13.2 Operation

The watchdog timer generates an INTWD interrupt when the detection time set in the WDMOD<WDTP1:0> has elapsed. The watchdog timer must be cleared "0" in software before an INTWD interrupt will be generated. If the CPU malfunctions (e.g., if runaway occurs) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter will overflow and an INTWD interrupt will be generated. The CPU will detect malfunction (runaway) due to the INTWD interrupt and in this case it is possible to return to the CPU to normal operation by means of an anti-malfunction program.

The watchdog timer begins operating immediately on release of the watchdog timer reset.

The watchdog timer is halted in IDLE1 or STOP mode.

When the device is in IDLE2 mode, the operation of WDT depends on the WDMOD<I2WDT> setting. Ensure that WDMOD<I2WDT> is set before the device enters IDLE2 mode.

The watchdog timer consists of a 22-stage binary counter which uses the clock fsys as the input clock. The binary counter can output 2<sup>15</sup>/fsys, 2<sup>17</sup>/fsys, 2<sup>19</sup>/fsys and 2<sup>21</sup>/fsys.

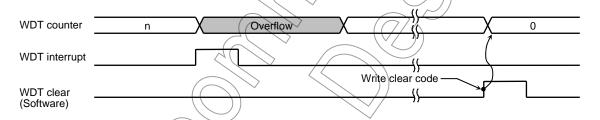



Figure 3.13.2 Normal Mode

The runaway detection result can also be connected to the reset pin internally.

In this case, the reset time will be between 22 and 29 system clocks (70.4 to 92.8  $\mu$ s at fosch = 10 MHz) as shown in Figure 3.13.3. After a reset, the fsys clock is ffpH/2, where ffpH is generated by dividing the high speed oscillator clock (fosch) by sixteen through the clock gear function

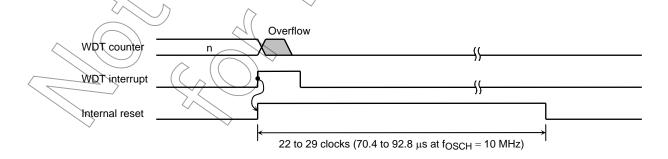



Figure 3.13.3 Reset Mode

92CY23-297

## 3.13.3 Control Registers

The watchdog timer (WDT) is controlled by two control registers WDMOD and WDCR.

- (1) Watchdog timer mode register (WDMOD)
  - 1. Setting the detection time for the watchdog timer in <WDTP1:0>

This 2-bit register is used for setting the watchdog timer interrupt time used when detecting runaway.

On a reset this register is initialized to WDMOD<WDTP1:0>= "00".

The detection time for WDT is 215/fSYS [s].

2. Watchdog timer enable/disable control register < WDTE>

At reset, the WDMOD<WDTE> is initialized to "1", enabling the watchdog timer.

To disable the watchdog timer, it is necessary to set this bit to "0" and to write the disable code (B1H) to the watchdog timer control register (WDCR). This makes it difficult for the watchdog timer to be disabled by runaway.

However, it is possible to return the watchdog timer from the disabled state to the enabled state merely by setting <WDTE> to "1".

3. Watchdog timer out reset connection <RESCR>

This register is used to connect the output of the watchdog timer with the RESET terminal internally. Since WDMOD<RESCR> is initialized to "0" at reset, a reset by the watchdog timer will not be performed.

(2) Watchdog timer control register (WDCR)

This register is used to disable and clear the binary/counter for the watchdog timer.

• Disable control

The watchdog timer can be disabled by clearing WDMOD<WDTE> to "0" and then writing the disable code (B1H) to the WDCR register.

Enable control

Set WDMOD<WDTE> to "1"

Watchdog timer clear control

To clear the binary counter and cause counting to resume, write the clear code (4EH) to the WDCR register.

WDCR  $(\leftarrow 0)$  1 0 0 1 1 1 0 Write the clear code (4EH).

Note1: If the disable control is used, set the disable code (B1H) to WDCR after writing the clear code (4EH) once. (Please refer to setting example.)

Note2: If the watchdog timer setting is changed, change setting after setting to disable condition once.

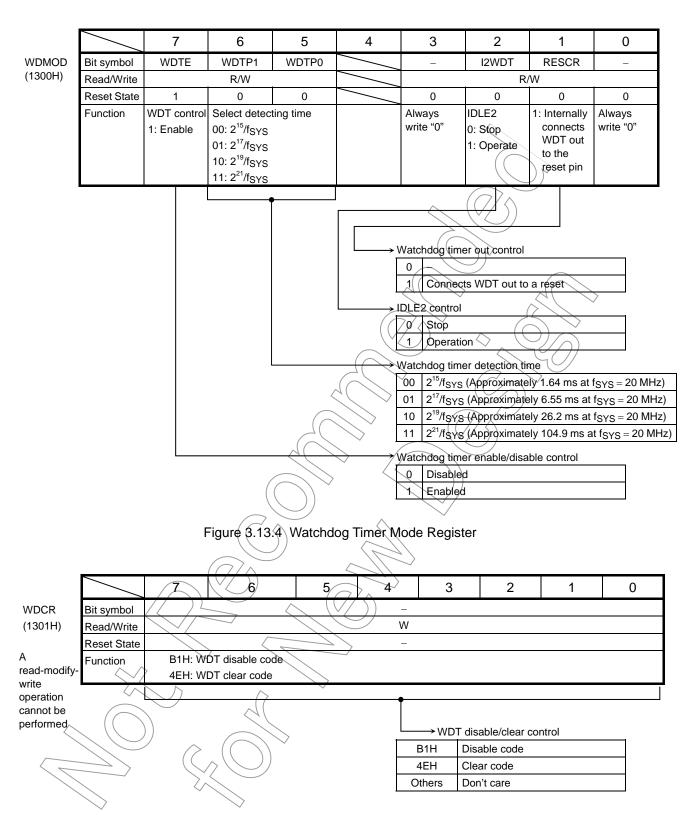



Figure 3.13.5 Watchdog Timer Control Register

# 3.14 Special timer for CLOCK

The TMP92CY23/CD23A includes a timer which is used for a clock operation.

An interrupt (INTRTC) can be generated each 0.0625[s] or 0.125[s] or 0.25[s] or 0.50[s] by using a low-frequency clock of 32.768 kHz. A clock function can be easily used.

Special timer for Clock can operate in all modes in which a low-frequency oscillation is operated. In addition, INTRTC can return from each standby mode except STOP mode.

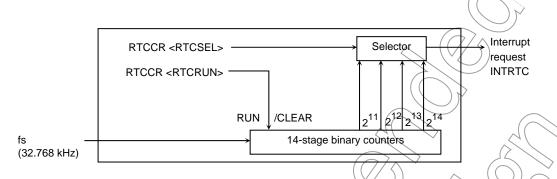



Figure 3.14.1 Block Diagram for Special timer for CLOCK

The Special timer for CLOCK is controlled by Special timer for CLOCK control register (RTCCR).

Figure 3.14.2 shows the timer for real time clock control register,

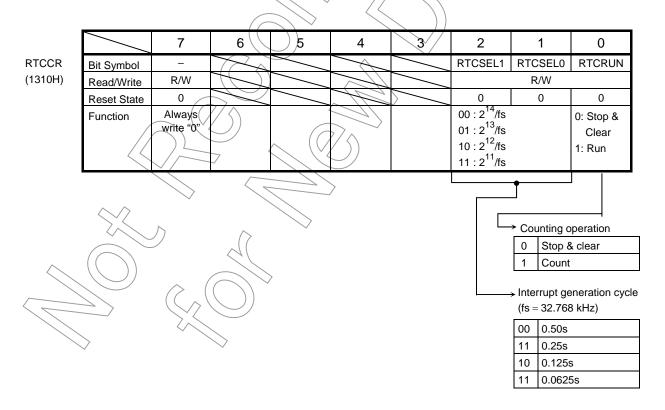



Figure 3.14.2 Register for Special timer for CLOCK

# 3.15 Program patch logic

The TMP92CY23/CD23A has a program patch logic, which enables the user to fix the program code in the Internal ROM. Patch program must be read into Internal RAM from external memory during the startup routine.

Up to eight 4-byte sequences or banks (32-bytes in total) can be replaced with patch code. More significant code correction can be performed by replacing program code with 1-byte instruction code which generates a software interrupt (SWI) to make a branch to a specified location in the Internal RAM area.

The program patch logic only compares addresses in the Internal ROM area; it cannot fix the program code in the Internal peripheral, Internal RAM and external ROM areas.

Each of eight banks is independently programmable, and functionally equivalent. In the following sections, any references to bank0 also apply to other banks.

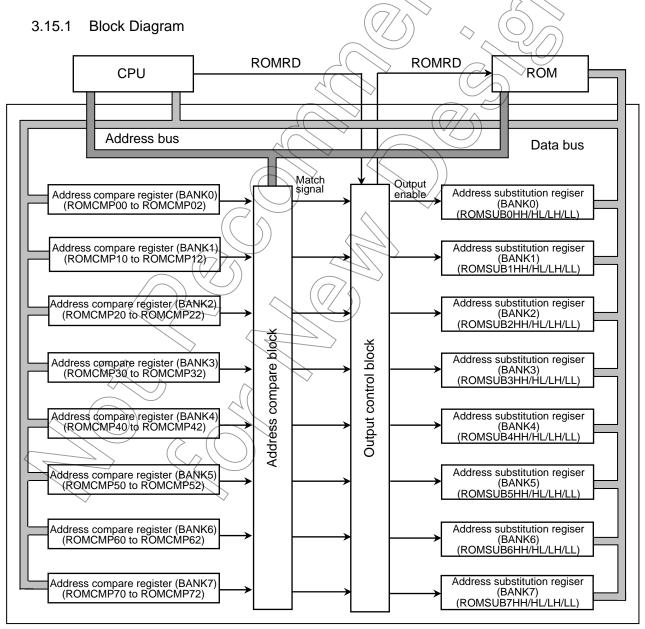



Figure 3.15.1 Program Patch Logic Diagram

Note: Don't set the same value to an address compare register (Bank0 to 7).

#### 3.15.2 **SFR Descriptions**

The program patch logic consists of eight banks (0 to 7). Each bank is provided with 3-bytes of address compare registers (ROMCMP00 to ROMCMP72) and 4-bytes of address substitution registers (ROMSUBLL, ROMSUBLH, ROMSUBHL and ROMSUBHH).

ROMCMP00 (1400H)

|             |        | -,     |        | <u> </u> |        |                                        |   |   |
|-------------|--------|--------|--------|----------|--------|----------------------------------------|---|---|
|             | 7      | 6      | 5      | 4        | 3      | 2                                      | 1 | 0 |
| Bit symbol  | ROMC07 | ROMC06 | ROMC05 | ROMC04   | ROMC03 | ROMC02                                 |   |   |
| Read/Write  |        |        |        |          |        |                                        |   |   |
| Reset State | 0      | 0      | 0      | 0        | ~ 0 (( | 7/ <o\< td=""><td></td><td></td></o\<> |   |   |
| Function    |        | Targ   |        |          |        |                                        |   |   |

BANKO Address Compare Register

BANKO Address Compare Register 0

ROMCMP01 (1401H)

|             | BAINTO Address Compare Register 1 |                                    |        |               |               |        |  |  |  |  |  |  |  |
|-------------|-----------------------------------|------------------------------------|--------|---------------|---------------|--------|--|--|--|--|--|--|--|
|             | 7                                 | 6                                  | 5      | 4 3           | 2 1           | 0      |  |  |  |  |  |  |  |
| Bit symbol  | ROMC15                            | ROMC14                             | ROMC13 | ROMC12 ROMC11 | ROMC10 ROMC09 | ROMC08 |  |  |  |  |  |  |  |
| Read/Write  |                                   |                                    |        | (V/w)         | 5 (0)         |        |  |  |  |  |  |  |  |
| Reset State | 0                                 | 0                                  | 0 /    | 0 0           | (a)           | 0      |  |  |  |  |  |  |  |
| Function    |                                   |                                    |        |               |               |        |  |  |  |  |  |  |  |
|             |                                   | Target ROM address (Middle 8 bits) |        |               |               |        |  |  |  |  |  |  |  |
|             |                                   |                                    | $\sim$ |               |               |        |  |  |  |  |  |  |  |

BANKO Address Compare Register 2

ROMCMP02 (1402H)

|             |        | 27 til 11 to 7 talan 250 0 0 0    | 17     | 1 ///  |        |        |        |  |  |
|-------------|--------|-----------------------------------|--------|--------|--------|--------|--------|--|--|
|             | 7      | 6 5                               | 4      | 3      | / 2    | 1      | 0      |  |  |
| Bit symbol  | ROMC23 | ROMC22 ROMC21                     | ROMC20 | ROMC19 | ROMC18 | ROMC17 | ROMC16 |  |  |
| Read/Write  |        |                                   | M      | K ))   |        |        |        |  |  |
| Reset State | 0      | 0 0                               | 0      | 0      | 0      | 0      | 0      |  |  |
| Function    |        | Target ROM address (Upper 8 bits) |        |        |        |        |        |  |  |

Note 1: A read-modify-write operation cannot be performed in ROMCMP00, ROMCMP01 and ROMCMP02 registers.

Note 2: The 0 and 1 of ROMCMP00 are read as underfined values.

Figure 3.15.2 Address Compare Registers (Bank0)

BANK1 Address Compare Register 0

ROMCMP10 (1408H)

|   |             | 7      | 6      | 5      | 4      | 3      | 2      | 1 | 0 |
|---|-------------|--------|--------|--------|--------|--------|--------|---|---|
| ) | Bit symbol  | ROMC07 | ROMC06 | ROMC05 | ROMC04 | ROMC03 | ROMC02 |   |   |
|   | Read/Write  |        |        |        |        |        |        |   |   |
|   | Reset State | 0      | 0      | 0      | 0      | 0      | 0      |   |   |
|   | Function    |        | Targ   |        |        |        |        |   |   |

BANK1 Address Compare Register 1

ROMCMP11 (1409H)

| 7                                  | 6           | 5                     | 4                           | 3 (                                    | 7/2                                                                                | 1                                                   | 0                                                            |  |
|------------------------------------|-------------|-----------------------|-----------------------------|----------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|--|
| ROMC15                             | ROMC14      | ROMC13                | ROMC12                      | RQMC11                                 | ROMC10                                                                             | ROMC09                                              | ROMC08                                                       |  |
|                                    | W           |                       |                             |                                        |                                                                                    |                                                     |                                                              |  |
| 0                                  | 0           | 0                     | 0                           | ( Q )                                  |                                                                                    | 0                                                   | 0                                                            |  |
| Target ROM address (Middle 8 bits) |             |                       |                             |                                        |                                                                                    |                                                     |                                                              |  |
|                                    | 7<br>ROMC15 | 7 6 ROMC15 ROMC14 0 0 | ROMC15 ROMC14 ROMC13  0 0 0 | ROMC15 ROMC14 ROMC13 ROMC12  0 0 0 0 0 | ROMC15   ROMC14   ROMC13   ROMC12   ROMC11   W   O   O   O   O   O   O   O   O   O | ROMC15   ROMC14   ROMC13   ROMC12   ROMC10   ROMC10 | ROMC15   ROMC14   ROMC13   ROMC12   ROMC11   ROMC10   ROMC09 |  |

BANK1 Address Compare Register 2

ROMCMP12 (140AH)

|             | 7      | 6                                 | 5             |        | <b>3</b> | 2 7    | <u>//1</u> ) | 0      |  |  |
|-------------|--------|-----------------------------------|---------------|--------|----------|--------|--------------|--------|--|--|
| Bit symbol  | ROMC23 | ROMC22                            | ROMC21        | ROMC20 | ROMC19   | ROMC18 | RØMC17       | ROMC16 |  |  |
| Read/Write  |        |                                   | $\mathcal{A}$ | \\     | v (      |        |              |        |  |  |
| Reset State | 0      | 0                                 | 0             | 0      | 0 (      |        | 0            | 0      |  |  |
| Function    |        | Target ROM address (Upper 8 bits) |               |        |          |        |              |        |  |  |

Note 1: A read-modify-write operation cannot be performed in ROMCMP10, ROMCMP11 and ROMCMP12 registers.

Note 2: The 0 and 1 of ROMCMP10 are read as underfined values.

Figure 3 15.3 Address Compare Registers (Bank1)

BANK2 Address Compare Register 0

ROMCMP20 (1410H)

|             | 7      | 6      | 5      | 4      | 3      | 2      | 1 | 0 |
|-------------|--------|--------|--------|--------|--------|--------|---|---|
| Bit symbol  | ROMC07 | ROMC06 | ROMC05 | ROMC04 | ROMC03 | ROMC02 |   |   |
| Read/Write  |        | _      |        |        |        |        |   |   |
| Reset State | 0      | 0      | 0      | 0      | 0      | 0      |   |   |
| Function    |        | Targ   |        |        |        |        |   |   |

BANK2 Address Compare Register 1

ROMCMP21 (1411H)

|   |             | 7                                  | 6      | 5      | 4      | 3 (    | 7)/2   | 1      | 0      |  |  |  |
|---|-------------|------------------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
| 1 | Bit symbol  | ROMC15                             | ROMC14 | ROMC13 | ROMC12 | ROMC11 | ROMC10 | ROMC09 | ROMC08 |  |  |  |
|   | Read/Write  |                                    | W      |        |        |        |        |        |        |  |  |  |
|   | Reset State | 0                                  | 0      | 0      | 0      | ( Q )  | > 0    | 0      | 0      |  |  |  |
|   | Function    | Target ROM address (Middle 8 bits) |        |        |        |        |        |        |        |  |  |  |

BANK2 Address Compare Register 2

ROMCMP22 (1412H)

|             | 7                                 | 6      | 5      | 4      | 3      | 27     | //]1)  | 0      |  |  |  |
|-------------|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
| Bit symbol  | ROMC23                            | ROMC22 | ROMC21 | ROMC20 | ROMC19 | ROMC18 | RØMC17 | ROMC16 |  |  |  |
| Read/Write  |                                   | W (()  |        |        |        |        |        |        |  |  |  |
| Reset State | 0                                 | 0      | 0      | 0      | 0 (    |        | 0      | 0      |  |  |  |
| Function    | Target ROM address (Upper 8 bits) |        |        |        |        |        |        |        |  |  |  |

Note 1: A read-modify-write operation cannot be performed in ROMCMP20, ROMCMP21 and ROMCMP22 registers.

Note 2: The 0 and 1 of ROMCMP20 are read as underfined values.

Figure 3 15.4 Address Compare Registers (Bank2)

BANK3 Address Compare Register 0

ROMCMP30 (1418H)

|             | 7      | 6      | 5      | 4      | 3      | 2      | 1 | 0 |
|-------------|--------|--------|--------|--------|--------|--------|---|---|
| Bit symbol  | ROMC07 | ROMC06 | ROMC05 | ROMC04 | ROMC03 | ROMC02 |   |   |
| Read/Write  |        |        |        |        |        |        |   |   |
| Reset State | 0      | 0      | 0      | 0      | 0      | 0      |   |   |
| Function    |        | Targe  |        |        |        |        |   |   |

BANK3 Address Compare Register 1

ROMCMP31 (1419H)

|             | 7                                  | 6       | 5      | 4      | ⟨3,    | (\( \big( 2 \) \) | 1      | 0      |  |  |  |
|-------------|------------------------------------|---------|--------|--------|--------|-------------------|--------|--------|--|--|--|
| Bit symbol  | ROMC15                             | ROMC14  | ROMC13 | ROMC12 | ROMC11 | ROMC10            | ROMC09 | ROMC08 |  |  |  |
| Read/Write  |                                    | w (( )> |        |        |        |                   |        |        |  |  |  |
| Reset State | 0                                  | 0       | 0      | 0      | 0      | 0                 | 0      | 0      |  |  |  |
| Function    | Target ROM address (Middle 8 bits) |         |        |        |        |                   |        |        |  |  |  |

BANK3 Address Compare Register 2

ROMCMP32 (141AH)

|             | 7                                 | 6      | 5      | 4      | 3      | 2                  | J.     | 0      |  |  |  |
|-------------|-----------------------------------|--------|--------|--------|--------|--------------------|--------|--------|--|--|--|
| Bit symbol  | ROMC23                            | ROMC22 | ROMÇ21 | ROMC20 | ROMC19 | ROMC18             | ROMC17 | ROMC16 |  |  |  |
| Read/Write  |                                   | W      |        |        |        |                    |        |        |  |  |  |
| Reset State | 0                                 | 0      | 0      | > 0    | 0      | $\rangle \wedge 0$ | 0      | 0      |  |  |  |
| Function    | Target ROM address (Upper 8 bits) |        |        |        |        |                    |        |        |  |  |  |

Note 1: A read-modify-write operation cannot be performed in RQMCMP30, RQMCMP31 and RQMCMP32 registers. Note 2: The 0 and 1 of RQMCMP30 are read as underfined values.

Figure 3 15.5 Address Compare Registers (Bank3)



BANK4 Address Compare Register 0

ROMCMP40 (1420H)

|             | 7      | 6      | 5      | 4      | 3      | 2      | 1 | 0 |
|-------------|--------|--------|--------|--------|--------|--------|---|---|
| Bit symbol  | ROMC07 | ROMC06 | ROMC05 | ROMC04 | ROMC03 | ROMC02 |   |   |
| Read/Write  |        |        |        |        |        |        |   |   |
| Reset State | 0      | 0      | 0      | 0      | 0      | 0      |   |   |
| Function    |        | Targe  |        |        |        |        |   |   |

BANK4 Address Compare Register 1

ROMCMP41 (1421H)

|             | 7      | 6                                  | 5      | 4      | ⟨3, (  | (\( \big( 2 \) \) | 1      | 0      |  |  |  |
|-------------|--------|------------------------------------|--------|--------|--------|-------------------|--------|--------|--|--|--|
| Bit symbol  | ROMC15 | ROMC14                             | ROMC13 | ROMC12 | ROMC11 | ROMC10            | ROMC09 | ROMC08 |  |  |  |
| Read/Write  |        | w (\)                              |        |        |        |                   |        |        |  |  |  |
| Reset State | 0      | 0                                  | 0      | 0      | 0      | 0                 | 0      | 0      |  |  |  |
| Function    |        | Target ROM address (Middle 8 bits) |        |        |        |                   |        |        |  |  |  |

BANK4 Address Compare Register 2

ROMCMP42 (1422H)

|             | 7      | 6                                 | 5      | 4      | 3      | 2                  | (4)    | 0      |  |  |  |
|-------------|--------|-----------------------------------|--------|--------|--------|--------------------|--------|--------|--|--|--|
| Bit symbol  | ROMC23 | ROMC22                            | ROMÇ21 | ROMC20 | ROMC19 | ROMC18             | ROMC17 | ROMC16 |  |  |  |
| Read/Write  |        | W                                 |        |        |        |                    |        |        |  |  |  |
| Reset State | 0      | 0                                 | 0      | > 0    | 0      | $\rangle \wedge 0$ | 0      | 0      |  |  |  |
| Function    |        | Target ROM address (Upper 8 bits) |        |        |        |                    |        |        |  |  |  |

Note 1: A read-modify-write operation cannot be performed in RQMCMP40, RQMCMP41 and RQMCMP42 registers. Note 2: The 0 and 1 of RQMCMP40 are read as underfined values.

Figure 3.15.6 Address Compare Registers (Bank4)

BANK5 Address Compare Register 0

ROMCMP50 (1428H)

|   |             | 7      | 6      | 5      | 4      | 3      | 2      | 1 | 0 |
|---|-------------|--------|--------|--------|--------|--------|--------|---|---|
| 0 | Bit symbol  | ROMC07 | ROMC06 | ROMC05 | ROMC04 | ROMC03 | ROMC02 |   |   |
|   | Read/Write  |        |        |        |        |        |        |   |   |
|   | Reset State | 0      | 0      | 0      | 0      | 0      | 0      |   |   |
|   | Function    |        | Targe  |        |        |        |        |   |   |

BANK5 Address Compare Register 1

ROMCMP51 (1429H)

|             | 7      | 6                                  | 5      | 4      | 3      | $\bigcirc 2 \bigcirc$ | 1      | 0      |  |  |  |
|-------------|--------|------------------------------------|--------|--------|--------|-----------------------|--------|--------|--|--|--|
| Bit symbol  | ROMC15 | ROMC14                             | ROMC13 | ROMC12 | ROMC11 | ROMe10                | ROMC09 | ROMC08 |  |  |  |
| Read/Write  |        | W                                  |        |        |        |                       |        |        |  |  |  |
| Reset State | 0      | 0                                  | 0      | 0      | 9      | $\rangle \rangle_0$   | 0      | 0      |  |  |  |
| Function    |        | Target ROM address (Middle 8 bits) |        |        |        |                       |        |        |  |  |  |

BANK5 Address Compare Register 2

ROMCMP52 (142AH)

|   |             | 7                                 | 6      | 5      | 4      | // 3   | 2      | ~(1))  | 0      |  |  |
|---|-------------|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|
| 2 | Bit symbol  | ROMC23                            | ROMC22 | ROMC21 | ROMC20 | ROMC19 | ROMC18 | ROME17 | ROMC16 |  |  |
|   | Read/Write  |                                   | w (Co  |        |        |        |        |        |        |  |  |
|   | Reset State | 0                                 | 0      | 0      | O      | 0      |        | 0      | 0      |  |  |
|   | Function    | Target ROM address (Upper 8 bits) |        |        |        |        |        |        |        |  |  |

Note 1: A read-modify-write operation cannot be performed in ROMCMP50, ROMCMP51 and ROMCMP52 registers.

Note 2: The 0 and 1 of ROMCMP50 are read as underfined values.

Figure 3,15.7 Address Compare Registers (Bank5)



BANK6 Address Compare Register 0

ROMCMP60 (1430H)

|   |             | 7      | 6      | 5      | 4      | 3      | 2      | 1 | 0 |
|---|-------------|--------|--------|--------|--------|--------|--------|---|---|
| 0 | Bit symbol  | ROMC07 | ROMC06 | ROMC05 | ROMC04 | ROMC03 | ROMC02 |   |   |
|   | Read/Write  |        |        |        |        |        |        |   |   |
|   | Reset State | 0      | 0      | 0      | 0      | 0      | 0      |   |   |
|   | Function    |        | Targe  |        |        |        |        |   |   |

BANK6 Address Compare Register 1

ROMCMP61 (1431H)

|             | 7      | 6                                  | 5      | 4      | 3      | $\bigcirc 2 \bigcirc$ | 1      | 0      |  |  |  |
|-------------|--------|------------------------------------|--------|--------|--------|-----------------------|--------|--------|--|--|--|
| Bit symbol  | ROMC15 | ROMC14                             | ROMC13 | ROMC12 | ROMC11 | ROMe10                | ROMC09 | ROMC08 |  |  |  |
| Read/Write  |        | W                                  |        |        |        |                       |        |        |  |  |  |
| Reset State | 0      | 0                                  | 0      | 0      | 9      | $\rangle \rangle_0$   | 0      | 0      |  |  |  |
| Function    |        | Target ROM address (Middle 8 bits) |        |        |        |                       |        |        |  |  |  |

BANK6 Address Compare Register 2

ROMCMP62 (1432H)

|             | 7      | 6                                 | 5      | 4      | // 3   | 2      | 7/1/)  | 0      |  |  |
|-------------|--------|-----------------------------------|--------|--------|--------|--------|--------|--------|--|--|
| Bit symbol  | ROMC23 | ROMC22                            | ROMC21 | ROMC20 | ROMC19 | ROMC18 | ROMC17 | ROMC16 |  |  |
| Read/Write  |        |                                   | 40     | \\ \ \ | V      |        |        |        |  |  |
| Reset State | 0      | 0                                 | 0      | O      | 0      |        | 0      | 0      |  |  |
| Function    |        | Target ROM address (Upper 8 bits) |        |        |        |        |        |        |  |  |

Note 1: A read-modify-write operation cannot be performed in ROMCMP60, ROMCMP61 and ROMCMP62 registers.

Note 2: The 0 and 1 of ROMCMP60 are read as underfined values.

Figure 3.15.8 Address Compare Registers (Bank6)



BANK7 Address Compare Register 0

ROMCMP70 (1438H)

|   |             | 7      | 6      | 5      | 4      | 3      | 2      | 1 | 0 |
|---|-------------|--------|--------|--------|--------|--------|--------|---|---|
| 0 | Bit symbol  | ROMC07 | ROMC06 | ROMC05 | ROMC04 | ROMC03 | ROMC02 |   |   |
|   | Read/Write  |        |        |        |        |        |        |   |   |
|   | Reset State | 0      | 0      | 0      |        |        |        |   |   |
|   | Function    |        | Targe  |        |        |        |        |   |   |

BANK7 Address Compare Register 1

ROMCMP71 (1439H)

|             | 7      | 6                                  | 5      | 4      | 3      | $\bigcirc 2 \bigcirc$ | 1      | 0      |  |  |  |
|-------------|--------|------------------------------------|--------|--------|--------|-----------------------|--------|--------|--|--|--|
| Bit symbol  | ROMC15 | ROMC14                             | ROMC13 | ROMC12 | ROMC11 | ROMe10                | ROMC09 | ROMC08 |  |  |  |
| Read/Write  |        | W                                  |        |        |        |                       |        |        |  |  |  |
| Reset State | 0      | 0 0 0 0 0 0 0                      |        |        |        |                       |        |        |  |  |  |
| Function    |        | Target ROM address (Middle 8 bits) |        |        |        |                       |        |        |  |  |  |

BANK7 Address Compare Register 2

ROMCMP72 (143AH)

|   |             | 7      | 6                                 | 5      | 4      | // 3   | 2      | ~(1))  | 0      |  |  |
|---|-------------|--------|-----------------------------------|--------|--------|--------|--------|--------|--------|--|--|
| 2 | Bit symbol  | ROMC23 | ROMC22                            | ROMC21 | ROMC20 | ROMC19 | ROMC18 | ROME17 | ROMC16 |  |  |
|   | Read/Write  |        | w (C)                             |        |        |        |        |        |        |  |  |
|   | Reset State | 0      | 0                                 | 0      | O      | 0      |        | 0      | 0      |  |  |
|   | Function    |        | Target ROM address (Upper 8 bits) |        |        |        |        |        |        |  |  |

Note 1: A read-modify-write operation cannot be performed in ROMCMP70, ROMCMP71 and ROMCMP72 registers.

Note 2: The 0 and 1 of ROMCMP70 are read as underfined values.

Figure 3.15.9 Address Compare Registers (Bank7)



BANKO Address substitution Register LL

ROMSUB0LL (1404H)

|             | 7      | 6                         | 5      | 4      | 3      | 2      | 1      | 0      |  |  |  |
|-------------|--------|---------------------------|--------|--------|--------|--------|--------|--------|--|--|--|
| Bit symbol  | ROMS07 | ROMS06                    | ROMS05 | ROMS04 | ROMS03 | ROMS02 | ROMS01 | ROMS00 |  |  |  |
| Read/Write  |        | W                         |        |        |        |        |        |        |  |  |  |
| Reset State | 0      | 0                         | 0      | 0      | 0      |        | 0      | 0      |  |  |  |
| Function    |        | Patch code (Lower 8 bits) |        |        |        |        |        |        |  |  |  |

BANK0 Address substitution Register LH /

ROMSUB0LH (1405H)

|             |        | 9 11/// |        |            |               |              |        |        |  |  |  |
|-------------|--------|---------|--------|------------|---------------|--------------|--------|--------|--|--|--|
|             | 7      | 6       | 5      | 4          | 3             | <u></u>      | 1      | 0      |  |  |  |
| Bit symbol  | ROMS15 | ROMS14  | ROMS13 | ROMS12     | ROMS11        | ROMS10       | ROMS09 | ROMS08 |  |  |  |
| Read/Write  |        | w (\)   |        |            |               |              |        |        |  |  |  |
| Reset State | 0      | 0       | 0      | 0 /        |               | 0            | 9      | 0      |  |  |  |
| Function    |        |         |        | Patch code | Upper 8 bits) | <i>\( \)</i> |        |        |  |  |  |

BANKO Address substitution Register HL

ROMSUB0HL (1406H)

|             | DAINTO Address substitution register HE |                           |        |        |        |              |        |        |  |  |  |
|-------------|-----------------------------------------|---------------------------|--------|--------|--------|--------------|--------|--------|--|--|--|
|             | 7                                       | 6                         | 5      | 4      | 3      | 2            | 1      | 0      |  |  |  |
| Bit symbol  | ROMS23                                  | ROMS22                    | ROMS21 | ROMS20 | ROMS19 | ROM\$18      | ROMS17 | ROMS16 |  |  |  |
| Read/Write  |                                         | W                         |        |        |        |              |        |        |  |  |  |
| Reset State | 0                                       | 0                         | (0)    | 0      | 6(7/   | $\bigcirc$ 0 | 0      | 0      |  |  |  |
| Function    |                                         | Patch code (Lower 8 bits) |        |        |        |              |        |        |  |  |  |

BANKO Address substitution Register HH

ROMSUB0HH (1407H)

|             | 7                         | 6      | 5      | <b>~</b> 4 | 3      | 2      | 1      | 0      |  |
|-------------|---------------------------|--------|--------|------------|--------|--------|--------|--------|--|
| Bit symbol  | ROMS31                    | ROMS30 | ROMS29 | ROM\$28    | ROMS27 | ROMS26 | ROMS25 | ROMS24 |  |
| Read/Write  |                           | >      | W      |            |        |        |        |        |  |
| Reset State | 0 (//                     | ( ) o  | 0      | 70/        | 0      | 0      | 0      | 0      |  |
| Function    | Patch code (Upper 8 bits) |        |        |            |        |        |        |        |  |

Note: A read-modify-write operation cannot be performed in ROMSUB0LL, ROMSUB0LH, ROMSUB0HL and ROMSUB0HH registers.

Figure 3.15.10 Address Substitution Registers (Bank 0)

BANK1 Address substitution Register LL

ROMSUB1LL (140CH)

|             | = · · · · · · · · · · · · · · · · · · · |                           |        |        |        |        |        |        |  |  |  |
|-------------|-----------------------------------------|---------------------------|--------|--------|--------|--------|--------|--------|--|--|--|
|             | 7                                       | 6                         | 5      | 4      | 3      | 2      | 1      | 0      |  |  |  |
| Bit symbol  | ROMS07                                  | ROMS06                    | ROMS05 | ROMS04 | ROMS03 | ROMS02 | ROMS01 | ROMS00 |  |  |  |
| Read/Write  |                                         | W                         |        |        |        |        |        |        |  |  |  |
| Reset State | 0                                       | 0 0 0 0 0 0 0 0           |        |        |        |        |        |        |  |  |  |
| Function    |                                         | Patch code (Lower 8 bits) |        |        |        |        |        |        |  |  |  |

BANK1 Address substitution Register LH

ROMSUB1LH (140DH)

|             |        | 9 11/// |        |            |               |              |        |        |  |  |  |
|-------------|--------|---------|--------|------------|---------------|--------------|--------|--------|--|--|--|
|             | 7      | 6       | 5      | 4          | 3             | <u></u>      | 1      | 0      |  |  |  |
| Bit symbol  | ROMS15 | ROMS14  | ROMS13 | ROMS12     | ROMS11        | ROMS10       | ROMS09 | ROMS08 |  |  |  |
| Read/Write  |        | w (\)   |        |            |               |              |        |        |  |  |  |
| Reset State | 0      | 0       | 0      | 0 /        |               | 0            | 9      | 0      |  |  |  |
| Function    |        |         |        | Patch code | Upper 8 bits) | <i>\( \)</i> |        |        |  |  |  |

BANK1 Address substitution Register HL

ROMSUB1HL (140EH)

|             | 7      | 6                         | 5      | 4      | 3      | 2       | 1      | 0      |  |  |  |
|-------------|--------|---------------------------|--------|--------|--------|---------|--------|--------|--|--|--|
| Bit symbol  | ROMS23 | ROMS22                    | ROMS21 | ROMS20 | ROMS19 | ROM\$18 | ROMS17 | ROMS16 |  |  |  |
| Read/Write  |        | W                         |        |        |        |         |        |        |  |  |  |
| Reset State | 0      | 0 0 0 0 0 0 0 0           |        |        |        |         |        |        |  |  |  |
| Function    |        | Patch code (Lower 8 bits) |        |        |        |         |        |        |  |  |  |

BANK1 Address substitution Register HH

ROMSUB1HH (140FH)

|             | 7      | 6                         | 5      | ⟨4      | 3      | 2      | 1      | 0      |  |
|-------------|--------|---------------------------|--------|---------|--------|--------|--------|--------|--|
| Bit symbol  | ROMS31 | ROMS30                    | ROMS29 | ROM\$28 | ROMS27 | ROMS26 | ROMS25 | ROMS24 |  |
| Read/Write  |        | >                         | W      |         |        |        |        |        |  |
| Reset State | 0 (//  | ( ) o                     | 0      | 70/     | 0      | 0      | 0      | 0      |  |
| Function    |        | Patch code (Upper 8 bits) |        |         |        |        |        |        |  |

Note: A read-modify-write operation cannot be performed in ROMSUB1LL, ROMSUB1LH, ROMSUB1HL and ROMSUB1HH registers.

Figure 3.15.11 (Address Substitution Registers (Bank 1)

BANK2 Address substitution Register LL

ROMSUB2LL (1414H)

|             | 7      | 6                         | 5      | 4      | 3      | 2      | 1      | 0      |  |  |  |
|-------------|--------|---------------------------|--------|--------|--------|--------|--------|--------|--|--|--|
| Bit symbol  | ROMS07 | ROMS06                    | ROMS05 | ROMS04 | ROMS03 | ROMS02 | ROMS01 | ROMS00 |  |  |  |
| Read/Write  |        | W                         |        |        |        |        |        |        |  |  |  |
| Reset State | 0      | 0 0 0 0 0 0 0             |        |        |        |        |        |        |  |  |  |
| Function    |        | Patch code (Lower 8 bits) |        |        |        |        |        |        |  |  |  |

BANK2 Address substitution Register LH /

ROMSUB2LH (1415H)

| = 1         |        |         |        |              |               |            |        |        |  |  |  |
|-------------|--------|---------|--------|--------------|---------------|------------|--------|--------|--|--|--|
|             | 7      | 6       | 5      | 4            | ⟨3 (          | ( )2       | 1      | 0      |  |  |  |
| Bit symbol  | ROMS15 | ROMS14  | ROMS13 | ROMS12       | ROMS11        | ROMS10     | ROMS09 | ROMS08 |  |  |  |
| Read/Write  |        | w (( )> |        |              |               |            |        |        |  |  |  |
| Reset State | 0      | 0       | 0      | 0 /          |               | 0          | 0      | 0      |  |  |  |
| Function    |        |         |        | Patch code ( | Upper 8 bits) | _<         |        |        |  |  |  |
|             |        |         |        |              | ,             | $\Diamond$ | \\     |        |  |  |  |

BANK2 Address substitution Register HL

ROMSUB2HL (1416H)

|             | DANNZ Address substitution (Neglister FIL |                           |               |        |                  |                |        |  |  |  |  |
|-------------|-------------------------------------------|---------------------------|---------------|--------|------------------|----------------|--------|--|--|--|--|
|             | 7                                         | 6                         | 5 4           | 3      | 2                | $ \bigcirc 1 $ | 0      |  |  |  |  |
| Bit symbol  | ROMS23                                    | ROMS22                    | ROMS21 ROMS20 | ROMS19 | ROMS18           | ROMS17         | ROMS16 |  |  |  |  |
| Read/Write  |                                           | w                         |               |        |                  |                |        |  |  |  |  |
| Reset State | 0                                         | 0                         | 0 0           | 00     | )<br>\<br>\<br>\ | 0              | 0      |  |  |  |  |
| Function    |                                           | Patch code (Lower 8 bits) |               |        |                  |                |        |  |  |  |  |

BANK2 Address substitution Register HH

ROMSUB2HH (1417H)

|                                    | 7      | 6      | 5      | _4     | <b>3</b> | 2      | 1      | 0      |
|------------------------------------|--------|--------|--------|--------|----------|--------|--------|--------|
| Bit symbol                         | ROMS31 | ROMS30 | ROMS29 | ROMS28 | ROMS27   | ROMS26 | ROMS25 | ROMS24 |
| Read/Write                         |        |        |        | (12)N  | V        |        |        |        |
| Reset State                        | 0( //  | /\\ 0  | 0 <    | 70     | 0        | 0      | 0      | 0      |
| Function Râtch code (Upper 8 bits) |        |        |        |        |          |        |        |        |

Note: A read-modify-write operation cannot be performed in ROMSUB2LL, ROMSUB2LH, ROMSUB2HL and ROMSUB2HH registers.

Figure 3.15.12 Address Substitution Registers (Banks 2)

BANK3 Address substitution Register LL

ROMSUB3LL (141CH)

|             | , and the second |        |        |        |        |        |        |        |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|
|             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      | 5      | 4      | 3      | 2      | 1      | 0      |  |  |
| Bit symbol  | ROMS07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROMS06 | ROMS05 | ROMS04 | ROMS03 | ROMS02 | ROMS01 | ROMS00 |  |  |
| Read/Write  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W      |        |        |        |        |        |        |  |  |
| Reset State | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | 0      | 0      | 0      | 0      | 0      | 0      |  |  |
| Function    | Patch code (Lower 8 bits)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |        |        |        |        |        |  |  |

BANK3 Address substitution Register LH

ROMSUB3LH (141DH)

| - |             |        |                           |        |        |        | _/ / ^ |        |        |  |  |
|---|-------------|--------|---------------------------|--------|--------|--------|--------|--------|--------|--|--|
|   |             | 7      | 6                         | 5      | 4      | ⟨3 (   | (/)2)  | 1      | 0      |  |  |
| ł | Bit symbol  | ROMS15 | ROMS14                    | ROMS13 | ROMS12 | ROMS11 | ROMS10 | ROMS09 | ROMS08 |  |  |
|   | Read/Write  |        | w (( ),>                  |        |        |        |        |        |        |  |  |
|   | Reset State | 0      | 0                         | 0      | 0 /    |        | 0      | 0      | 0      |  |  |
|   | Function    |        | Patch code (Upper 8 bits) |        |        |        |        |        |        |  |  |
|   | Turicuon    |        | Patch code (Upper 8 bits) |        |        |        |        |        |        |  |  |

BANK3 Address substitution Register HL

ROMSUB3HL (141EH)

|             | 27 11 11 10 7 10 10 10 10 10 10 10 10 10 10 10 10 10 |                           |               |        |        |            |        |  |  |  |  |  |
|-------------|------------------------------------------------------|---------------------------|---------------|--------|--------|------------|--------|--|--|--|--|--|
|             | 7                                                    | 6                         | 5 4           | 3      | 2      | $\sqrt{1}$ | 0      |  |  |  |  |  |
| Bit symbol  | ROMS23                                               | ROMS22                    | ROMS21 ROMS20 | ROMS19 | ROMS18 | ROMS17     | ROMS16 |  |  |  |  |  |
| Read/Write  |                                                      | W                         |               |        |        |            |        |  |  |  |  |  |
| Reset State | 0                                                    | 0                         | 0 0           | 00     | )<br>O | 0          | 0      |  |  |  |  |  |
| Function    |                                                      | Patch code (Lower 8 bits) |               |        |        |            |        |  |  |  |  |  |

BANK3 Address substitution Register HH

ROMSUB3HH (141FH)

|             |        |        |        |              | \ \ \ /       |        |        |        |
|-------------|--------|--------|--------|--------------|---------------|--------|--------|--------|
|             | 7      | 6      | 5      | _4           | 3             | 2      | 1      | 0      |
| Bit symbol  | ROMS31 | ROMS30 | ROMS29 | ROMS28       | ROMS27        | ROMS26 | ROMS25 | ROMS24 |
| Read/Write  |        |        |        | (12)N        | ٧             |        | _      | _      |
| Reset State | 0( )   | / \ o  | 0 <    | 70           | 0             | 0      | 0      | 0      |
| Function    |        |        |        | Ratch code ( | Upper 8 bits) |        |        |        |

Note: A read-modify-write operation cannot be performed in ROMSUB3LL, ROMSUB3LH, ROMSUB3HL and ROMSUB3HH registers.

Figure 3.15.13 Address Substitution Registers (Banks 3)

BANK4 Address substitution Register LL

ROMSUB4LL (1424H)

|   |             | 7      | 6                         | 5      | 4      | 3      | 2      | 1      | 0      |  |  |  |
|---|-------------|--------|---------------------------|--------|--------|--------|--------|--------|--------|--|--|--|
| L | Bit symbol  | ROMS07 | ROMS06                    | ROMS05 | ROMS04 | ROMS03 | ROMS02 | ROMS01 | ROMS00 |  |  |  |
|   | Read/Write  |        | W                         |        |        |        |        |        |        |  |  |  |
|   | Reset State | 0      | 0                         | 0      | 0      | 0      | 0      | 0      | 0      |  |  |  |
|   | Function    |        | Patch code (Lower 8 bits) |        |        |        |        |        |        |  |  |  |

BANK4 Address substitution Register LH

ROMSUB4LH (1425H)

|             | 7      | 6                         | 5      | 4      | 3 (    | 7)/2   | 1      | 0      |  |  |
|-------------|--------|---------------------------|--------|--------|--------|--------|--------|--------|--|--|
| Bit symbol  | ROMS15 | ROMS14                    | ROMS13 | ROMS12 | RQMS11 | ROMS10 | ROMS09 | ROMS08 |  |  |
| Read/Write  |        | W                         |        |        |        |        |        |        |  |  |
| Reset State | 0      | 0                         | 0      | 0      | ( Q )  | > 0    | 0      | 0      |  |  |
| Function    |        | Patch code (Upper 8 bits) |        |        |        |        |        |        |  |  |

BANK4 Address substitution Register HL

ROMSUB4HL (1426H)

|             | 7      | 6                         | 5      |         | <b>3</b> | 2 7    | //1)   | 0      |  |
|-------------|--------|---------------------------|--------|---------|----------|--------|--------|--------|--|
| Bit symbol  | ROMS23 | ROMS22                    | ROMS21 | ROM\$20 | ROMS19   | ROMS18 | RØMS17 | ROMS16 |  |
| Read/Write  |        | W                         |        |         |          |        |        |        |  |
| Reset State | 0      | 0                         | 0      | O       | 0        |        | 0      | 0      |  |
| Function    |        | Patch code (Lower 8 bits) |        |         |          |        |        |        |  |

BANK4 Address substitution Register HH

ROMSUB4HH (1427H)

|             | 7                         | 6      | )) 5   | 4      | 3      | 2      | 1      | 0      |
|-------------|---------------------------|--------|--------|--------|--------|--------|--------|--------|
| Bit symbol  | ROMS31                    | ROMS30 | ROMS29 | RØMS28 | ROMS27 | ROMS26 | ROMS25 | ROMS24 |
| Read/Write  | (( )) w                   |        |        |        |        |        |        |        |
| Reset State | 0 _                       |        | 0      | (10)   | 0      | 0      | 0      | 0      |
| Function    | Patch-code (Upper 8 bits) |        |        |        |        |        |        |        |

Note: A read-modify-write operation cannot be performed in ROMSUB4LL, ROMSUB4LH, ROMSUB4HL and ROMSUB4HH registers.

Figure 3.15.14 Address Substitution Registers (Banks 4)

BANK5 Address substitution Register LL

ROMSUB5LL (142CH)

| I |             | 7      | 6                         | 5      | 4      | 3      | 2      | 1      | 0      |  |  |
|---|-------------|--------|---------------------------|--------|--------|--------|--------|--------|--------|--|--|
|   | Bit symbol  | ROMS07 | ROMS06                    | ROMS05 | ROMS04 | ROMS03 | ROMS02 | ROMS01 | ROMS00 |  |  |
|   | Read/Write  |        | W                         |        |        |        |        |        |        |  |  |
|   | Reset State | 0      | 0                         | 0      | 0      | 0      | 0      | 0      | 0      |  |  |
|   | Function    |        | Patch code (Lower 8 bits) |        |        |        |        |        |        |  |  |

BANK5 Address substitution Register LH

ROMSUB5LH (142DH)

|             | 7      | 6      | 5      | 4            | 3 (           | 7)/2   | 1      | 0      |
|-------------|--------|--------|--------|--------------|---------------|--------|--------|--------|
| Bit symbol  | ROMS15 | ROMS14 | ROMS13 | ROMS12       | RQMS11        | ROMS10 | ROMS09 | ROMS08 |
| Read/Write  |        |        |        | V            | V             |        |        |        |
| Reset State | 0      | 0      | 0      | 0            | ( Q )         | > 0    | 0      | 0      |
| Function    |        |        |        | Patch code ( | Upper 8 bits) | ,      |        |        |

BANK5 Address substitution Register HL

ROMSUB5HL (142EH)

|             | 7      | 6      | 5             | 4            | 3             | 2 7    | ///1)  | 0      |
|-------------|--------|--------|---------------|--------------|---------------|--------|--------|--------|
| Bit symbol  | ROMS23 | ROMS22 | ROMS21        | ROM\$20      | ROMS19        | ROMS18 | RØMS17 | ROMS16 |
| Read/Write  |        |        | $\mathcal{A}$ | \\           | v (           |        |        | _      |
| Reset State | 0      | 0      | 0             | 0            | 0             |        | 0      | 0      |
| Function    |        |        |               | Patch code ( | Lower 8 bits) |        |        |        |

BANK5 Address substitution Register HH

ROMSUB5HH (142FH)

|             | 7      | 6          | )) 5   | 4            | /3/           | 2      | 1      | 0      |
|-------------|--------|------------|--------|--------------|---------------|--------|--------|--------|
| Bit symbol  | ROMS31 | ROMS30     | ROMS29 | RØMS28       | ROMS27        | ROMS26 | ROMS25 | ROMS24 |
| Read/Write  |        |            |        | ~ \\ \       | ٧             | _      | _      | _      |
| Reset State | 0 _    | 9          | 0      | 10           | 0             | 0      | 0      | 0      |
| Function    |        | <b>(5)</b> |        | Patch code ( | Upper 8 bits) |        |        |        |

Note: A read-modify-write operation cannot be performed in ROMSUB5LL, ROMSUB5LH, ROMSUB5HL and ROMSUB5HH registers.

Figure 3.15.15 Address Substitution Registers (Banks 5)

BANK6 Address substitution Register LL

ROMSUB6LL (1434H)

| I |             | 7      | 6      | 5      | 4            | 3             | 2      | 1      | 0      |
|---|-------------|--------|--------|--------|--------------|---------------|--------|--------|--------|
| L | Bit symbol  | ROMS07 | ROMS06 | ROMS05 | ROMS04       | ROMS03        | ROMS02 | ROMS01 | ROMS00 |
| I | Read/Write  |        |        |        | V            | V             |        |        |        |
|   | Reset State | 0      | 0      | 0      | 0            | 0             | 0      | 0      | 0      |
|   | Function    |        |        |        | Patch code ( | Lower 8 bits) |        |        |        |

BANK6 Address substitution Register LH

ROMSUB6LH (1435H)

|             | 7      | 6      | 5      | 4            | 3 (           | 7)/2   | 1      | 0      |
|-------------|--------|--------|--------|--------------|---------------|--------|--------|--------|
| Bit symbol  | ROMS15 | ROMS14 | ROMS13 | ROMS12       | RQMS11        | ROMS10 | ROMS09 | ROMS08 |
| Read/Write  |        |        |        | V            | V             |        |        |        |
| Reset State | 0      | 0      | 0      | 0            | ( Q )         | > 0    | 0      | 0      |
| Function    |        |        |        | Patch code ( | Upper 8 bits) | ,      |        |        |

BANK6 Address substitution Register HL

ROMSUB6HL (1436H)

|             |        |        |               | 1. (1. / 7. 9. 9. 1. | 1.1           |          |              |        |
|-------------|--------|--------|---------------|----------------------|---------------|----------|--------------|--------|
|             | 7      | 6      | 5             | <b>A</b>             | <b>/</b> 3    | 2 7      | <u>//1</u> ) | 0      |
| Bit symbol  | ROMS23 | ROMS22 | ROMS21        | ROM\$20              | ROMS19        | ROMS18   | RØMS17       | ROMS16 |
| Read/Write  |        | _      | $\mathcal{A}$ | \\                   | v (           |          |              | -      |
| Reset State | 0      | 0      | 0             | 0                    | 0 (           |          | 0            | 0      |
| Function    |        |        |               | Patch code (         | Lower 8 bits) | <b>)</b> |              |        |

BANK6 Address substitution Register HH

ROMSUB6HH (1437H)

|             |        |           | ` '    |              |               |        |        |        |
|-------------|--------|-----------|--------|--------------|---------------|--------|--------|--------|
|             | 7      | 6         | )) 5   | 4            | 3             | 2      | 1      | 0      |
| Bit symbol  | ROMS31 | ROMS30    | ROMS29 | RØMS28       | ROMS27        | ROMS26 | ROMS25 | ROMS24 |
| Read/Write  |        |           |        | \\ V         | ٧             |        |        |        |
| Reset State | 0 (    | )9        | 0      | 10           | 0             | 0      | 0      | 0      |
| Function    | (7)    |           |        | 71/          |               |        |        |        |
|             |        | <i>))</i> |        | Patch code ( | Upper 8 bits) |        |        |        |

Note: A read-modify-write operation cannot be performed in ROMSUB6LL, ROMSUB6LH, ROMSUB6HL and ROMSUB6HH registers.

Figure 3.15.16 Address Substitution Registers (Banks 6)

BANK7 Address substitution Register LL

ROMSUB7LL (143CH)

| I |             | 7      | 6                         | 5      | 4      | 3      | 2      | 1      | 0      |  |  |
|---|-------------|--------|---------------------------|--------|--------|--------|--------|--------|--------|--|--|
|   | Bit symbol  | ROMS07 | ROMS06                    | ROMS05 | ROMS04 | ROMS03 | ROMS02 | ROMS01 | ROMS00 |  |  |
|   | Read/Write  |        |                           |        | V      | V      |        | •      |        |  |  |
|   | Reset State | 0      | 0                         | 0      | 0      | 0      | 0      | 0      | 0      |  |  |
|   | Function    |        | Patch code (Lower 8 bits) |        |        |        |        |        |        |  |  |

BANK7 Address substitution Register LH

ROMSUB7LH (143DH)

|             | 7      | 6      | 5      | 4            | 3 (           | 7)/2   | 1      | 0      |
|-------------|--------|--------|--------|--------------|---------------|--------|--------|--------|
| Bit symbol  | ROMS15 | ROMS14 | ROMS13 | ROMS12       | RQMS11        | ROMS10 | ROMS09 | ROMS08 |
| Read/Write  |        | _      | _      | V            | V             |        | _      | _      |
| Reset State | 0      | 0      | 0      | 0            | ( Q )         | 0      | 0      | 0      |
| Function    |        |        |        | Patch code ( | Upper 8 bits) |        |        |        |

BANK7 Address substitution Register HL

ROMSUB7HL (143EH)

|             | 7      | 6      | 5             |              | 3             | 2 7    | //1)   | 0      |
|-------------|--------|--------|---------------|--------------|---------------|--------|--------|--------|
| Bit symbol  | ROMS23 | ROMS22 | ROMS21        | ROM\$20      | ROMS19        | ROMS18 | RØMS17 | ROMS16 |
| Read/Write  |        |        | $\mathcal{A}$ | \\           | v (           |        | _      | _      |
| Reset State | 0      | 0      | 0             | 0            | 0             |        | 0      | 0      |
| Function    |        |        |               | Patch code ( | Lower 8 bits) | ))     |        |        |

BANK7 Address substitution Register HH

ROMSUB7HH (143FH)

|             | 7      | 6          | )) 5   | 4            | 3              | 2      | 1      | 0      |
|-------------|--------|------------|--------|--------------|----------------|--------|--------|--------|
| Bit symbol  | ROMS31 | ROMS30     | ROMS29 | RØMS28       | ROMS27         | ROMS26 | ROMS25 | ROMS24 |
| Read/Write  |        |            |        | _ \\ v       | V              |        |        |        |
| Reset State | 0 _    |            | 0      | 100          | 0              | 0      | 0      | 0      |
| Function    |        | <u>5</u> ) |        | Patch code ( | (Upper 8 bits) | 1      |        |        |

Note: A read-modify-write operation cannot be performed in ROMSUB7LL, ROMSUB7LH, ROMSUB7HL and ROMSUB7HH registers.

Figure 3.15.17 Address Substitution Registers (Banks 7)

#### 3.15.3 Operation

#### (1) Replacing data

Correction procedure:

Load the address compare registers ROMCMPx0 to ROMCMPx2 (banks No. x = 0 to 7) with the target address where ROM data need be replaced. Store 4-byte patch code in the ROMSUBxLL, ROMSUBxLH, ROMSUBxHL and ROMSUBxHH (banks No. x = 0 to 7) registers.

After each register store, when the CPU address matches the value stored in the ROMCMPx0 to ROMCMPx2 (banks No. x = 0 to 7) registers the program patch logic disables RD output to the internal ROM and drives out the code stored in the ROMSUBLLL to ROMSUBLHH (banks No. x = 0/to-7) to the internal bus. The CPU thus fetches the patch code.

The following shows some examples:

#### Examples:

a. Replacing 00H at address FF1230H with AAH

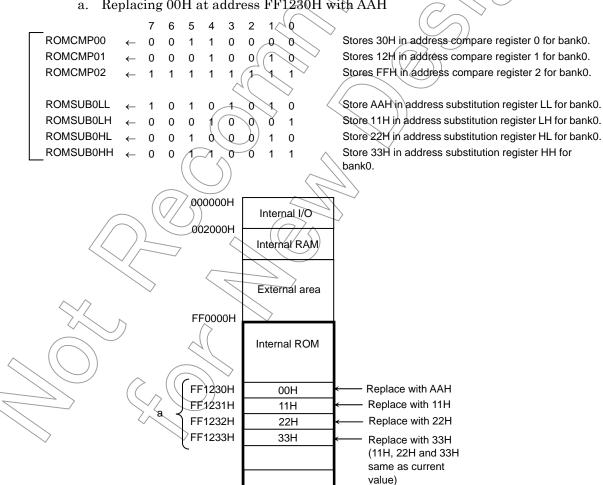



Figure 3.15.18 Example Patch Code Implementation

Vector table

**FFFFFFH** 

## b. Replacing 33H at address FF1233H with BBH

ROMCMP00 Stores 30H in address compare register 0 for bank0. 0 0 0 0 ROMCMP01 Stores 12H in address compare register 1 for bank0. 0 0 0 0 1 Stores FFH in address compare register 2 for bank0. ROMCMP02 Store 00H in address substitution register LL for bank0 ROMSUB0LL 0 0 0 0 Store 11H in address substitution register LH for bank0 ROMSUB0LH 0 0 ROMSUB0HL 0 Store 22H in address substitution register HL for bank0. 1 0 0 ROMSUB0HH Store BBH in address substitution register HH for bank0.

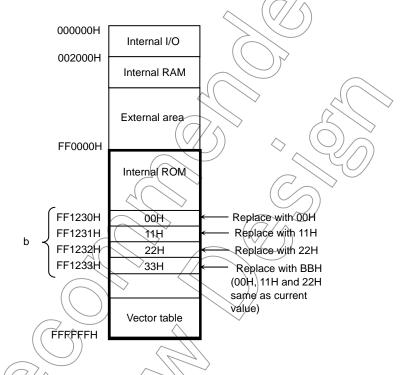
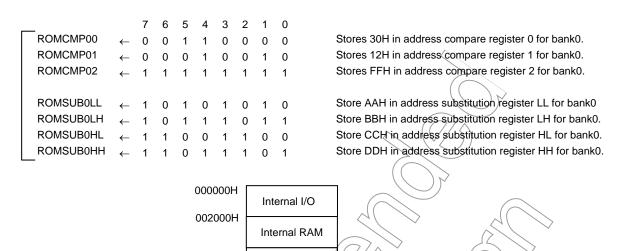
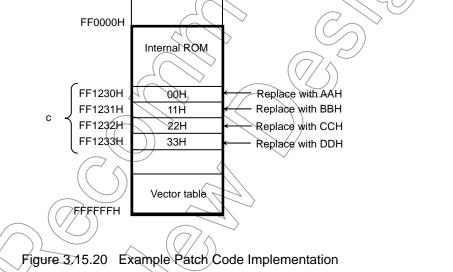





Figure 3.15.19 Example Patch Code Implementation

c. Replacing 00H at address FF1230H with AAH, 11H at address FF1231H with BBH, 22H at address FF1232H with CCH and 33H at address FF1233H with DDH



External area



92CY23-320

d. Replacing 11H at address FF1231H with AAH, 22H at address FF1232H with BBH, 33H at address FF1233H with CCH and 44H at address FF1234H with DDH (Requiring two banks)

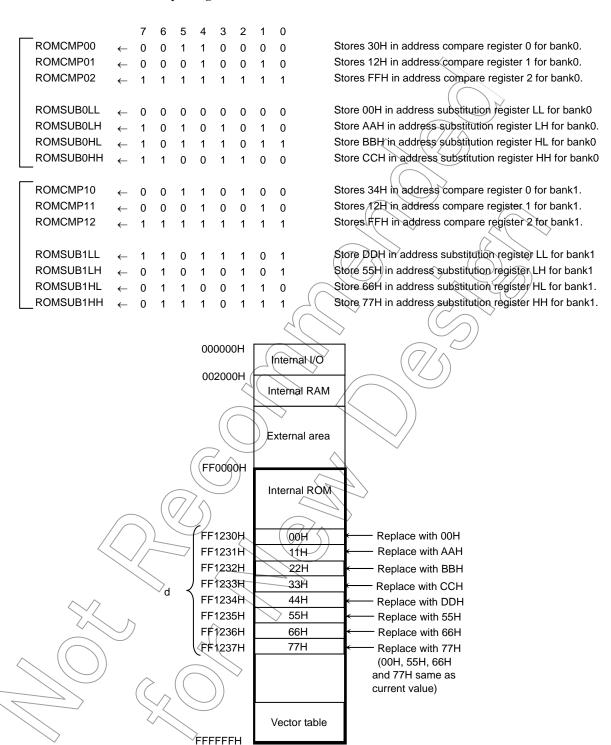



Figure 3.15.21 Example Patch Code Implementation

#### (2) Using an interrupt to cause a branch

A wider range of program code can also be fixed using a software interrupt (SWI). With a patch code loaded into on-chip RAM, the program patch logic can be used to replace program code at a specified address with a single-byte SWI instruction, which causes a branch to the patch program.

Note that this method can only be used if the original ROM data has been developed with <u>on-chip RAM addresses specified as SWI vector addresses</u>.

#### Correction procedure:

Load the address compare registers ROMCMPx0 to ROMCMPx2 (x = bank No. 0 to 7) with the start address of the program code that is to be fixed. If it is an even address, store an SWI instruction code (e.g., SWI: F9H) in ROMSUBxLL or ROMSUBxHL. If the start address is an odd address, store an SWI instruction code in ROMSUBxLH or ROMSUBxHH. When the data for the purpose of substitution is required only for 1 to 3 bytes, please set the same data as original ROM data to the remaining data.

When the CPU address matches the value stored in the ROMCMPx0 to ROMCMPx2 registers, the program patch logic disables RD output to the internal ROM and drives out the SWI instruction code to the internal bus. Upon fetching the SWI code, the CPU makes a branch to the internal RAM area to execute the preloaded code.

At the end of the patch program executed from the internal RAM, the CPU directly rewrites the saved PC value so that it points to the address following the patch code, and then executes a RETL

The following shows an example:

Example: Fixing a program within the range from FF5000H to FF507FH

Before developing the original ROM data, set the SWI1 vector reference address to 002500H (on chip RAM area).

Use the startup routine to load the patch code to on-chip RAM (002500H to 0025EFH). Store the start address (FF5000H) of the ROM area to be fixed in the ROMCMP00 to ROMCMP02. Store the SWI1 instruction code (F9H) in the ROMSUB0LL and the current data at FF5001H (AAH) in the ROMSUB0LH and the current data at FF5002H (BBH) in the ROMSUB0HL and the current data at FF5003 (CCH) in the ROMSUB0HH. When the CPU address matches the value stored in ROMCMP00 to ROMCMP02, the program patch logic replaces the ROM-based code at FF5000H with F9H. The CPU then executes the SWI1 instruction, which causes a branch to 002500H in the on-chip RAM area. After executing the patch program the CPU finally rewrites the saved PC value to FF5080H and executes a RETI.

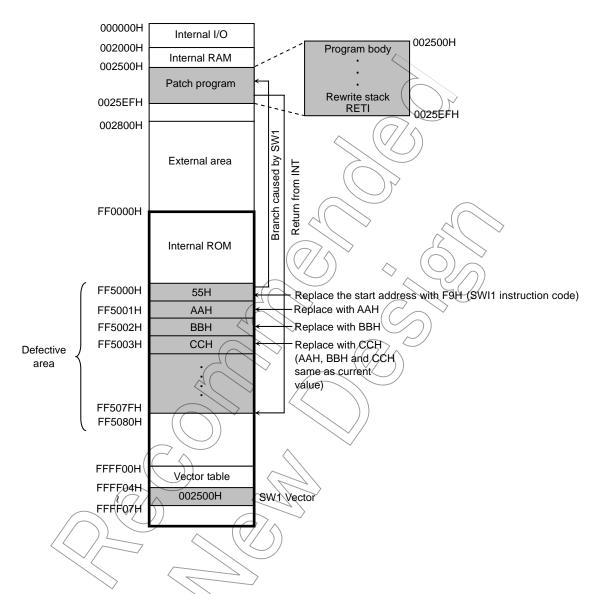



Figure 3.15.22 Example Patch Code Implementation

TOSHIBA

## 4. Electrical Characteristics

## 4.1 Absolute Maximum Ratings

| Parameter                                           | Symbol              | Rating                   | Unit  |
|-----------------------------------------------------|---------------------|--------------------------|-------|
| Power Supply Voltage                                | V <sub>CC</sub>     | -0.5 to 4.0              | V     |
| Input Voltage                                       | V <sub>IN</sub>     | $-0.5$ to $V_{CC} + 0.5$ | V     |
| Output Current (1 pin) Except PN1, PN2, PN4 and PN5 | l <sub>OL</sub>     | 2                        | mA    |
| Output Current (1 pin) PN1, PN2, PN4 and PN5        | I <sub>OL2</sub>    | 3.5                      | mA mA |
| Output Current (1 pin)                              | I <sub>OH</sub>     | 7                        | mA    |
| Output Current (Total)                              | Σl <sub>OL</sub>    | ( (80) )                 | mA    |
| Output Current (Total)                              | ΣΙΟΗ                | -80                      | mA    |
| Power Dissipation (Ta = 85°C)                       | P <sub>D</sub> ((   | 600                      | mW    |
| Soldering Temperature (10 s)                        | T <sub>SOLDER</sub> | 260                      | °C    |
| Storage Temperature                                 | T <sub>\$TG</sub>   | _65 to 150               | Ç     |
| Operation Temperature                               | TOPR                | → -40 to 85 〈            | (3°)  |

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, the device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

#### Solderability

| Test parameter | Test condition                                                                                                                                                                                                                        | Note                                         |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Solderability  | (1) Use of Sn-37Pb solder Bath Solder bath temperature +230°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux  (2) Use of Sn-3,0Ag-0,5Cu solder bath Solder bath temperature =245°C, Dipping time = 5 seconds | Pass: solderability rate until forming ≥ 95% |
|                | The number of times = one, Use of R-type flux                                                                                                                                                                                         |                                              |

# 4.2 DC Electrical Characteristics (1/2)

 $V_{CC} = 3.3 \pm 0.3 \text{V/fc} = 6$  to 40 MHz/Ta = -40 to  $85^{\circ} C$ 

| Parameter                                                                                                                     | Symbol                                | Min                     | Тур.    | Max                     | Unit | Condition                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|---------|-------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Supply Voltage<br>(DVCC = AVCC)<br>(DVSS = AVSS = 0V)                                                                   | Vcc                                   | 3.0                     |         | 3.6                     | V    | (TMP92CY23) X1= 6 to 10 MHz (At the time of PLL use) X1 = 6 to 40 MHz (At the time of PLL un-use) XT1 = 30 to 34 KHz (TMP92CD23A) X1 = 6 to 10 MHz XT1 = 30 to 34kHz |
| Input Low Voltage for<br>P00 to P07 (D0 to D7)<br>P10 to P17 (D8 to D15)                                                      | V <sub>IL0</sub>                      |                         |         | 0.6                     |      |                                                                                                                                                                      |
| Input Low Voltage for<br>P40 to P47 (A0 to A7)<br>P50 to P57 (A8 to A15)<br>P60 to P67 (A16 to A23)<br>P76, P77<br>P80 to P82 | V <sub>IL1</sub>                      |                         |         | 0.3 × V <sub>CC</sub>   |      |                                                                                                                                                                      |
| Input Low Voltage for<br>P70 to P73, P83<br>PC0 to PC3, PD0 to PD4<br>PF0 to PF5, PG0 to PG7<br>PL0 to PL3, PN0, PN3          | V <sub>IL2</sub>                      | -0.3                    |         | 0.25 × V <sub>C</sub> O | > v  |                                                                                                                                                                      |
| RESET, NMI, P74(INT0)                                                                                                         | V <sub>IL2a</sub>                     |                         |         | 0.2 × V <sub>CC</sub>   |      |                                                                                                                                                                      |
| Input Low Voltage for AM0, AM1                                                                                                | V <sub>IL3</sub>                      |                         |         | 0.3                     |      |                                                                                                                                                                      |
| Input Low Voltage for X1, XT1(P76)                                                                                            | V <sub>IL4</sub>                      |                         |         | 0.2 × V <sub>CC</sub>   |      |                                                                                                                                                                      |
| Input Low Voltage for PN1, PN2, PN4, PN5                                                                                      | V <sub>IL5</sub>                      |                         | $\int$  | 0.3 × V <sub>CC</sub>   |      |                                                                                                                                                                      |
| Input High Voltage for<br>P00 to P07 (D0 to D7)<br>P10 to P17 (D8 to D15)                                                     | V <sub>IH0</sub>                      | 2.0                     |         |                         | V    |                                                                                                                                                                      |
| Input High Voltage for<br>P40 to P47 (A0 to A7)<br>P50 to P57 (A8 to A15)<br>P60 to P67 (A16 to A23)<br>P76, P77, P80 to P82  | VIH1                                  | 0.7 × V <sub>CC</sub> < |         |                         |      |                                                                                                                                                                      |
| Input High Voltage for<br>P70 to P73, P83<br>PC0 to PC3, PD0 to PD4<br>PF0 to PF5, PG0 to PG7                                 | V <sub>IH2</sub>                      | 0.75 × V <sub>CC</sub>  | \<br>\> | V <sub>CC</sub> + 0.3   |      |                                                                                                                                                                      |
| PL0 to PL3, PN0, PN3                                                                                                          | ., (                                  |                         |         |                         |      |                                                                                                                                                                      |
| RESET, NMI, P74(INTO) Input High Voltage for AM0, AM1                                                                         | V <sub>IH2a</sub><br>V <sub>IH3</sub> | 0.8 × V <sub>CC</sub>   |         |                         |      |                                                                                                                                                                      |
| Input High Voltage for X1, XT1(P76)                                                                                           | V <sub>IH4</sub>                      | 0.8 × V <sub>CC</sub>   |         |                         |      |                                                                                                                                                                      |
| Input High Voltage for PN1, PN2, PN4, PN5                                                                                     | V <sub>IH5</sub>                      | 0.7 × V <sub>CC</sub>   |         | 5.5                     |      |                                                                                                                                                                      |

 $V_{CC} = 3.3 \pm 0.3 \text{V/fc} = 6$  to 40 MHz/Ta = -40 to  $85^{\circ}\text{C}$ 

|                      | Parameter                                                                                                | Symbol               | Min  | Тур.   | Max         | Unit | Condition                                                                                  |
|----------------------|----------------------------------------------------------------------------------------------------------|----------------------|------|--------|-------------|------|--------------------------------------------------------------------------------------------|
| Οι                   | tput Low Voltage                                                                                         | $V_{OL}$             |      |        | 0.45        |      | I <sub>OL</sub> = 1.6 mA                                                                   |
|                      | utput Low Voltage for<br>I1, PN2, PN4, PN5                                                               | V <sub>OL2</sub>     |      |        | 0.4         | V    | $I_{OL} = 3.0 \text{ mA}$                                                                  |
| Οι                   | ıtput High Voltage                                                                                       | V <sub>OH</sub>      | 2.4  |        |             |      | I <sub>OH</sub> = -400 μA                                                                  |
| Inp                  | out Leakage Current                                                                                      | ILI                  |      | 0.02   | ±5          |      | $0.0 \le \text{Vin} \le \text{V}_{CC}$                                                     |
| Οι                   | tput Leakage Current                                                                                     | I <sub>LO</sub>      |      | 0.05   | ±10         | μА   | $0.2 \le \text{Vin} \le \text{V}_{CC} - 0.2$                                               |
|                      | wer Down Voltage at STOP r STOP, RAM back-up)                                                            | V <sub>STOP</sub>    | 1.8  |        | 3.6         | V    | $V_{\text{H2}} = 0.2 \times V_{\text{CC}},$<br>$V_{\text{H42}} = 0.8 \times V_{\text{CC}}$ |
| Pu                   | II-Up Resistor for RESET                                                                                 | R <sub>RST</sub>     |      |        |             |      |                                                                                            |
|                      | ogrammable Pull-Up<br>esistor for P70 to P73                                                             | R <sub>KH</sub>      | 80   |        | 500         | kΩ   |                                                                                            |
| Pir                  | n Capacitance                                                                                            | C <sub>IO</sub>      |      |        | 10          | QF.  | fc = 1 MHz                                                                                 |
| P7<br>PC<br>PF<br>PL | hmitt Width for<br>0 to P73, P83<br>0 to PC3, PD0 to PD4<br>0 to PF5, PG0 to PG7<br>0 to PL3, PN0 to PN5 | $V_TH$               | 0.2  |        |             | V    |                                                                                            |
|                      | NORMAL (Note 2)                                                                                          | I <sub>CC</sub>      |      | 34 📈 ( | 60          |      | f <sub>C</sub> = 40 MHz                                                                    |
| က                    | IDLE2 Mode                                                                                               | I <sub>CCIDLE2</sub> |      | 15     | 26          | mA   | f <sub>SYS</sub> = 20 MHz                                                                  |
| SY2                  | IDLE1 Mode                                                                                               | I <sub>CCIDLE1</sub> |      | 4      | 9           | ((   | 313 LO III IZ                                                                              |
| TMP92CY23            | SLOW (Note 2)                                                                                            | I <sub>CC</sub>      | ,    | 30     | 110         |      | XT1=32.768 kHz                                                                             |
| ĬĬ                   | SLOW-IDLE2 Mode                                                                                          | I <sub>CCIDLE2</sub> |      | 15     | 80//        | μА   | \(f <sub>SYS</sub> = 16.384 kHz)                                                           |
|                      | SLOW-IDLE1 Mode                                                                                          | I <sub>CCIDLE1</sub> |      | 8      | 60          | ( )  | (313 10:00 1 11:12)                                                                        |
|                      | STOP                                                                                                     | ICCSTOP              |      | 0.2    | 50          |      | /                                                                                          |
|                      | NORMAL (Note 2)                                                                                          | I <sub>CC</sub>      |      | 50     | 70          |      | f <sub>C</sub> = 40 MHz                                                                    |
| 34                   | IDLE2 Mode                                                                                               | I <sub>CCIDLE2</sub> | (( ) | 18     | 26          | mA   | f <sub>SYS</sub> = 20 MHz                                                                  |
| )D2                  | IDLE1 Mode                                                                                               | I <sub>CCIDLE1</sub> |      | 4      | (9)         |      | 0.0                                                                                        |
| TMP92CD23A           | SLOW (Note 2)                                                                                            | loc                  | /_   | 55 4   | 130         |      | XT1 = 32.768 kHz                                                                           |
| MF                   | SLOW-IDLE2 Mode                                                                                          | ICCIDLE2             | _))  | 30     | 100>        | μА   | $(f_{SYS} = 16.384 \text{ kHz})$                                                           |
|                      | SLOW-IDLE1 Mode                                                                                          | CCIDLE1              |      | 20 (/  | 90          | , ,  | (0.0                                                                                       |
|                      | STOP                                                                                                     | /ICCSTOP             |      | 0.8    | <b>/</b> 50 |      |                                                                                            |

Note 1: Typical values are for when  $Ta = 25^{\circ}C$  and  $V_{CC} = 3.3$  V unless otherwise noted.

Note 2: I<sub>CC</sub> measurement conditions (NORMAL, SLOW):
All functions are operational; output pins are opened and input pins are fixed. C<sub>L</sub> = 30 pF is loaded to data and address bus.

TOSHIBA TMP92CY23/CD23A

## 4.3 AC Characteristics

# 4.3.1 Basic Bus Cycle

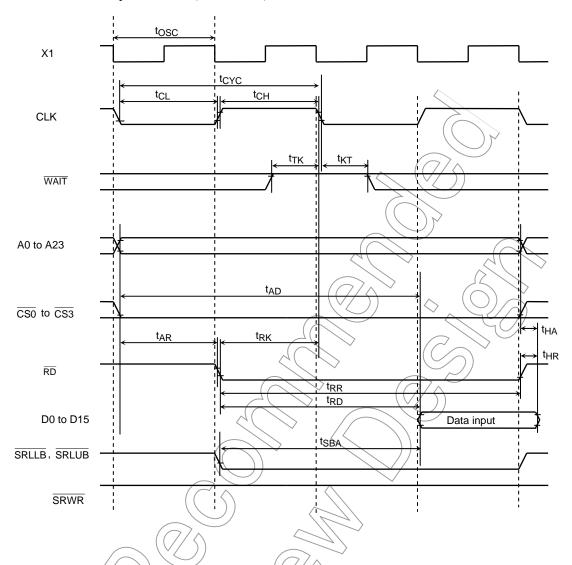
Read cycle

 $V_{CC} = 3.3 \pm 0.3 \text{V/fc} = 6$  to 40 MHz/Ta = -40 to  $85^{\circ} C$ 

|     | 5 ,                                                        |                  | Varia     | able      | fsys = 20 MHz   | f <sub>SYS</sub> = 13.5MHz |      |
|-----|------------------------------------------------------------|------------------|-----------|-----------|-----------------|----------------------------|------|
| No. | Parameter                                                  | Symbol           | Min       | Max       |                 | (fc = 27 MHz)              | Unit |
| 1   | OSC period (X1/X2)                                         | tosc             | 25        |           | 25              | 37.0                       | ns   |
| 2   | System clock period (= T)                                  | t <sub>CYC</sub> | 50        |           | (               | 74.0                       | ns   |
| 3   | CLK Low Width                                              | $t_{CL}$         | 0.5T - 15 |           | \\\(\( \( \) \) | 22                         | ns   |
| 4   | CLK High Width                                             | t <sub>CH</sub>  | 0.5T - 15 |           | 10              | 22                         | ns   |
| 5-1 | A0 to A23 Valid→ D0 to D15 input at 0 WAIT                 | t <sub>AD</sub>  |           | 2.0T - 50 | 50              | 98                         | ns   |
| 5-2 | A0 to A23 Valid $\rightarrow$ D0 to D15 input at 1 WAIT    | t <sub>AD3</sub> |           | 3.0T - 50 | ) 100           | 172                        | ns   |
| 6-1 | RD Falling → D0 to D15 input at 0 WAIT                     | t <sub>RD</sub>  |           | 1.5T – 45 | 30              | 66                         | ns   |
| 6-2 | RD Rising → D0 to D15 input at 1 WAIT                      | t <sub>RD3</sub> |           | 2.5T – 45 | 80              | 140                        | ns   |
| 7-1 | RD Low Width at 0 WAIT                                     | t <sub>RR</sub>  | 1.51 - 20 |           | 55              | <sup>&gt;</sup> 91         | ns   |
| 7-2 | RD Low Width at 1 WAIT                                     | t <sub>RR3</sub> | 2.5T – 20 |           | 105)            | 165                        | ns   |
| 8   | A0 to A23 valid $\rightarrow \overline{RD}$ Rising         | t <sub>AR</sub>  | 0.51 - 20 |           | >>_5            | 17                         | ns   |
| 9   | — RD Falling → CLK Falling                                 | <b>t</b> RK      | 0.5T - 20 |           | // \5           | 17                         | ns   |
| 10  | A0 to A23 valid $\rightarrow$ D0 to D15 Hold               | t <sub>HA</sub>  | 0 /       |           | <u></u>         | 0                          | ns   |
| 11  | $\overline{\text{RD}}$ Rising $\rightarrow$ D0 to D15 Hold | tHR              | 0 //      |           | 0               | 0                          | ns   |
| 12  | WAIT Set-up Time                                           | _t₁k ✓           | 20        |           | 20              | 20                         | ns   |
| 13  | WAIT Hold Time                                             | tkt              | 5         |           | 5               | 5                          | ns   |
| 14  | Data Byte Control Access Time for SRAM                     | t <sub>SBA</sub> | $\wedge$  | 1.5T – 45 | 30              | 66                         | ns   |
| 15  | RD High Width                                              | t <sub>RRH</sub> | 0.5T – 15 |           | 10              | 22                         | ns   |

Write cycle

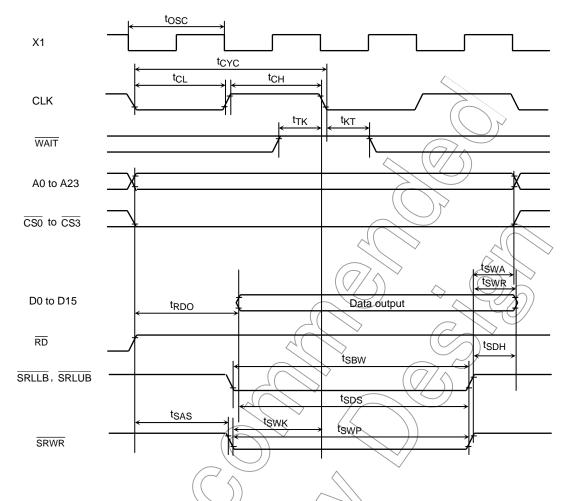
 $V_{CC} = 3.3 \pm 0.3 \text{V/fc} = 6$  to 40 MHz/Ta = -40 to  $85^{\circ}C$ 


| No  | Doromotor                                  | Symbol             | Variable   |     | f <sub>SYS</sub> = 20 MHz | f <sub>SYS</sub> = 13.5MHz | l lmit |
|-----|--------------------------------------------|--------------------|------------|-----|---------------------------|----------------------------|--------|
| No. | No. Parameter                              |                    | → Min      | Max | (fc = 40 MHz)             | (fc = 27 MHz)              | Uniit  |
| 16  | SRWR Falling → CLK Falling                 | tswk               | 0.5T – 20  |     | 5                         | 17                         | ns     |
| 17  | SRWR Rising A0 to A23 Hold                 | t <sub>SWA</sub>   | 0.25T - 5  |     | 7.5                       | 13.5                       | ns     |
| 18  | RD Rising → D0 to D15 Output               | t <sub>RDO</sub>   | 0.5T – 5   |     | 20                        | 32                         | ns     |
| 19⁄ | Write Pulse Width for SRAM                 | t <sub>SWP</sub>   | 1.25T – 30 |     | 32.5                      | 62.5                       | ns     |
| 20  | Data Byte Control to End of Write for SRAM | √ t <sub>SBW</sub> | 1.25T – 30 |     | 32.5                      | 62.5                       | ns     |
| 21  | Address Setup Time for SRAM                | t <sub>SAS</sub>   | 0.5T – 20  |     | 5                         | 17                         | ns     |
| 22  | Write Recovery Time for SRAM               | t <sub>SWR</sub>   | 0.25T - 5  |     | 7.5                       | 13.5                       | ns     |
| 23  | Data Setup Time for SRAM                   | t <sub>SDS</sub>   | 1.25T – 35 |     | 27.5                      | 57.5                       | ns     |
| 24  | Data Hold Time for SRAM                    | t <sub>SDH</sub>   | 0.25T – 5  |     | 7.5                       | 13.5                       | ns     |

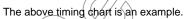
AC measuring condition

Output: High = 0.7  $V_{CC}$ , Low = 0.3  $V_{CC}$ ,  $C_L$  = 50 pF

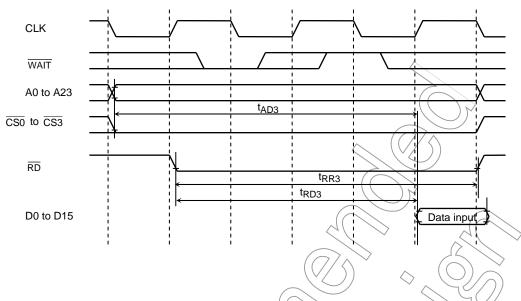
Input: High = 0.9  $V_{CC}$ , Low = 0.1  $V_{CC}$ 


(1) Read cycle (0 waits,  $fc = f_{OSCH}$ ,  $f_{FPH} = fc/1$ )

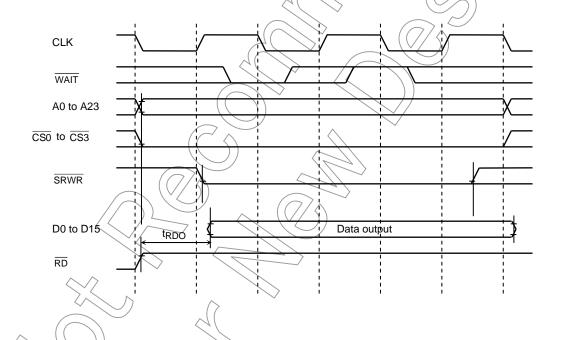



Note: The phase relation between X1 input signal and the other signals is undefined.

The above timing chart is an example.


(2) Write cycle (0 waits, fc = fOSCH, fFPH = fc/1)




Note: The phase relation between X1 input signal and the other signals is undefined.



(3) Read cycle (1 wait, fc = fosch, fph = fc/1)



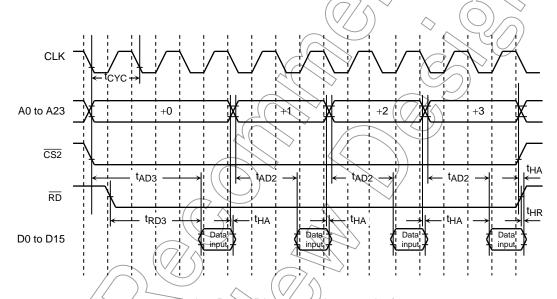
(4) Write cycle (1 wait,  $fc = f_{OSCH}$ ,  $f_{FPH} = f_{C/1}$ )



TOSHIBA TMP92CY23/CD23A

# 4.3.2 Page ROM Read Cycle

(1) 3-2-2-2 mode


 $V_{CC} = 3.3 \pm 0.3 \; \text{V/fc} = 6 \text{ to } 40 \; \text{MHz/Ta} = -40 \text{ to } 85 ^{\circ}\text{C}$ 

|     | No. Parameter                                              |                  | Variable |           | fovo – 20MHz  | fovo – 18MHz | f <sub>SYS</sub> = 13.5MHz |      |
|-----|------------------------------------------------------------|------------------|----------|-----------|---------------|--------------|----------------------------|------|
| No. |                                                            |                  | Min      | Max       | (fc = 40 MHz) | (fc≜36 MHz)  | (fc = 27 MHz)              | Unit |
| 1   | System Clock Period (= T)                                  | t <sub>CYC</sub> | 50       |           | 50            | 55,5         | 74                         | ns   |
| 2   | A0, A1 $\rightarrow$ D0 to D15 input                       | t <sub>AD2</sub> |          | 2.0T - 50 | 50            | 61           | 98                         | ns   |
| 3   | A2 to A23 $\rightarrow$ D0 to D15 input                    | t <sub>AD3</sub> |          | 3.0T – 50 | 100           | 116.5        | 172                        | ns   |
| 4   | RD Falling→ D0 to D15 input                                | t <sub>RD3</sub> |          | 2.5T – 45 | 80            | 93.8         | 140                        | ns   |
| 5   | A0 to A23 valid $\rightarrow$ D0 to D15 Hold               | t <sub>HA</sub>  | 0        |           | 0             |              | 0                          | ns   |
| 6   | $\overline{\text{RD}}$ Rising $\rightarrow$ D0 to D15 Hold | t <sub>HR</sub>  | 0        |           | 0             | 0            | 0                          | ns   |

AC measuring condition







Timing Pulse Diagram (8-byte setting)



**TOSHIBA** 

#### 4.3.3 Serial Channel Timing

#### (1) SCLK input mode (I/O interface mode)

| Parameter                               | Symbol           | Variat                        | f <sub>SYS</sub> = 2<br>(fc = 40 | 20 MHz<br>) MHz) | $f_{SYS} = 13.5MHz$<br>(fc = 27 MHz) |      | Unit |    |
|-----------------------------------------|------------------|-------------------------------|----------------------------------|------------------|--------------------------------------|------|------|----|
|                                         |                  | Min                           | Max                              | Min              | Max                                  | Min  | Max  |    |
| SCLK cycle                              | t <sub>SCY</sub> | 16X                           |                                  | 0.40             |                                      | 0.59 |      | μS |
| Output data → SCLK Rising/Falling *     | toss             | t <sub>SCY</sub> /2 - 4X - 70 |                                  | 30               |                                      | 78   |      | ns |
| SCLK Rising/Falling* → Output Data Hold | tons             | $t_{SCY}/2 + 2X + 0$          |                                  | 250              |                                      | 370  |      | ns |
| SCLK Rising/Falling* → Input Data Hold  | t <sub>HSR</sub> | 3X + 10                       |                                  | 85 (             | $\bigcirc$                           | 121  |      | ns |
| SCLK Rising/Falling* → Input Data Valid | t <sub>SRD</sub> |                               | t <sub>SCY</sub> - 0             |                  | /400)                                |      | 592  | ns |
| Input Data Valid → SCLK Rising/Falling* | t <sub>RDS</sub> | 0                             |                                  | 0                |                                      | 0    |      | ns |

\*: SCLK rinsing/falling edge: The rising edge is used in SCLK rising mode.

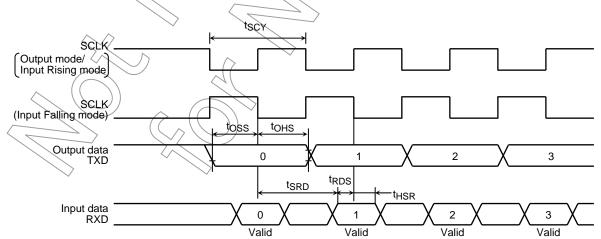
The falling edge is used in SCLK falling mode.

Note 1:  $t_{SCY} = 16X$  at  $f_{SYS} = 20MHz$  or 13.5MHz

Note 2: Symbol x in the above table means the period of clock f<sub>EPH</sub>, it's half period of the system clock f<sub>SYS</sub> for CPU core. The period of f<sub>FPH</sub> depends on the clock gear setting.

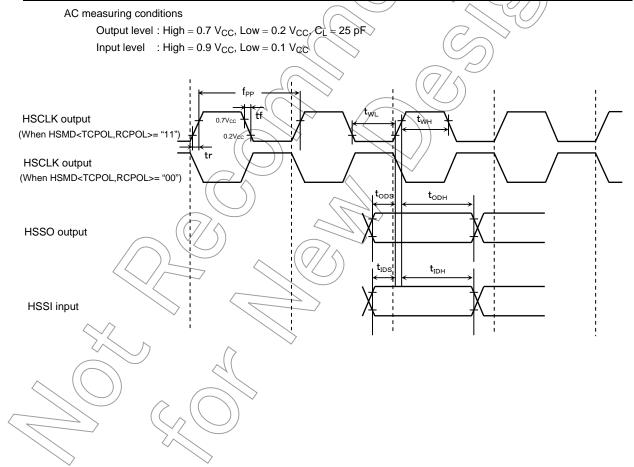
#### (2) SCLK output mode (I/O Interface mode)

| Parameter                                           | Symbol              | Varia                    | Variable                   |       | f <sub>SYS</sub> = 20 MHz<br>(fc = 40 MHz) |      | 3.5MHz<br>7 MHz) | Unit |
|-----------------------------------------------------|---------------------|--------------------------|----------------------------|-------|--------------------------------------------|------|------------------|------|
|                                                     |                     | Min                      | Max                        | Min   | Max                                        | Min  | Max              |      |
| SCLK cycle                                          | t <sub>SCY</sub>    | (16X                     | 8192X                      | 0.40  | 204                                        | 0.59 | 303              | μS   |
| Output data $\rightarrow$ SCLK Rising/Falling *     | toss                | t <sub>SCY</sub> /2 - 40 |                            | 160   |                                            | 256  |                  | ns   |
| SCLK Rising/Falling* → Output Data Hold             | tons                | t <sub>SCY</sub> /2 - 40 |                            | 160   |                                            | 256  |                  | ns   |
| SCLK Rising/Falling* → Input Data Hold              | t <sub>HSR</sub>    | ) ) 0                    |                            | \\/9\ |                                            | 0    |                  | ns   |
| SCLK Rising/Falling* → Input Data Valid             | tsrd)               |                          | t <sub>SCY</sub> - 1X -180 |       | 195                                        |      | 375              | ns   |
| Input Data Valid $\rightarrow$ SCLK Rising/Falling* | (t <sub>RDS</sub> \ | 1X + 180                 |                            | 205   |                                            | 217  |                  | ns   |


\*: SCLK rinsing/falling edge:

The rising edge is used in SCLK rising mode.

The falling edge is used in SCLK falling mode.


Note 1:  $t_{SCY} = 16X$  at  $t_{SYS} = 20MHz$  or 13.5MHz

Note 2: Symbol x in the above table means the period of clock f<sub>FPH</sub>, it's half period of the system clock f<sub>SYS</sub> for CPU core. The period of fFPH depends on the clock gear setting.



# 4.3.4 High Speed SIO Timing (High Speed SIO function is not built into TMP92CY23)

| Symbol            | Parameter                           | Varia   | ble | f <sub>SYS</sub> = 20MHz | f <sub>SYS</sub> = 18MHz | f <sub>SYS</sub> = 13.5MHz | Unit  |
|-------------------|-------------------------------------|---------|-----|--------------------------|--------------------------|----------------------------|-------|
| Symbol            | r arameter                          | Min     | Max | (fc = 40 MHz)            | (fc = 36 MHz)            | (fc = 27 MHz)              | Offic |
| fpp               | HSCLK frequency (=1/X)              |         | 10  | 10                       | 9                        | 6.75                       | MHz   |
| t <sub>r</sub>    | HSCLK rising timing                 |         | 8   | 8                        | 8                        | 8                          |       |
| t <sub>f</sub>    | HSCLK falling time                  |         | 8   | 8                        | 8                        | 8                          |       |
| t <sub>WL</sub>   | HSCLK Low pulse width               | 0.5X-8  |     | 42                       | 47                       | 66                         |       |
| twH               | HSCLK High pulse width              | 0.5X-16 |     | 34                       | 39                       | > 58                       |       |
| t <sub>ODS1</sub> | Output data valid<br>→ HSCLK rise   | 0.5X-18 |     | 32                       | 37                       | <i>5</i> 6                 |       |
| t <sub>ODS2</sub> | Output data valid  → HSCLK fall     | 0.5X-23 |     | 27                       | 32                       | 51                         | ns    |
| todh              | HSCLK rise/fall  → Output data hold | 0.5X-10 |     | 40                       | 45                       | 64                         |       |
| t <sub>IDS</sub>  | Input data valid  → HSCLK rise/fall | 0X+20   |     | 20                       | 20                       | 20>                        |       |
| tIDH              | HSCLK rise/fall  → Input data hold  | 0X+5    |     | (5)<br>(5)               | 5                        | 5                          |       |



#### 4.3.5 Interrupts

| Parameter Sym                        | Symbol             | Variable |     | $f_{SYS} = 20 \text{ MHz}$<br>(fc = 40 MHz) |     | f <sub>SYS</sub> = 13.5MHz<br>(fc = 27 MHz) |             | Unit |  |
|--------------------------------------|--------------------|----------|-----|---------------------------------------------|-----|---------------------------------------------|-------------|------|--|
|                                      |                    | MIN      | MAX | MIN                                         | MAX | MIN                                         | MAX         |      |  |
| NMI, INT0 to INT7<br>Low level Width | T <sub>INTAL</sub> | 4X + 40  |     | 140                                         | 4   | 188                                         |             | ns   |  |
| NMI, INT0 to INT7 High level Width   | T <sub>INTAH</sub> | 4X + 40  |     | 140                                         |     | 188                                         | <b>&gt;</b> | 115  |  |

Note: Symbol x in the above table means the period of clock f<sub>FPH</sub>, it's half period of the system clock f<sub>SYS</sub> for CPU core. The period of f<sub>FPH</sub> depends on the clock gear setting.

# 4.3.6 Event Counter (TA0IN, TB1IN0, TB1IN1)

| Parameter              | Symbol            | Variable |     | f <sub>SYS</sub> = 20 MHz<br>(fc = 40 MHz) |     | f <sub>SYS</sub> = 13.5MHz<br>(fc=27 MHz) |     | Unit |
|------------------------|-------------------|----------|-----|--------------------------------------------|-----|-------------------------------------------|-----|------|
|                        |                   | MIN      | MAX | MfN                                        | MAX | MIN                                       | MAX |      |
| Clock period           | T <sub>VCK</sub>  | 8X + 100 | 1   | 300                                        |     | 396                                       |     | ns   |
| Clock Low level Width  | T <sub>VCKL</sub> | 4X + 40  |     | 140                                        |     | 188                                       |     | ns   |
| Clock High level Width | T <sub>VCKH</sub> | 4X + 40  |     | 140                                        |     | 188                                       |     | ns   |

Note: Symbol x in the above table means the period of clock f<sub>FPH</sub>, it's half period of the system clock f<sub>SYS</sub> for CPU core. The period of f<sub>FPH</sub> depends on the clock gear setting.

#### 4.4 AD Conversion Characteristics

| Parameter                                            | Symbol | (Min          | Тур. | Max  | Unit |
|------------------------------------------------------|--------|---------------|------|------|------|
| AD Converter Power Supply Voltage                    | AVCC   | \ \vcc\       | VCC  | VCC  |      |
| AD Converter GND                                     | AVSS < | VSS           | VSS  | VSS  | V    |
| Analog Input Voltage                                 | AVIN   | AVSS          |      | AVCC |      |
| Total error (Quantize error of ± 0.5LSB is included) | E      | $\mathcal{L}$ | ±1.0 | ±4.0 | LSB  |

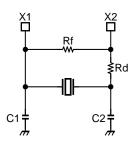
Note 1: 1LSB = (AVCC - AVSS) / 1024 [V]

Note 2: Minimum frequency for operation

AD converter operatinon is guaranteed only when using fc (high-frequency oscillator). fs is not guaranteed.

However, operation is guaranteed if the clock frequency selected by the clock gear is over 4MHz,.

Note 3: The value for I<sub>CC</sub> includes the current which flows through the AVCC pin.


TOSHIBA TMP92CY23/CD23A

#### 4.5 Recommended Oscillation Circuit

The TMP92CY23/CD23A has been evaluated by the oscillator vender below. Use this information when selecting external parts.

Note: The total load value of the oscillator is the sum of external loads (C1 and C2) and the floating load of the actual assembled board. There is a possibility of operating error when using C1 and C2 values in the table below. When designing the board, design the minimum length pattern around the oscillator. We also recommend that oscillator evaluation be carried out using the actual board.







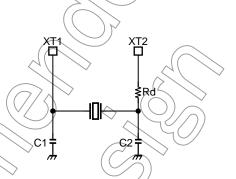



Figure 4.5.2 Low-frequency oscillator

(2) TMP92CY23/CD23A Recommended ceramic oscillator

TMP92CY23/CD23A recommends the high-frequency oscillator by Murata Manufacturing Co., Ltd

Please refer to the following URL

http://www.murata.com

TOSHIBA TMP92CY23/CD23A

## 5. Table of Special function registers (SFRs)

The SFRs include the I/O ports and peripheral control registers allocated to the 8-Kbyte address space from 000000H to 001FFFH.

(1) I/O Port

(9) UART/serial channel

(2) Interrupt control

(10) I<sup>2</sup>CBUS/serial channel

(3) DMA controller

(11) AD converter

(4) Memory controller

(12) Watchdog timer

(5) Clock control/PLL

(13) Special timer for CLOCK

(6) 8-bit timer

(14) Key on wake up

(7) 16-bit timer

(15) Program patch function

(8) High speed serial channel (Note)

Note: High speed serial channel funtion is not built into TMP92CY23

#### Table layout

| Symbol | Name | Address | 7 6           | 1 0 |                             |
|--------|------|---------|---------------|-----|-----------------------------|
|        |      |         | 400           |     | <del>) →</del> Bit symbol   |
|        |      |         |               |     | ∠—→Read/Write               |
|        |      |         |               |     | ──Initial value after reset |
|        |      | ~((     |               |     | —→Remarks                   |
|        |      | (1)     | $\overline{}$ |     |                             |

Note: "Prohibit RMW" in the table means that you cannot use RMW instructions on these registers.

Example: When setting bit0 only of the register PxCR, the instruction "SET-0 (PxCR)" cannot be used. The LD (transfer) instruction must be used to write all eight bits.

#### Read/Write

R/W: Both read and write are possible.

R: // Only read is possible.

W: Only write is possible.

W\*: Both read and write are possible (when this bit is read as1)

Prohibit RMW: Read-modify write instructions are prohibited. (The EX, ADD, ADC, BUS, SBC, INC, DEC, AND, OR, XOR, STCF, RES, SET, CHG, TSET,

RLC/RRC, RL, RR, SLA, SRA, SLL, SRL, RLD and RRD instruction are read modify write instructions.)

Read-modify-write is prohibited when controlling the pull-up resistor.

R/W

**TOSHIBA** 

Table 5.1 I/O Register Address Map

[1] Port

| Address                                        | Name             | Address   | Name            | Address           | Name         | Address            | Name             |  |  |
|------------------------------------------------|------------------|-----------|-----------------|-------------------|--------------|--------------------|------------------|--|--|
| 0000H                                          | P0               | 0010H     | P4              | 0020H             | P8 <         | 0030H              | PC               |  |  |
| 1H                                             |                  | 1H        |                 | 1H                | P8FC2        | 1H                 |                  |  |  |
| 2H                                             | P0CR             | 2H        | P4CR            | 2H                | P8CR         | 2H                 | PCCR             |  |  |
| 3H                                             | P0FC             | 3H        | P4FC            | 3H                | P8FC         | 3H                 | PCFC             |  |  |
| 4H                                             | P1               | 4H        | P5              | 4H                | ~ (7)        | <sup>7</sup> ⟨\ 4H | PD               |  |  |
| 5H                                             |                  | 5H        |                 | 5H                |              | ) 5H               | PDFC2            |  |  |
| 6H                                             | P1CR             | 6H        | P5CR            | 6H                |              | 6H                 | PDCR             |  |  |
| 7H                                             | P1FC             | 7H        | P5FC            | 7H                | $(\bigcirc)$ | 7H                 | PDFC             |  |  |
| 8H                                             |                  | 8H        | P6              | 8H/               |              | 8H                 |                  |  |  |
| 9H                                             |                  | 9H        |                 | 9 <del>(1</del> ) |              | √ 9H               |                  |  |  |
| AH                                             |                  | AH        | P6CR            | AH                |              | AH                 | , i              |  |  |
| ВН                                             |                  | ВН        | P6FC            | ( BH              | $\wedge$     | ВН                 | $\searrow$       |  |  |
| СН                                             |                  | CH        | P7              | CH-               |              | - CEH              | ) <del>P</del> F |  |  |
| DH                                             |                  | DH        |                 | QH                |              | , TOH              | PFFC2            |  |  |
| EH                                             |                  | EH        | P7CR            | EH                | (C           | EH.                | PFCR             |  |  |
| FH                                             |                  | FH        | P7FC            | V FH              |              |                    | PFFC             |  |  |
|                                                |                  |           |                 |                   |              |                    |                  |  |  |
| Address                                        | Name             | Address   | Name            | $\vee$            | $\sim$       |                    |                  |  |  |
| 0040H                                          | PG               | 0050H     |                 |                   |              |                    |                  |  |  |
| 1H                                             |                  | 1H        |                 |                   |              |                    |                  |  |  |
| 2H                                             |                  | 2H        | $((\ ))$        |                   |              |                    |                  |  |  |
| 3H                                             | PGFC             | 3H        |                 | ^                 |              |                    |                  |  |  |
| 4H<br>5H                                       |                  | 4H1<br>5H | PL              |                   |              |                    |                  |  |  |
| 6H                                             |                  | 6H        |                 | (6)               |              |                    |                  |  |  |
| 7H                                             |                  | (         | PLFC            |                   |              |                    |                  |  |  |
| 8H                                             |                  | H8        |                 | 77                |              |                    |                  |  |  |
| 9H                                             | //               | 9H        | $\sim$ ( $\vee$ | ( )               |              |                    |                  |  |  |
| AH                                             |                  | AH.       |                 |                   |              |                    |                  |  |  |
| BH                                             |                  | BH        |                 | >                 |              |                    |                  |  |  |
| CH                                             |                  | CH        | PN              | /                 |              |                    |                  |  |  |
| DH<br>EH                                       |                  | DH<br>EH  | PNCR            |                   |              |                    |                  |  |  |
| FH                                             |                  |           | PNFC            |                   |              |                    |                  |  |  |
| /                                              | e: Do not access | 1         | \               |                   |              |                    |                  |  |  |
| Note: Do not access no allocated name address. |                  |           |                 |                   |              |                    |                  |  |  |
|                                                |                  |           | /               |                   |              |                    |                  |  |  |

[2] INTC

## [3] DMA controller

| Address | Name      | Address | Name      | Address             | Name          |        | Address     | Name     |
|---------|-----------|---------|-----------|---------------------|---------------|--------|-------------|----------|
| 00D0H   | INTE01    | 00E0H   | INTETB0   | 00F0H               | INTTC01       |        | 0100H       | DMA0V    |
| 1H      | INTE23    | 1H      | INTESTBO0 | 1H                  | INTTC23       |        | 1H          | DMA1V    |
| 2H      | INTE45    | 2H      | INTETB1   | 2H                  | INTTC45       |        | 2H          | DMA2V    |
| 3H      | INTE67    | 3H      | INTSTBO1  | 3H                  | INTTC67       |        | 3H          | DMA3V    |
| 4H      | INTETA01  | 4H      | INTEPAD   | 4H                  | HSCSEL (Note) | $\geq$ | 4H          | DMA4V    |
| 5H      | INTETA23  | 5H      | INTERTC   | 5H                  | SIMC          | (      | √5H         | DMA5V    |
| 6H      | INTETA45  | 6H      |           | 6H                  | IIMC          |        | <b>◯</b> 6H | DMA6V    |
| 7H      | Reserved  | 7H      |           | 7H                  | . (7)         | 7_     | 7H          | DMA7V    |
| 8H      | INTES0    | 8H      |           | 8H                  | INTCLR \      | )      | ) 8H        | DMAB     |
| 9H      | INTES1HSC | 9H      |           | 9H                  | Reserved      |        | 9H          | DMAR     |
| AH      | INTES2    | AH      |           | AH                  | IIM¢2         |        | AH          | Reserved |
| BH      | Reserved  | ВН      |           | ВН                  | ІІМСЗ         |        | ВН          |          |
| CH      | INTESB0   | CH      |           | CH                  | Reserved      |        | CH          |          |
| DH      | INTESB1   | DH      |           | DĤ                  | Reserved      |        | √ ØH        |          |
| EH      | Reserved  | EH      |           | EH                  | Reserved      |        | EH          |          |
| FH      | Reserved  | FH      | INTENMWDT | ( ( <del>FH</del> / | Reserved      |        | FH          | ~        |

Note: HSCSEL register is not built into TMP92CY23.

[4] Memory controller

|       | <b>\</b>            |         |                 |
|-------|---------------------|---------|-----------------|
| 75    | $C1_{\alpha\alpha}$ | contro  | $\sqrt{1/DT}$ T |
| _1:01 | 1 /1000             | COHILIC | )   /           |

| Address | Name    |   | Address      | Name       | // | Address       | Name       | $\langle \ \rangle$ | Address | Name   |
|---------|---------|---|--------------|------------|----|---------------|------------|---------------------|---------|--------|
| 0140H   | B0CSL   |   | 0150H        | Reserved   |    | ) 0160H       | Reserved / |                     | 10E0H   | SYSCR0 |
| 1H      | B0CSH   |   | 1H           | Reserved   | Ì  | 1H            | Reserved   |                     | 1H      | SYSCR1 |
| 2H      | MAMR0   |   | 2H           | Reserved   | 7  | / <u>/</u> 2H | Reserved   |                     | 2H      | SYSCR2 |
| 3H      | MSAR0   |   | 3H           | Reserved   |    | 3H.           | ))         |                     | 3H      | EMCCR0 |
| 4H      | B1CSL   |   | 4H           | Reserved   |    | 4H            |            |                     | 4H      | EMCCR1 |
| 5H      | B1CSH   |   | 5H           | Reserved   |    | 5H            |            |                     | 5H      | EMCCR2 |
| 6H      | MAMR1   |   | (6H′         | Reserved   |    | <             | PMEMCR     |                     | 6H      |        |
| 7H      | MSAR1   |   | / <b>y</b> H | Reserved   |    | HK            |            |                     | 7H      |        |
| 8H      | B2CSL   |   | 8H-          | BEXCSL     | /  | (H8           |            |                     | 8H      | PLLCR0 |
| 9H      | B2CSH   |   | (// 9H       | BEXCSH     | /  | 9H            |            |                     | 9H      | PLLCR1 |
| AH      | MAMR2   |   | AH           | Reserved   | 7/ | AH            |            |                     | AH      |        |
| BH      | MSAR2   | L | BH           | Reserved \ |    | )) BH         |            |                     | BH      |        |
| CH      | B3CSL / |   | CH           |            | )) | / CH          | Reserved   |                     | CH      |        |
| DH      | B3CSH   |   | DH.          |            | \  | DH            |            |                     | DH      |        |
| EH      | MAMR3   |   | EH           |            | /  | EH            |            |                     | EH      |        |
| FH      | MSAR3   |   | FH           |            |    | FH            |            |                     | FH      |        |

Note: Do not access no allocated name address.

[6] 8-bit timer

[7] 16-bit timer

| Address | Name    | Address | Name    | Address | Name     |        | Address | Name    |
|---------|---------|---------|---------|---------|----------|--------|---------|---------|
| 1100H   | TA01RUN | 1110H   | TA45RUN | 1180H   | TB0RUN   |        | 1190H   | TB1RUN  |
| 1H      |         | 1H      |         | 1H      |          |        | 1H      |         |
| 2H      | TA0REG  | 2H      | TA4REG  | 2H      | TB0MOD   |        | 2H      | TB1MOD  |
| 3H      | TA1REG  | 3H      | TA5REG  | 3H      | TB0FFCR  |        | 3H      | TB1FFCR |
| 4H      | TA01MOD | 4H      | TA45MOD | 4H      |          | $\geq$ | 4H      |         |
| 5H      | TA1FFCR | 5H      | TA5FFCR | 5H      |          | (      | ∑5H     |         |
| 6H      |         | 6H      |         | 6H      |          |        |         |         |
| 7H      |         | 7H      |         | 7H      | . (7)    | 7/     | 7H      |         |
| 8H      | TA23RUN | 8H      |         | 8H      | TB0RG0L\ | )      | ) 8H    | TB1RG0L |
| 9H      |         | 9H      |         | 9H      | TB0RG0H  |        | 9H      | TB1RG0H |
| AH      | TA2REG  | AH      |         | AH      | TB0RG1L  |        | AH      | TB1RG1L |
| ВН      | TA3REG  | ВН      |         | ВН      | TB0RG1H  |        | ВН      | TB1RG1H |
| CH      | TA23MOD | CH      |         | CH(     | TB0CR0L  |        | ÇH      | TB1CP0L |
| DH      | TA3FFCR | DH      |         | DH      | TB0CP0H  |        | . ∠\pH  | TB1CP0H |
| EH      |         | EH      |         | EH      | TB0CP1L  |        | EH      | TB1CP1L |
| FH      |         | FH      |         | ( ( FH  | TB0CP1H  |        | (FH)    | TB1CP1H |

[8] High speed serial channel (Note2)

| -/-     | _      | </th <th></th> <th></th> |     |                     |
|---------|--------|--------------------------|-----|---------------------|
| $\neg$  | -UA    | ĎТ                       | VOT | $\boldsymbol{\cap}$ |
| - 1/8/1 | NI I A | KI                       | /51 | •                   |
|         |        |                          |     |                     |

| Address | Name    |   | Address           | Name      |   | Address     | Name     | $\sim$ | Address | Name    |
|---------|---------|---|-------------------|-----------|---|-------------|----------|--------|---------|---------|
| 0C00H   | HSC0MD  |   | 0C10H             | HSC0TD (  |   | 1200H       | SC0BUF// |        | 1210H   | SC2BUF  |
| 1H      | HSC0MD  |   | 1H                | HSC0TD    |   | JH:         | SCOCR    |        | 1H      | SC2CR   |
| 2H      | HSC0CT  |   | 2H                | HSCORD    | > | /2H         | SC0MQD0  |        | 2H      | SC2MOD0 |
| 3H      | HSC0CT  |   | 3H                | HSCORD    |   | <b>√3</b> ₩ | BROCR    |        | 3H      | BR2CR   |
| 4H      | HSC0ST  |   | 4H                | HSC0TS    |   | 4H          | BROADD   |        | 4H      | BR2ADD  |
| 5H      | HSC0ST  |   | 5H                | HSCOTS    |   | 5H          | SC0MOD1  |        | 5H      | SC2MOD1 |
| 6H      | HSC0CR  |   | (6H√              | HSC0RS    |   | <           | ·        |        | 6H      |         |
| 7H      | HSC0CR  |   | / XH              | HSCORS    |   | √/∆H        | SIR0CR   |        | 7H      | SIR2CR  |
| 8H      | HSC0IS  |   | 8H.               |           |   | /\8H)       | SC1BUF   |        | 8H      |         |
| 9H      | HSC0IS  |   | ( / ) áH          |           |   | 9H          | SC1CR    |        | 9H      |         |
| AH      | HSC0WE  | \ | V AH              |           | 1 | AH          | SC1MOD0  |        | AH      |         |
| ВН      | HSC0WE/ | ) | ВН                | $\sim$ (( |   | ⟨\) BH      | BR1CR    |        | ВН      |         |
| СН      | HSC01E  |   | ─ CH              |           |   | СН          | BR1ADD   |        | CH      |         |
| DH      | HSC0IE  |   | DH                |           |   | DH          | SC1MOD1  |        | DH      |         |
| EH      | HSC0IR  |   | → EH <sup>°</sup> |           | > | EH          |          |        | EH      |         |
| FH      | HŞÇ0JR  |   | FH                |           |   | FH          | SIR1CR   |        | FH      |         |

Note1. Do not access no allocated name address.

Note2: This function is not built into TMP92CY23.

| [9] | $I^2C$ | bus/SIO |
|-----|--------|---------|
|-----|--------|---------|

[10] AD converter

[11] Watch dog timer

|         |                |         |         |       |              | _  |              |              |
|---------|----------------|---------|---------|-------|--------------|----|--------------|--------------|
| Address | Name           | Address | Name    | Addre | ss Name      |    | Address      | Ν            |
| 1240H   | SBI0CR1        | 12A0H   | ADREG0L | 12B0  | OH ADREG8L   |    | 1300H        | WDM          |
| 1H      | SBI0DBR        | 1H      | ADREG0H |       | IH ADREG8H   |    | 1H           | WDCI         |
| 2H      | I2C0AR         | 2H      | ADREG1L | 2     | 2H ADREG9L   |    | 2H           |              |
| 3H      | SBI0CR2/SBI0SR | 3H      | ADREG1H | ;     | BH ADREG9H   |    | 3H           |              |
| 4H      | SBI0BR0        | 4H      | ADREG2L | 4     | 4H ADREGAL   |    | 4H           |              |
| 5H      | SBI0BR1        | 5H      | ADREG2H | į     | 5H ADREGAH   |    | √5H          |              |
| 6H      |                | 6H      | ADREG3L | (     | SH ADREGBL   |    | 6H           |              |
| 7H      |                | 7H      | ADREG3H | -     | 7H ADREGBH   | 77 | 7H           |              |
| 8H      | SBI1CR1        | 8H      | ADREG4L | 8     | BH ADMODO\\\ |    | ) 8H         |              |
| 9H      | SBI1DBR        | 9H      | ADREG4H | 9     | H ADMOD1     |    | 9H           |              |
| AH      | I2C1AR         | AH      | ADREG5L | A     | AH ADMOD2    | >  | AH           |              |
| ВН      | SBI1CR2/SBI1SR | вн      | ADREG5H | E     | BH Reserved  |    | ВН           |              |
| CH      | SBI1BR0        | СН      | ADREG6L |       | Reserved     |    | ÇH           |              |
| DH      | SBI1BR1        | DH      | ADREG6H |       | M V          |    | <\\d\(\p\\\) |              |
| EH      |                | EH      | ADREG7L |       | H.           |    | EH           |              |
| FH      |                | FH      | ADREG7H | (()   | H ( )        |    | FH           | $\checkmark$ |

[12] Special timer for CLOCK

[13] Key-on wake up

| Address | Name  | 40 | Address    | Name                       |
|---------|-------|----|------------|----------------------------|
| 1310H   | RTCCR |    | 13A0H      | KIEN                       |
| 1H      |       |    | ) 1H       | KICR (// $\langle \rangle$ |
| 2H      |       |    | 2H         |                            |
| 3H      |       |    | //3H       |                            |
| 4H      |       |    | <b>4</b> H | ) )                        |
| 5H      |       |    | ĵн.        |                            |
| 6H      |       |    | 6H         | `                          |
| 7H      |       |    |            |                            |
| 8H      |       |    | /\\8H      |                            |
| 9H      |       |    | 9H         |                            |
| AH      |       |    | AH /       |                            |
| ВН      |       |    | → BH       |                            |
| CH      |       |    | )) CH      |                            |
| DH      |       |    | / DH       |                            |
| EH      |       |    | EH         |                            |
| FH      | `     |    | FH         |                            |

Note: Do not access no allocated name address.



[14] Program patch function

| Address | Name      | Address | Name      | Address        | Name       |          | Address  | Name      |
|---------|-----------|---------|-----------|----------------|------------|----------|----------|-----------|
| 1400H   | ROMCMP00  | 1410H   | ROMCMP20  | 1420H          | ROMCMP40   |          | 1430H    | ROMCMP60  |
| 1H      | ROMCMP01  | 1H      | ROMCMP21  | 1H             | ROMCMP41   |          | 1H       | ROMCMP61  |
| 2H      | ROMCMP02  | 2H      | ROMCMP22  | 2H             | ROMCMP42   |          | 2H       | ROMCMP62  |
| 3H      |           | 3H      |           | 3H             |            |          | 3H       |           |
| 4H      | ROMSUB0LL | 4H      | ROMSUB2LL | 4H             | ROMSUB4LL  | 1        | 4H       | ROMSUB6LL |
| 5H      | ROMSUB0LH | 5H      | ROMSUB2LH | 5H             | ROMSUB4LH  |          | ) < 5H   | ROMSUB6LH |
| 6H      | ROMSUB0HL | 6H      | ROMSUB2HL | 6H             | ROMSUB4HL  |          |          | ROMSUB6HL |
| 7H      | ROMSUB0HH | 7H      | ROMSUB2HH | 7H             | ROMSUB4HH/ | $\wedge$ | 7H       | ROMSUB6HH |
| 8H      | ROMCMP10  | 8H      | ROMCMP30  | 8H             | ROMCMP50   | ))       | 8H       | ROMCMP70  |
| 9H      | ROMCMP11  | 9H      | ROMCMP31  | 9H             | ROMCMP51   |          | 9H       | ROMCMP71  |
| AH      | ROMCMP12  | AH      | ROMCMP32  | AH             | ROMCMP52   |          | AH       | ROMCMP72  |
| вн      |           | BH      |           | ВН             |            |          | BH       |           |
| CH      | ROMSUB1LL | CH      | ROMSUB3LL | CH(            | ROMSUB5LL  |          | CH       | ROMSUB7LL |
| DH      | ROMSUB1LH | DH      | ROMSUB3LH | DH/            | ROMSUB5LH  |          | _ ⟨√(DH) | ROMSUB7LH |
| EH      | ROMSUB1HL | EH      | ROMSUB3HL | EH             | ROMSUB5HL  |          | ₹H.      | ROMSUB7HL |
| FH      | ROMSUB1HH | FH      | ROMSUB3HH | (( <i>/</i> ₱H | ROMSUB5HH  | (        | FH)      | ROMSUB7HH |

(1) I/O ports (1/4)

| Symbol | Name    | Address | 7            | 6                               | 5             | 4                | 3               | 2                 | 1                  | 0                  |
|--------|---------|---------|--------------|---------------------------------|---------------|------------------|-----------------|-------------------|--------------------|--------------------|
| ,      |         |         | P07          | P06                             | P05           | P04              | P03             | P02               | P01                | P00                |
| P0     | Port 0  | 0000H   |              |                                 |               | R/               | W               | l .               |                    |                    |
|        |         |         |              | Data fi                         | rom external  | port (Output     | t latch regist  | er is cleared     | to "0")            |                    |
|        |         |         | P17          | P16                             | P15           | P14              | P13             | P12               | P11                | P10                |
| P1     | Port 1  | 0004H   |              |                                 |               | R/               | W               |                   |                    |                    |
|        |         |         |              | Data fi                         | rom external  | port (Output     | t latch regist  | er is cleared     | to "0")            |                    |
|        |         |         | P47          | P46                             | P45           | P44              | P43             | (P42)             | P41                | P40                |
| P4     | Port 4  | 0010H   |              |                                 |               | R/               |                 |                   |                    |                    |
|        |         |         |              |                                 |               | port (Outpu      |                 | / \ \             |                    |                    |
|        |         |         | P57          | P56                             | P55           | P54 <sup>4</sup> | P53\ \          | P52               | P51                | P50                |
| P5     | Port 5  | 0014H   |              |                                 |               |                  | W               | <u> </u>          |                    |                    |
|        |         |         |              |                                 |               | port (Outpu      |                 |                   |                    |                    |
| DC     | Dawl C  | 004011  | P67          | P66                             | P65           | P64              | P63             | P62               | P61                | P60                |
| P6     | Port 6  | 0018H   |              | D-1- (                          |               | (R/              |                 |                   | ((0))              |                    |
|        |         |         | D77          |                                 | rom external  | port (Outpu      |                 | _ ^ >             |                    | D70                |
|        |         |         | P77          | P76                             |               | P74              | P73             | P72               | P71                | P70                |
|        |         |         |              | /W                              |               | Data from        |                 | <del>) ( ) </del> | w                  |                    |
| P7     | Port 7  | 001CH   |              | external port<br>ch register is |               | external         |                 |                   | external port      |                    |
|        |         | 00.0    |              | o "1")                          | $\times$      | port             | (Out            | put latch reg     | gister is set t    | o "1")             |
|        |         |         | 3311         | . ,                             |               |                  | 0 (Output       | latch registe     | r): Pull-up re     | sistor OFF         |
|        |         |         |              | -                               |               | <b>▽</b> -       |                 | latch registe     |                    |                    |
|        |         |         |              |                                 |               |                  | /P83>           | P82               | P81                | P80                |
|        |         |         |              |                                 |               |                  |                 | ) ) R             | /W                 |                    |
|        |         |         |              | 1                               |               |                  | Data from       | /                 |                    |                    |
| P8     | Port 8  | 0020H   |              |                                 | \\`           | X <              | external        |                   |                    |                    |
| 10     | 1 011 0 | 002011  |              |                                 | $\nearrow$    |                  | port<br>(Output | 0                 | 1                  | 1                  |
|        |         |         |              |                                 |               |                  | latch           | U                 | '                  | '                  |
|        |         |         | $\searrow$   |                                 |               | _ \              | register is     |                   |                    |                    |
|        |         |         | (X           |                                 | \             |                  | set to "1")     |                   |                    |                    |
|        |         |         |              | $\nearrow \nearrow$             | 4             |                  | PC3             | PC2               | PC1                | PC0                |
| PC     | Port C  | 0030H   |              |                                 |               |                  |                 |                   | R                  |                    |
|        |         |         | 7000         |                                 | $\rightarrow$ | 72               |                 |                   | external port      | 1                  |
|        |         |         |              | _                               | $\mathcal{A}$ | PD4              | PD3             | PD2               | PD1                | PD0                |
|        |         |         |              |                                 |               | /                | R/W             |                   | R                  | R/W                |
| PD     | Port D  | 0034H   |              |                                 |               |                  |                 |                   | Data from external | Data from external |
|        |         |         |              | 1                               |               | Data from        | external po     | rt (Note 1)       | port               | port               |
|        | ^       |         | ~ \          |                                 |               |                  |                 |                   |                    | (Note 1)           |
|        |         |         |              |                                 | PF5           | PF4              | PF3             | PF2               | PF1                | PF0                |
| PF     | Port F  | 003CH   |              |                                 |               |                  | R               | W                 |                    |                    |
|        |         |         |              |                                 | Data f        | rom external     | port (Outpu     | t latch regist    | er is cleared      | I to "0")          |
|        |         | ))      | PG7          | PG6                             | PG5           | PG4              | PG3             | PG2               | PG1                | PG0                |
| PG     | Port G  | 0040H   |              | // ~                            |               | F                |                 |                   |                    |                    |
|        |         | ((      |              |                                 | Dat           | a from exteri    |                 |                   | 1                  | r                  |
|        |         |         | Y The second |                                 |               |                  | PL3             | PL2               | PL1                | PL0                |
| PL     | Port L  | 0054H   |              |                                 |               |                  |                 |                   | R                  |                    |
|        | ~       |         |              |                                 |               |                  |                 | a from exter      | 1                  | 1                  |
|        |         |         |              |                                 | PN5           | PN4              | PN3             | PN2               | PN1                | PN0                |
| PN     | Port N  | 005CH   |              |                                 |               |                  |                 | W                 |                    |                    |
|        |         |         |              |                                 | Data          | a from exterr    | nal port (Out   | out latch reg     | ister is set to    | o "1")             |

Note1: Output latch register is cleared to "0". (There is no output latch register.)

Note2: It operates as an analog input port.(Input port disable)

I/O ports (2/4)

| Symbol | Name                | Address           | 7        | 6      | 5        | 4             | 3            | 2                        | 1    | 0                                   |
|--------|---------------------|-------------------|----------|--------|----------|---------------|--------------|--------------------------|------|-------------------------------------|
|        | Port 0              | 0002H             | P07C     | P06C   | P05C     | P04C          | P03C         | P02C                     | P01C | P00C                                |
| P0CR   | Control             | (Prohibit         |          | T      |          | V             |              |                          |      | _                                   |
|        | register            | RMW)              | 0        | 0      | 0        | 0             | 0            | 0                        | 0    | 0                                   |
|        |                     | ,                 |          |        |          | 0: Input      | 1: Output    | _                        |      | _                                   |
|        |                     |                   |          |        |          |               |              |                          |      | P00F                                |
|        | Port 0              | 0003H             |          |        |          |               |              |                          |      | W                                   |
| P0FC   | Function            | (Prohibit         |          |        |          |               |              | T)                       |      | 0                                   |
|        | register            | RMW)              |          |        |          | 4             | < (C         | 75                       |      | 0:Port<br>1:Data bus<br>(D0 to D7)  |
|        | 5                   |                   | P17C     | P16C   | P15C     | P14C          | R13C         | _P12C                    | P11C | P10C                                |
| DACD   | Port 1              | 0006H             |          | •      |          | V             |              |                          | •    | •                                   |
| P1CR   | Control<br>register | (Prohibit<br>RMW) | 0        | 0      | 0        | 0             | (0)          | 0                        | 0    | 0                                   |
|        | register            | KIVIVV)           |          | •      | •        | 0: Input      | 1: Output    | •                        |      | •                                   |
|        |                     |                   |          |        |          | A             |              | 4                        |      | P10F                                |
|        | Port 1              | 0007H             |          |        |          |               |              | 4                        |      | W                                   |
| P1FC   | Function            | (Prohibit         |          |        |          | 777/4         | 1            |                          | - A- | 0                                   |
|        | register            | RMW)              |          |        | (        |               |              |                          |      | 0:Port<br>1:Data bus<br>(D8 to D15) |
|        |                     |                   | P47C     | P46C   | P45C     | P44C          | P43C /       | P42C                     | P41C | P40C                                |
| P4CR   | Port 4<br>Control   | 0012H             |          | •      | 4(       | > v           | v            | $\langle \gamma \rangle$ |      | •                                   |
| P4CK   | register            | (Prohibit<br>RMW) | 0        | 0      | 0        | 0             | 0            | ∠ø                       | 0    | 0                                   |
|        | rogiotoi            | 14.000)           |          |        |          | 0: Input      | 1: Output/ < | $\cap$                   |      |                                     |
|        | Port 4              | 0013H             | P47F     | P46F   | R45F     | P44F          | P43F         | P42F                     | P41F | P40F                                |
| P4FC   | Function            | (Prohibit         |          | ( )    |          | // V          | V / V        | 1                        | 1    |                                     |
|        | register            | RMW)              | 0        | 0      | <b>0</b> | 10            | \0           | 0                        | 0    | 0                                   |
|        |                     | ,                 |          |        |          | ort 1: Addres |              |                          | 1    |                                     |
|        | Port 5              | 0016H             | P57C     | P56C   | P55C     | P54C          | ₽53C         | P52C                     | P51C | P50C                                |
| P5CR   | Control             | (Prohibit         | ((       | ~ \_   | -        | V             |              |                          |      |                                     |
|        | register            | RMW)              | 0 //     | 9      | 0 <      | 0             | 0            | 0                        | 0    | 0                                   |
|        |                     |                   | /pc=r/^  | DEGE   | Dez-     | 1 1           | 1: Output    | DECE                     | DE4E | DEAE                                |
|        | Port 5              | 0017H             | (P57F \  | P56F   | P55F     | R54F          | P53F         | P52F                     | P51F | P50F                                |
| P5FC   | Function            | (Prohibit         |          | 0      | (0/<     |               | 0            | 0                        | 0    |                                     |
|        | register            | (RMW)             |          | 0      |          | rt 1: Addres  |              |                          | 0    | 0                                   |
|        |                     |                   | D67C     | D66C   |          | P64C          | P63C         |                          | D61C | Penc                                |
|        | Port 6              | 001AH             | P67C     | P66C   | P65C     | P64C<br>      |              | P62C                     | P61C | P60C                                |
| P6CR   | Control             | (Prohibit         | 0        | 0      | 0        | 0             | 0            | 0                        | 0    | 0                                   |
|        | register            | RMW)              | <u> </u> |        |          |               | 1: Output    | <u> </u>                 |      |                                     |
|        | <b>→</b>            |                   | P67F     | / P66F | P65F     | P64F          | P63F         | P62F                     | P61F | P60F                                |
|        | Port 6              | 001BH             |          | 1 (    |          | V             |              |                          |      | . 501                               |
| P6FC   | Function            | Prohibit          | 0        | \ Q    | 0        | 0             | 0            | 0                        | 0    | 0                                   |
|        | register            | RMW)              | > (      | 1/     | _        | rt 1: Address |              |                          |      |                                     |
|        | 1                   | -                 |          | 1      |          |               | ,            | -,                       |      |                                     |

Note1: When port P70 to P73 is used in the input mode, P7 register controls the built-in pull-up resistor.

Read-modify-write is prohibited in the input mode or the I/O mode. Setting the built-in pull-up resistor may be depended on the states of the input pin.

Note 2: Notes on using low-frequency resonator to P76,P77, it is necessary to set the following procedures to reduce the consumption power supply.

·connecting to a resonator

Set P7CR<P76C,P77C>="11",P7<P76,P77>="00".

·connectiion to an oscillator

Set P7CR<P76C,P77C>="11",P7<P76,P77>="10".

I/O ports (3/4)

| Symbol            | Name               | Address                                | 7                                      | 6                                 | 5   | 4                                                                                        | 3                                                                                    | 2                                 | 1                                 | 0                        |
|-------------------|--------------------|----------------------------------------|----------------------------------------|-----------------------------------|-----|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|--------------------------|
| Symbol            | Name               | Addiess                                |                                        |                                   |     |                                                                                          |                                                                                      | _                                 | _                                 | _                        |
|                   | Port 7             | 001EH                                  | P77C                                   | P76C                              |     |                                                                                          | P73C                                                                                 | P720                              |                                   | P70C                     |
| P7CR              | Control            | (Prohibit                              | V                                      | 1                                 |     |                                                                                          | 0                                                                                    | 0                                 | W                                 | 0                        |
|                   | register           | RMW)                                   |                                        | 1: Output                         |     |                                                                                          | 0                                                                                    |                                   | out 1: Output                     | 0                        |
|                   |                    |                                        | o. input                               | 1. Output                         |     | P74F                                                                                     | P73F                                                                                 | P72F                              |                                   | P70F                     |
|                   |                    |                                        | /                                      |                                   |     | 1 7 -11                                                                                  | 1 701                                                                                | W                                 |                                   | 1 701                    |
|                   | Port 7             | 001FH                                  |                                        |                                   |     | 0                                                                                        | 0                                                                                    | 1(0                               | 0                                 | 0                        |
| P7FC              | Function           | (Prohibit                              |                                        |                                   |     | 0: Port                                                                                  | 0: Port                                                                              | 0: Port                           | 0: Port                           | 0: Port                  |
|                   | register           | RMW)                                   |                                        |                                   |     | input                                                                                    | 1: SRLUB                                                                             | 1) SRLI                           | B 1: SRWR                         | 1: RD                    |
|                   |                    |                                        |                                        |                                   |     | 1: INT0<br>input                                                                         |                                                                                      | $\langle \langle \rangle \rangle$ |                                   |                          |
|                   |                    |                                        |                                        |                                   |     | IIIput                                                                                   | P83F2                                                                                |                                   | P81F2                             | P80F2                    |
|                   | Port 8             | 0021H                                  | $\overline{}$                          |                                   |     |                                                                                          | (W                                                                                   |                                   | _                                 | W                        |
| P8FC2             | Function           | (Prohibit                              | //                                     |                                   |     |                                                                                          | 0                                                                                    |                                   | 0                                 | 0                        |
|                   | register 2         | RMW)                                   |                                        |                                   |     |                                                                                          | 0: <p83f></p83f>                                                                     |                                   | 0: <p81f></p81f>                  | 0: <p80f></p80f>         |
|                   |                    |                                        |                                        |                                   |     | (1)                                                                                      | 1: TA5OUT                                                                            |                                   | 1: TA3001                         | 1: TA1OUT                |
|                   |                    |                                        |                                        |                                   |     |                                                                                          | P83C                                                                                 | $\downarrow$                      |                                   |                          |
| 5-5-              | Port 8             | 0022H                                  |                                        |                                   |     | 144                                                                                      | ) w (                                                                                | 1                                 |                                   |                          |
| P8CR              | Control            | (Prohibit<br>RMW)                      |                                        |                                   |     |                                                                                          | 1                                                                                    |                                   | 1979)                             |                          |
|                   | register           | KIVIVV)                                |                                        |                                   |     |                                                                                          | 0: Input                                                                             |                                   |                                   |                          |
|                   |                    |                                        |                                        |                                   |     |                                                                                          | 1: Output /                                                                          | ( 500)                            | D045                              | Door                     |
|                   |                    |                                        |                                        |                                   |     |                                                                                          | P83F \                                                                               | P82F                              | P81F<br>W                         | P80F                     |
|                   | D 0                | 222211                                 | //                                     |                                   |     |                                                                                          | 6//                                                                                  | 0                                 |                                   | 0                        |
| P8FC              | Port 8<br>Function | 0023H<br>(Prohibit                     |                                        |                                   | 1 3 |                                                                                          | <p83f,p83c< td=""><td></td><td>0<br/>0: Port</td><td>0<br/>0: Port</td></p83f,p83c<> |                                   | 0<br>0: Port                      | 0<br>0: Port             |
| FOFC              | register           | RMW)                                   |                                        | 4(                                |     |                                                                                          | 00:Port input                                                                        |                                   | 1: CS1                            | 1: CS0                   |
|                   | rogiotor           | 14.0.11)                               |                                        |                                   | , i |                                                                                          | 01:Port outp                                                                         | ut                                |                                   |                          |
|                   |                    |                                        |                                        |                                   |     |                                                                                          | 10: WAIT inpu                                                                        |                                   |                                   |                          |
|                   |                    |                                        |                                        |                                   |     |                                                                                          | 11: cs3 outpu                                                                        | PC2F                              | F PC1F                            | PC0F                     |
|                   | Port C             | 0033H                                  |                                        | 7                                 |     | A.                                                                                       | VI 031                                                                               | 1 021                             | W                                 | 1 001                    |
| PCFC              | Function           | (Prohibit                              | $\uparrow$                             | $\rightarrow \downarrow \uparrow$ |     | A)                                                                                       | 0                                                                                    | 0                                 | 0                                 | 0                        |
|                   | register           | RMW)                                   |                                        |                                   |     | 177                                                                                      | 0: Port                                                                              | 0: Port                           | 0: Port                           | 0: Port                  |
|                   |                    |                                        | $(7/\langle$                           |                                   |     | 7/                                                                                       | 1: INT3                                                                              | 1: INT2                           | 1: INT1                           | 1: TAOIN                 |
|                   | Port D             | 0035H                                  | Z                                      |                                   |     | PD4F2                                                                                    | PD3F2                                                                                | PD2F                              | 2 PD1F2                           |                          |
| PDFC2             | Function           | (Prohibit                              | //                                     |                                   | 7   | )                                                                                        |                                                                                      | W                                 | <u>-</u>                          |                          |
| 1 51 62           | register 2         | RMW)                                   | $\int$                                 |                                   |     | 0                                                                                        | 0                                                                                    | 0                                 | 0                                 |                          |
| $\longrightarrow$ | -                  |                                        |                                        |                                   |     |                                                                                          | 1                                                                                    | to PDFC>                          | _                                 |                          |
|                   |                    |                                        |                                        | 1                                 |     | PD4C                                                                                     | PD3C                                                                                 | PD2C                              |                                   | PD0C                     |
| DDCD              | Port D             | 0036H                                  |                                        |                                   |     |                                                                                          | W                                                                                    | 1                                 |                                   | W                        |
| PDCR              | Control register   | (Prohibit<br>RMW)                      |                                        | $\rightarrow$                     | ×   | 0                                                                                        | 0                                                                                    | 0                                 |                                   | 0                        |
|                   | regioter           | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | <b>\( \)</b>                           | 1                                 |     | 0:                                                                                       | Input 1: Ou                                                                          | tput                              |                                   | 0: Input<br>1: Output    |
| <>                |                    | ))                                     |                                        | M.                                |     | PD4F                                                                                     | PD3F                                                                                 | PD2F                              | F PD1F                            | PD0F                     |
|                   |                    |                                        | <b>A</b>                               | $\mathcal{H}$                     |     |                                                                                          | . 201                                                                                | W                                 |                                   |                          |
|                   |                    | ((                                     |                                        | ***                               |     | 0                                                                                        | 0                                                                                    | 0                                 | 0                                 | 0                        |
|                   |                    |                                        |                                        |                                   |     | <pdxf2,pdxf,< td=""><td> </td><td></td><td><u> </u></td><td><u> </u></td></pdxf2,pdxf,<> |                                                                                      |                                   | <u> </u>                          | <u> </u>                 |
|                   |                    |                                        | * \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                   |     | <pdxf2,pdxf, pdxc=""></pdxf2,pdxf,>                                                      | PD4                                                                                  | PD3                               | PD2 PD1                           | PD0                      |
|                   | Port D             | 0037H                                  | *                                      |                                   |     | 000                                                                                      |                                                                                      |                                   | nput port Input po<br>Output port | t Input port Output port |
| PDFC              | Function           | (Prohibit                              |                                        |                                   |     | 001<br>010                                                                               | Output port C<br>Reserved                                                            |                                   | TB1IN1 TB1IN0                     |                          |
|                   | register           | RMW)                                   |                                        |                                   |     | 011                                                                                      |                                                                                      | TRACI ITO                         | TXD2<br>3-STATE)                  | TB0OUT0                  |
|                   |                    |                                        |                                        |                                   |     | 100                                                                                      | SCLK2 input                                                                          |                                   |                                   |                          |
|                   |                    |                                        |                                        |                                   |     | 100                                                                                      | CTS2 input                                                                           | INT7                              | INT6 INT5                         |                          |
|                   |                    |                                        |                                        |                                   |     | 101<br>110                                                                               |                                                                                      |                                   | Reserved Reserve                  |                          |
|                   |                    |                                        |                                        | Ì                                 |     | <del>                                   </del>                                           |                                                                                      |                                   | TXD2                              |                          |
|                   |                    |                                        |                                        |                                   |     | 111                                                                                      | Reserved                                                                             | Reserved (                        | pen Drain)                        |                          |

I/O ports (4/4)

|          | ports (4/4        | 1                 |                                        |                | 1                                                                                      | 1                                                                                                        | 1             | 1                  | 1                                     |                        |
|----------|-------------------|-------------------|----------------------------------------|----------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------|--------------------|---------------------------------------|------------------------|
| Symbol   | Name              | Address           | 7                                      | 6              | 5                                                                                      | 4                                                                                                        | 3             | 2                  | 1                                     | 0                      |
|          |                   |                   |                                        |                |                                                                                        |                                                                                                          |               | PF2F2              |                                       |                        |
|          | Port F            | 003DH             |                                        |                |                                                                                        |                                                                                                          |               | W                  |                                       |                        |
| PFFC2    | Function          | (Prohibit         |                                        |                |                                                                                        |                                                                                                          |               | 0                  |                                       |                        |
|          | register 2        | RMW)              |                                        | 7              |                                                                                        |                                                                                                          |               | 0: <pf2f></pf2f>   |                                       | ,                      |
|          |                   |                   |                                        |                |                                                                                        |                                                                                                          | 4             | 1: CLK             |                                       |                        |
|          | D = = = =         | 000511            |                                        |                | PF5C                                                                                   | PF4C                                                                                                     | PF3C          | PF2C               | PF1C                                  | PF0C                   |
| PFCR     | Port F<br>Control | 003EH             |                                        |                |                                                                                        |                                                                                                          | V             | V(                 | >                                     |                        |
| PFCK     |                   | (Prohibit<br>RMW) |                                        |                | 0                                                                                      | 0                                                                                                        | 0             | (0)                | 0                                     | 0                      |
|          | register          | KIVIVV)           |                                        |                |                                                                                        |                                                                                                          | 0: Input      | 1: Output          |                                       |                        |
|          |                   |                   |                                        |                | PF5F                                                                                   | PF4F                                                                                                     | PF3F          | PH2F               | PF1F                                  | PF0F                   |
|          |                   |                   |                                        |                |                                                                                        | •                                                                                                        |               |                    | l .                                   |                        |
|          |                   |                   |                                        |                | 0                                                                                      | 0                                                                                                        | 0             | 0                  | 0                                     | 0                      |
|          |                   |                   |                                        |                |                                                                                        |                                                                                                          | 1( )          | <u> </u>           | · · · · · · · · · · · · · · · · · · · | 7                      |
|          |                   |                   |                                        |                | _                                                                                      | <pfxf2,pfxf,pf< td=""><td><math>\overline{}</math></td><td>1</td><td>PF0</td><td>-</td></pfxf2,pfxf,pf<> | $\overline{}$ | 1                  | PF0                                   | -                      |
|          |                   |                   |                                        |                |                                                                                        | 000                                                                                                      | Input Output  |                    |                                       |                        |
|          |                   |                   |                                        |                |                                                                                        | 010                                                                                                      | SCLK0         | input              | TXD0                                  | +                      |
|          |                   |                   |                                        |                | _                                                                                      |                                                                                                          | CTS0 ii       | nput RXD0          | (Open Drain                           | )                      |
|          |                   |                   |                                        |                |                                                                                        | ( ( /0)11 \                                                                                              | SCLK0         | output Reserve     | (3-STATE)                             |                        |
|          |                   |                   |                                        |                |                                                                                        | (100/                                                                                                    | Reser         | A 7.0              | d Reserved                            |                        |
| PFFC     | Port F            | 003FH             |                                        |                | ( <del>/</del>                                                                         | 101                                                                                                      | CLK ou        |                    | 19/                                   |                        |
| (Note10) | Function          | (Prohibit         |                                        |                |                                                                                        | 110                                                                                                      | Reser         |                    |                                       | _                      |
|          | register          | RMW)              |                                        |                | 7( -                                                                                   | 111                                                                                                      | Reser         |                    |                                       | _                      |
|          |                   |                   |                                        |                |                                                                                        | <siocnt,pfxf2,pfxi< td=""><td></td><td>~//</td><td>PF3</td><td>-</td></siocnt,pfxf2,pfxi<>               |               | ~//                | PF3                                   | -                      |
|          |                   |                   |                                        |                |                                                                                        | 0000                                                                                                     | Input p       | ^                  |                                       | _                      |
|          |                   |                   |                                        |                |                                                                                        | 0010                                                                                                     | \$CLK1        | input DVD4         | TXD1                                  | +                      |
|          |                   |                   |                                        | $\mathcal{A}($ | _                                                                                      | -/                                                                                                       | CTS1 İI       | pput RADI          | (Open Drain<br>TXD1                   | )                      |
|          |                   |                   |                                        |                | \ \ L                                                                                  | /_0011                                                                                                   | SCLK1 o       | output Reserve     | (3-STATE)                             |                        |
|          |                   |                   |                                        |                |                                                                                        | 1000                                                                                                     | Reser         | ved Reserve        |                                       |                        |
|          |                   |                   |                                        |                | )                                                                                      | 1001                                                                                                     | Reser         |                    | _                                     |                        |
|          |                   |                   |                                        | $\sim$         | 1 -                                                                                    | 1010                                                                                                     | Reser         |                    |                                       | -                      |
|          |                   |                   |                                        | $\sim$         | <u></u>                                                                                | 1011                                                                                                     | HSCLK (       | output Reserve     | d HSSO(3-stag                         | e)                     |
|          |                   |                   | PG7F                                   | PG6F           | PG5F 〈                                                                                 | PG4F                                                                                                     | PG3F          | PG2F               | PG1F                                  | PG0F                   |
| 50-5     | Port G            | 0043H             |                                        |                |                                                                                        | 1                                                                                                        | V             | ,                  |                                       |                        |
| PGFC     | Control           | (Prohibit         | ((// \                                 | 1              | 1                                                                                      | 1                                                                                                        | 1             | 1                  | 1                                     | 1                      |
|          | register          | RMW)              | ( \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | /              | (7)                                                                                    | Rort/Key inpu                                                                                            |               |                    | · · · · · · · · · · · · · · · · · · · | <u> </u>               |
|          |                   | // )              |                                        |                | 442                                                                                    | <b>—</b>                                                                                                 | PL3F          | PL2F               | PL1F                                  | PL0F                   |
|          | Port L            | 0057H             |                                        |                |                                                                                        |                                                                                                          | . 201         | V LZI              |                                       |                        |
| PLFC     | Function          | (Prohibit         | /                                      |                |                                                                                        |                                                                                                          | 1             | 1                  | 1                                     | 1                      |
|          | register          | RMW)              | $\Rightarrow$                          | 1              |                                                                                        |                                                                                                          |               | L                  | 1: Analog inp                         |                        |
|          |                   | $\rightarrow$     |                                        |                | PN5C                                                                                   | PN4C                                                                                                     | PN3C          | PN2C               | PN1C                                  | PN0C                   |
|          | Port N            | 005EH             |                                        |                | LINOC                                                                                  | r IN4U                                                                                                   |               | PN2C<br>           | FINIC                                 | FINUC                  |
| PNCR     | Control           | (Prehibit         | $\overline{}$                          | <del></del>    | _                                                                                      | 0                                                                                                        | 0             | 0                  | 0                                     | 0                      |
|          | register          | RMW)              | 7                                      | $\leftarrow$   | 0                                                                                      | 1 0                                                                                                      | L             |                    | 0                                     | 0                      |
| _        |                   | ) )               |                                        |                | D1:                                                                                    | D1::=                                                                                                    |               | 1: Output          | D1::-                                 | DV:                    |
|          |                   | / /               |                                        | 7 2            | PN5F                                                                                   | PN4F                                                                                                     | PN3F          | PN2F               | PN1F                                  | PN0F                   |
|          |                   |                   | At &                                   | $\mathcal{A}$  |                                                                                        | 1                                                                                                        |               | V                  | ı                                     |                        |
| DATE     | Port N            | 005FH             |                                        |                | 0                                                                                      | 0                                                                                                        | 0             | 0                  | 0                                     | 0                      |
| PNFC     | Function          | (Prohibit         |                                        |                | <pnxf,pnx< td=""><td></td><td></td><td>N3 PN2</td><td>PN1</td><td>PN0</td></pnxf,pnx<> |                                                                                                          |               | N3 PN2             | PN1                                   | PN0                    |
|          | register          | RMW)              |                                        |                | 00                                                                                     | Input port Output port                                                                                   |               | ut port Input port |                                       | Input port Output port |
|          |                   |                   |                                        |                | 10                                                                                     | SI1 input S                                                                                              | O1 output SCK | 1 input SI0 input  | SO0 output S                          | CK0 input              |
|          |                   |                   |                                        |                | 11                                                                                     | SCL1I/O                                                                                                  | SDA1 I/O SCK1 | output SCL0 I/O    | SDA01/O S                             | CK0 output             |

Note 1: When using P83 as a  $\overline{\text{WAIT}}$  input, while setting it as P8CR<P83C>= "0" and P8FC<P83F> = "1", it is necessary to set memory control register BxCSL<BxWW2:0> or <BxWR2:0> as "011".

Note 2: When setting P80 to P83 as a standard chip select signal ( $\overline{\text{CS0}}$  to  $\overline{\text{CS3}}$ ) output, P8CR is set up after setting up P8FC.

Note 3: PC0 is not based on a functional setup of a port, but is inputted into TA0IN of a 8-bit timer (TMRA0)

Note 4: TB1IN0 and TB1IN1 input is inputted into the 16-bit timer TMRB1 irrespective of a functional setup of a port.

Note 5: RXD2, SCLK2 input, and CTS2 input are inputted into the serial channel 2 irrespective of a functional setup of a port.

Note 6: PD2 does not have a register for 3-state / open drain setup. Moreover, there is no open drain function at the time of an output port.

Note 7: PF0 and PF3 does not have a register for 3-state / open drain setup. Moreover, there is no open drain function at the time of an output port.

Note8: Input channel selection of an AD converter in PG0 to PG7 and PL0 to PL3 is set up by AD mode control register ADMOD1 <ADCH3:0>. Moreover, a setup of AD trigger (ADTRG) input permission is set up by ADMOD2 <ADTRGE>.

Note9: Specify the HSCSEL<SIOCNT> when selecting TXD1 or HSSO, RXD1 or HSSI and SCLK1 or HSCLK. Note10: HSSO, HSSI, HSCLK and <SIOCNT> are not built into TMP92CY23.



TOSHIBA TMP92CY23/CD23A

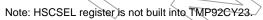
## (2) Interrupt control (1/4)

| Symbol    | Name             | Address    | 7               | 6                       | 5            | 4                            | 3                 | 2          | 1                  | 0         |
|-----------|------------------|------------|-----------------|-------------------------|--------------|------------------------------|-------------------|------------|--------------------|-----------|
| Cymbol    | Hamo             | 71441000   | ,               | IN.                     |              | '                            |                   |            | T0                 | U         |
|           |                  |            | 14.0            |                         |              | 14140                        | 100               |            |                    | 10140     |
| INTE01    | INT0 & INT1      | 00D0H      | I1C<br>R        | I1M2                    | I1M1         | I1M0                         | IOC               | IOM2       | IOM1               | IOMO      |
| INTLOT    | enable           | 000011     | 0               | 0                       | R/W<br>0     | 0                            | R<br>0            | 0          | R/W<br>0           | 0         |
|           |                  |            | 1: INT1         | -                       |              |                              | 1: INT0           |            |                    |           |
|           |                  |            | 1. 1111 1       |                         | rupt request | level                        | 1. 11110          |            | rupt request       | level     |
|           |                  |            | 120             | IN <sup>-</sup><br>I3M2 | 123M1        | IOMO                         | 100               | V2M2       | T2<br>  I2M1       | IOMO      |
| INTE23    | INT2 & INT3      | 00D1H      | I3C             | ISIVIZ                  |              | I3M0                         | I2C               | (ZIVIZ     | 1                  | I2M0      |
| IIVILZO   | enable           | 000111     | R<br>0          | 0                       | R/W<br>0     | 0                            | R 0               | 7/0        | R/W<br>0           | 0         |
|           |                  |            | 1: INT3         |                         | rupt request | l .                          | 1: INT2           | / { \      | rupt request       |           |
|           |                  |            | 1. 11410        | IN                      |              | 10 4 01                      | 7//               |            | тарт точасот<br>Т4 | 10 4 01   |
|           |                  |            | I5C             | I5M2                    | I5M1         | I5M0                         | (I4C              | ) I4M2     | 14M1               | I4M0      |
| INTE45    | INT4 & INT5      | 00D2H      | R               | IOIVIZ                  | R/W          | IOIVIO                       | R                 | / 141012   | R/W                | 141010    |
|           | enable           | 0022       | 0               | 0                       | 0            | 0 (                          | 0                 | 0          | 0                  | 0         |
|           |                  |            | 1: INT5         | -                       | rupt request | - 11                         | 1: INT4           | -          | rupt request       |           |
|           |                  |            |                 | IN                      |              |                              |                   |            | T6                 |           |
|           |                  |            | I7C             | 17M2                    | 17M1         | (17,M0 \                     | I6C               | 16M2       | 16M1               | I6M0      |
| INTE67    | INT6 & INT7      | 00D3H      | R               |                         | R/W          |                              | R                 |            | /R/W               | 101110    |
|           | enable           |            | 0               | 0                       | 0 (          | 0                            | 0                 | (a)        | (/ø                | 0         |
|           |                  |            | 1: INT7         | Interi                  | rupt request | level                        | 1: INT6/          | Inter      | rupt request       | level     |
|           |                  |            |                 | INTTA1 (                |              |                              | ((                |            | (TMRA0)            |           |
|           | INTTA0 &         |            | ITA1C           | ITA1M2                  | _ITA1M1      | ITA1M0                       | ITA0C             | JTA0M2     | ITA0M1             | ITA0M0    |
| INTETA01  | INTTA1           | 00D4H      | R               | (                       | R/W.         | >                            | (R7)              | $\wedge$   | R/W                |           |
|           | enable           |            | 0               | 0                       | 0            | 0                            | 0/                | ) ) 0      | 0                  | 0         |
|           |                  |            | 1: INTTA1       | Interi                  | rupt request | level/                       | 1:NTTAO           | Inter      | rupt request       | level     |
|           |                  |            |                 | INTTA3                  | TMRA3)       |                              |                   | INTTA2     | (TMRA2)            |           |
|           | INTTA2 &         |            | ITA3C           | ITA3M2                  | TA3M1        | ITA3M0                       | ITA2C             | ITA2M2     | ITA2M1             | ITA2M0    |
| INTETA23  | INTTA3           | 00D5H      | R               |                         | R/W          |                              | √/R               |            | R/W                | 1         |
|           | enable           |            | 0               | 7 0                     | 0            | 0                            | × 0               | 0          | 0                  | 0         |
|           |                  |            | 1: INTTAS       |                         | rupt request | level                        | 1: INTTA2         |            | rupt request       | level     |
|           |                  |            |                 | _INTTA5 (               | , ,          |                              |                   | INTTA4     | (TMRA4)            | 1         |
|           | INTTA4 &         |            | ITA5C           | ITA5M2                  | ITA5M1       | NTA5M0                       | ITA4C             | ITA4M2     | ITA4M1             | ITA4M0    |
| INTETA45  | INTTA5           | 00D6H      | (\R/)           | )                       | R/W          | $\stackrel{\cdot}{\searrow}$ | R                 |            | R/W                | i         |
|           | enable           |            | 0               | 0                       | $(9/\langle$ | 0                            | 0                 | 0          | 0                  | 0         |
|           |                  |            | 1: INTTA5       |                         | rupt reguest | Jevel                        | 1: INTTA4         |            | rupt request       | level     |
|           | INITENA          | \*\        | ITV: C          |                         | 1X0          | IT)/01.10                    | IDVCC             | i          | RX0                | ID)/ct.tc |
| INITESS   | INTRX0 &         | 000011     | ITX0C           | (ITX0M2                 | TX0M1        | ITX0M0                       | IRX0C             | IRX0M2     | IRX0M1             | IRX0M0    |
| INTES0    | INTTX0<br>enable | 00D8H      | × R             |                         | R/W          |                              | R                 |            | R/W                |           |
|           | chable           |            | 0<br>1: INITTYO | 0                       | 0            | 0                            | 0<br>1: INTRYO    | 0<br>Intor | 0                  | 0         |
|           |                  |            | 1: INTTX0       | 7                       | rupt request | ievei                        | 1: INTRX0         |            | rupt request       | ievei     |
|           | INTRX1 &         |            | ITX1C           | INTTX1/INT<br>ITX1M2    | ITX1M1       | ITX1M0                       | IRX1C             | IRX1M2     | RX1<br>IRX1M1      | IRX1M0    |
| INTES1HSC | INT(TX1/         | )<br>00D9H | R               | TIATIVIZ                | R/W          | IIAIIVIU                     | R                 | INA HVIZ   | R/W                | INATIVIU  |
|           | INTHSC           | 7000911    | 0               | 0                       | 0            | 0                            | 0                 | 0          | 0                  | 0         |
|           | enable           | ((         | 1X1TNI;1        | //                      | rupt request | -                            | 1: INTRX1         | -          | rupt request       |           |
|           |                  |            | 1/1111111       | INT                     |              | 10 4 01                      | 1. 11 11 11 1 1 1 | •          | RX2                | 10 4 01   |
|           | INTRX2 &         |            | ITX2C           | ITX2M2                  | ITX2M1       | ITX2M0                       | IRX2C             | IRX2M2     | IRX2M1             | IRX2M0    |
| INTES2    | INTTX2           | 00DAH      | R               | IIAZIVIZ                | R/W          | TIAZIVIU                     | R                 | IIVVEIVIE  | R/W                | IIXXZIVIU |
| 202       | enable           | 002/111    | 0               | 0                       | 0            | 0                            | 0                 | 0          | 0                  | 0         |
|           |                  |            | 1: INTTX2       |                         | rupt request |                              | 1: INTRX2         | -          | rupt request       |           |
|           |                  |            | 1.111111/1/2    | IIICII                  | api roquesi  | 10 401                       | 1.111111//2       | IIIIEI     | rupt request       | 10101     |

Note: INTHSC interrupt is not built into TMP92CY23.

Interrupt control (2/4)

| Symbol     | Name                                   | Address | 7               | 6          | 5             | 4             | 3            | 2         | 1                   | 0            |
|------------|----------------------------------------|---------|-----------------|------------|---------------|---------------|--------------|-----------|---------------------|--------------|
|            |                                        |         |                 | -          | _             |               |              | INTS      | SBE0                | <u>I</u>     |
|            | INTODEO                                |         | -               | =          | =             | -             | ISBE0C       | ISBE0M2   | ISBE0M1             | ISBE0M0      |
| INTESB0    | INTSBE0<br>enable                      | 00DCH   | _               |            | _             |               | R            |           | R/W                 |              |
|            | enable                                 |         |                 | I          |               | _             | 0            | 0         | 0                   | 0            |
|            |                                        |         |                 | Always     | write "0"     |               | 1: INTSBE0   | Inter     | rupt request        | level        |
|            |                                        |         |                 | _          | =             |               |              | INT       | SBE1                |              |
|            | INTSBE1                                |         | _               | _          | -             | _             | ISBE1C       | ISBE1M2   | SBE1M1              | ISBE1M0      |
| INTESB1    | enable                                 | 00DDH   | -               |            | _             | 1             | R            |           | R/W                 | •            |
|            |                                        |         | =               | =          | =             | =             | 0 (          | >/\0      | 0                   | 0            |
|            |                                        |         |                 | Always     | write "0"     | 4             | 1:UNTSBE1    | $\smile$  | rupt request        | level        |
|            |                                        |         |                 | INTTB01    | (TMRB0)       | ı             |              | -INTTB00  | (TMRB0)             |              |
|            | INTTB00 &                              |         | ITB01C          | ITB01M2    | ITB01M1       | ITB01M0       | (ITBOOC      | TB00M2    | ITB00M1             | ITB00M0      |
| INTETB0    | INTTB01                                | 00E0H   | R               |            | R/W           |               | R            |           | R/W                 |              |
|            | enable                                 |         | 0               | 0          | 0             | 0             | 0            | 0         | 0                   | 0            |
|            |                                        |         | 1: INTTB01      | Inter      | rupt request  | level <       | 1: INTTB00   |           | rupt request        | level        |
|            |                                        |         |                 | =          | =             |               | $\Diamond$   | - 1       | (TMRB0)             | 1            |
| IN ITETE O | INTTBO0                                | 005411  | -               | -          | -             |               | ľTBO0C       | ITBOOM2   | 1                   | ITBO0M0      |
| INTETBO0   | (Overflow)                             | 00E1H   | =               |            | -             |               | R            | 1         | //R/W               | <del> </del> |
|            | enable                                 |         | -               | _          | - (           | \ <u>-</u>    | 0            | 0         | 0                   | 0            |
|            |                                        |         |                 |            | write "0"     | $\overline{}$ | 1: INTTBO0   |           | rupt request        | level        |
|            | INITTD40.0                             |         | ITD440          |            | (TMRB1)       | ITD44N40      | ITD400       |           | (TMRB1)             | ITD40M0      |
| INITETD4   | INTTB10 &                              | 00E2H   | ITB11C          | ITB11M2    | ITBMM         | IŤB11M0       | ITB10C       | ITB10M2   | ITB10M1             | ITB10M0      |
| INTETB1    | INTTB11<br>enable                      | UUEZH   | R               | 0          | R/W<br>0      | <u> </u>      | (R)          | 0         | R/W                 | 0            |
|            | CHADIC                                 |         | 0<br>1: INTTB11 | _          | rupt request  | lovol (       | 1: NTTB10    |           | rupt request        |              |
|            |                                        |         | I. IIVI IDII    | Intel      | Tupriteguesi  | levey         | (, NV 1 15+0 |           |                     | levei        |
|            | INTTBO1                                |         |                 |            |               |               | ITBO1C       | ITBO1M2   | (TMRB1)             | ITBO1M0      |
| INTETBO1   | (Overflow)                             | 00E3H   | -               | (-)        | _             |               | R            | TIBOTIVIZ | R/W                 | TIBOTIVIO    |
| INTLIBOT   | enable                                 | 002311  | - /             |            | _             |               | 0            | 0         | 0                   | 0            |
|            | onabio                                 |         | - (             | Always     | write "O"     | _             | 1: INTTBO1   |           | rupt request        | _            |
|            |                                        |         |                 |            | P0            |               | I. INT IBOT  |           | ταρι request<br>ΓΑD | ievei        |
|            | INTP0&                                 |         | (IPOC)          | IP0M2      | IP0M1         | IP0M0         | IADC         | IADM2     | IADM1               | IADM0        |
| INTEPAD    | INTAD                                  | 00E4H   | (R)             | II OIVIZ   | R/W           | TI OIVIO      | R            | IADIVIZ   | R/W                 | IADIVIO      |
| IIVILIAD   | enable                                 | 002411  | VIX             | 0          | (0//          | 0             | 0            | 0         | 0                   | 0            |
|            |                                        |         | 1: INTP0        |            | rupt request  | 1             | 1: INTAD     |           | rupt request        | 1            |
|            |                                        |         |                 | 754        | <u></u>       | ,0.0.         |              |           | RTC                 |              |
|            |                                        |         | _               | ( <u>-</u> | 7             | _             | IRC          | IRM2      | IRM1                | IRM0         |
| INTERTC    | INTRTC                                 | 00E5H   | _               |            |               |               | R            |           | R/W                 |              |
|            | enable                                 |         | =               | - \        | _             | -             | 0            | 0         | 0                   | 0            |
|            | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |         |                 | ∧ Always   | write "0"     |               | 1: INTRTC    | Inter     | rupt request        | level        |
|            |                                        |         | ^               |            | MI            |               |              |           | WDT                 |              |
| ^          | NM(&                                   |         | INCNM           |            | -             | -             | INCWD        | -         | _                   | _            |
| INTNMWDT   | MATUD                                  | 00EFH   | R               |            | 1             |               | R            |           | 1                   | ı            |
|            | enable                                 |         | 0               | )) -       | -             | _             | 0            | -         | _                   | -            |
|            | $\rightarrow$                          |         | 7: NML          | / A        | lways write " | 0"            | 1: INTWDT    | А         | lways write '       | ·0"          |


**TOSHIBA** 

Interrupt control (3/4)

| Symbol   | Name     | Address | 7         | 6      | 5            | 4       | 3            | 2                | 1            | 0      |
|----------|----------|---------|-----------|--------|--------------|---------|--------------|------------------|--------------|--------|
|          |          |         |           | INTTC1 | (DMA1)       |         |              | INTTC0           | (DMA0)       |        |
|          | INTTC0 & |         | ITC1C     | ITC1M2 | ITC1M1       | ITC1M0  | ITC0C        | ITC0M2           | ITC0M1       | ITC0M0 |
| INTETC01 | INTTC1   | 00F0H   | R         |        | R/W          | _       | R            |                  | R/W          |        |
|          | enable   |         | 0         | 0      | 0            | 0       | 0            | 0                | 0            | 0      |
|          |          |         | 1: INTTC1 | Inter  | rupt request | level   | 1: INTTC0    | Inter            | rupt request | level  |
|          |          |         |           | INTTC3 | (DMA3)       |         |              | INTTC2           | (DMA2)       |        |
|          | INTTC2 & |         | ITC3C     | ITC3M2 | ITC3M1       | ITC3M0  | ITC2C        | ITC2M2           | > ITC2M1     | ITC2M0 |
| INTETC23 | INTTC3   | 00F1H   | R         |        | R/W          |         | R            | $\left( \right)$ | R/W          |        |
|          | enable   |         | 0         | 0      | 0            | 0       | 0 (          | )0               | 0            | 0      |
|          |          |         | 1: INTTC3 | Inter  | rupt request | level   | 1:UNTTC2     | / )) Inter       | rupt request | level  |
|          |          |         |           | INTTC5 | (DMA5)       |         | //           | INTTC4           | (DMA4)       |        |
|          | NTTC4 &  |         | ITC5C     | ITC5M2 | ITC5M1       | ITC5M0  | ITC4C        | >ITC4M2          | ITC4M1       | ITC4M0 |
| INTETC45 | INTTC5   | 00F2H   | R         |        | R/W          |         | $\mathbb{R}$ |                  | R/W          |        |
|          | enable   |         | 0         | 0      | 0            | 0 (     | )0           | 0                | Q            | 0      |
|          |          |         | 1: INTTC5 | Inter  | rupt request | level < | 1: INTTC4    | Inter            | rupt request | level  |
|          |          |         |           | INTTC7 | (DMA7)       |         |              | INTT¢6           | (DMA6)       |        |
|          | NTTC6 &  |         | ITC7C     | ITC7M2 | ITC7M1       | ITC7M0  | ITC6C        | ITC6M2           | ITC6M1       | ITC6M0 |
| INTETC67 | INTTC7   | 00F3H   | R         |        | R/W          |         | R 🤇          | , ()             | R/W          |        |
|          | enable   |         | 0         | 0      | 0 (          | 0       | 0            | (0)              | 1 /ø         | 0      |
|          |          |         | 1: INTTC7 | Inter  | rupt request | level   | 1: INTTC6    | Inter            | rupt request | level  |

Interrupt control (4/4)

| Symbol  | Name                    | Address     | 7               | 6               | 5                               | 4                                      | 3               | 2                       | 1                | 0                |
|---------|-------------------------|-------------|-----------------|-----------------|---------------------------------|----------------------------------------|-----------------|-------------------------|------------------|------------------|
|         |                         | 7 10 0. 000 | ·               | •               |                                 | •                                      |                 | _                       | _                | SIOCNT           |
|         | HSC                     |             |                 |                 | _                               | <br>R                                  | _               | _                       | _                | R/W              |
| HSCSEL  | Selection               | 00F4H       | 0               | 0               | 0                               | 0                                      | 0               | 0                       | 0                | 0                |
|         | register                |             | · ·             | •               |                                 | -                                      |                 |                         |                  | 0: SIO1          |
|         |                         |             |                 |                 |                                 |                                        |                 |                         |                  | 1: HSC           |
|         |                         |             | -               |                 |                                 |                                        |                 | JR2LE                   | IR1LE            | IR0LE            |
|         | SIO                     |             | W               |                 |                                 |                                        |                 |                         | , W              |                  |
|         | Interrupt               | 00F5H       | 0               |                 |                                 |                                        |                 |                         | 1                | 1                |
| SIMC    | Mode                    | (Prohibit   | Always          |                 |                                 |                                        |                 | INTRX2                  | INTRX1           | INTRX0           |
|         | Control                 | RMW)        | write "1".      |                 |                                 |                                        |                 | 0: edge                 | 0: edge          | 0: edge          |
|         | register                | ,           |                 |                 |                                 |                                        | 7//             | mode<br>1: level        | mode             | mode             |
|         |                         |             |                 |                 |                                 |                                        |                 | > mode                  | 1: level<br>mode | 1: level<br>mode |
|         |                         |             |                 |                 |                                 |                                        |                 | Thouc                   | Mode             | NMIREE           |
|         |                         |             | //              | $\ $            |                                 |                                        |                 |                         |                  | W                |
|         | Interrupt               | 00F6H       | //              | //              |                                 | ## ## ## ## ## ## ## ## ## ## ## ## ## |                 |                         |                  | 0                |
| IIMC    | Input Mode              | (Prohibit   |                 |                 |                                 |                                        |                 | $\wedge$                | 1                | NMI              |
| IIIVIC  | Control                 | RMW)        |                 |                 |                                 | (0)                                    | $\searrow$      |                         |                  | 0:Falling        |
|         | register                | T (WIVV)    |                 |                 |                                 |                                        | <b>^</b>        | $\langle \cdot \rangle$ |                  | 1:Falling        |
|         |                         |             |                 |                 |                                 |                                        |                 | 1                       | (/))             | and              |
|         |                         |             |                 |                 | (                               | λ.Σ                                    |                 | 7.2.2                   | ( <u> </u>       | Rising           |
|         | Interrupt               |             | I7LE            | I6LE            | 15LE                            | I4ĿÉ                                   | I3LE            | / J2LE                  | I1LE             | IOLE             |
|         | Interrupt<br>Input Mode | 00FAH       |                 |                 |                                 |                                        | N (             |                         |                  | 1 -              |
| IIMC2   | Control                 | (Prohibit   | 0               | 0               | 0<br>INT5                       | 0                                      | 0               |                         | 0                | 0                |
|         | register2               | RMW)        | INT7<br>0: Edge | INT6<br>0: Edge | 0: Edge                         | INT4<br>0: Edge                        | INT3<br>0: Edge | ÎNT2<br>0: Edge         | INT1<br>0: Edge  | INT0<br>0: Edge  |
|         | rogiotoiz               |             | 1: Level        | 1: Level        | 1: Level                        | 1: Level                               | 1: Level        | 1: Level                | 1: Level         | 1: Level         |
|         |                         |             | 17EDGE          | I6EDGE          | 15EDGE                          | I4EDGE                                 | 13EDGE          | 12EDGE                  | I1EDGE           | I0EDGE           |
|         |                         |             |                 |                 | <u> </u>                        |                                        | N ))            |                         |                  |                  |
|         | Interrupt               | 00FBH       | 0               | (0)             | 0                               | 0                                      | //0             | 0                       | 0                | 0                |
| IIMC3   | Input Mode              | (Prohibit   | INT7            | HNT6            | INT5                            | INT4                                   | INT3            | INT2                    | INT1             | INT0             |
| IIIVIOO | Control                 | RMW)        |                 | 0: Rising       | 0: Rising                       |                                        | 0: Rising       | 0: Rising               | 0: Rising        | 0: Rising        |
|         | register3               | T (WIVV)    | /High \         | /H)gh           | /High _                         | /High                                  | /High           | /High                   | /High            | /High            |
|         |                         |             |                 |                 | 1: Falling                      |                                        | 1: Falling      | 1:Falling               | 1: Falling       | 1: Falling       |
|         |                         |             | /Low / ^        | /Low            | /Low/                           | VLow                                   | /Low            | /Low                    | /Low             | /Low             |
|         | Interrupt               | 00F8H       | ÇĽŖV7)          | CLRV6           | CLRV5                           | GLRV4                                  | CLRV3           | CLRV2                   | CLRV1            | CLRV0            |
| INTCLR  | Clear                   | (Prohibit)  |                 | $\wedge$        | $-(\langle // \langle \rangle)$ | 1                                      | N<br>I          | 1                       | 1                | i                |
|         | Control                 | RMW)        | 07              | 0               | VO.                             | / 0                                    | 0               | 0                       | 0                | 0                |
|         | register                | \"\         | (               | Clear the inte  | errupt reques                   | st flag by the                         | writing of a    | micro DMA s             | starting vector  | or               |





## (3) DMA controller

| Symbol    | Name         | Address                     | 7     | 6     | 5             | 4                       | 3             | 2          | 1              | 0      |
|-----------|--------------|-----------------------------|-------|-------|---------------|-------------------------|---------------|------------|----------------|--------|
|           |              |                             |       |       | DMA0V5        | DMA0V4                  | DMA0V3        | DMA0V2     | DMA0V1         | DMA0V0 |
| DMA0V     | DMA0         | 0100H                       |       |       |               |                         | R/            | W          |                |        |
| DIVIAUV   | start vector | 01000                       |       |       | 0             | 0                       | 0             | 0          | 0              | 0      |
|           |              |                             |       |       |               |                         | DMA0 st       | art vector |                |        |
|           |              |                             |       |       | DMA1V5        | DMA1V4                  | DMA1V3        | DMA1V2     | DMA1V1         | DMA1V0 |
| DMA1V     | DMA1         | 0101H                       |       |       |               |                         | R/            | W          |                |        |
| DIVIATV   | start vector | 010111                      |       |       | 0             | 0                       | 0             | ((0))      | ) 0            | 0      |
|           |              |                             |       |       |               |                         | DMA1 sta      | art vector |                |        |
|           |              |                             |       |       | DMA2V5        | DMA2V4                  | DMA2V3        | DMA2V2     | DMA2V1         | DMA2V0 |
| DMA2V     | DMA2         | 0102H                       |       |       |               |                         | \\R(          | (w)        |                |        |
| DIVIAZV   | start vector | 010211                      |       |       | 0             | 0                       | 0             | 0          | 0              | 0      |
|           |              |                             |       |       |               |                         | DMA2 st       | art vector |                |        |
|           |              |                             |       |       | DMA3V5        | DMA3V4                  | DMA3V3        | DMA3V2     | DMA3V1         | DMA3V0 |
| DMA3V     | DMA3         | 0103H                       |       |       |               |                         | R/            | W          |                |        |
| DIVIASV   | start vector | 010311                      |       |       | 0             | 6                       | Ø             | 0 <        | (0)            | 0      |
|           |              |                             |       |       |               |                         | DMA3 st       | art vector |                |        |
|           |              |                             |       |       | DMA4V5        | DMA4V4                  | DMA4V3        | DMA4V2     | DMA4V1         | DMA4V0 |
| DMA4V     | DMA4         | 0104H                       |       |       |               | $\langle \cdot \rangle$ |               | W \        | (//)           |        |
| DIVIJ CTV | start vector | 010111                      |       |       | 0(            | 0                       | 0             | 10         | $\bigcirc / 6$ | 0      |
|           |              |                             |       |       |               | $\searrow$              | DMA4/sta      | art vector |                |        |
|           |              |                             |       |       | DMA5V5        | DMA5V4                  | DMA5V3        | DMA5V2     | DMA5V1         | DMA5V0 |
| DMA5V     | DMA5         | 0105H                       |       |       |               | 1                       | $\overline{}$ | w//        | T              | 1      |
| 2         | start vector | 0.00                        |       |       | 0,            | 0                       | (0// <        | 0          | 0              | 0      |
|           |              |                             |       |       |               |                         | DMA5 st       |            | 7              | 1      |
|           |              |                             |       |       | DMA6V5        | DMA6V4                  | DMA6V3        |            | DMA6V1         | DMA6V0 |
| DMA6V     | DMA6         | 0106H                       |       |       | $\rightarrow$ |                         | \ \ R/        | 1          | 1              | 1      |
|           | start vector |                             |       | ()    | 0             | 0/                      | //0           | 0          | 0              | 0      |
|           |              |                             |       |       |               |                         | ∑ØMA6 st      |            | T              |        |
|           |              |                             |       |       | DMA7V5        | DMA7V4                  | DMA7V3        | l .        | DMA7V1         | DMA7V0 |
| DMA7V     | DMA7         | 0107H                       | +     |       | _             |                         | R/            |            | I              | T      |
|           | start vector |                             |       |       | 0 /           | 70                      | 0             | 0          | 0              | 0      |
|           |              |                             | (C/A) |       |               |                         |               | art vector | ı              |        |
|           |              |                             | DBST7 | DBST6 | DBST5         | DBST4                   | DBST3         | DBST2      | DBST1          | DBST0  |
| DMAB      | DMA burst /  | <b>∕</b> 0108⊬ <sup>\</sup> |       |       | $(\sqrt{2})$  |                         | W             |            |                | 1 -    |
|           | <            |                             | 0     | 0     | (0)           | 0                       | 0             | . 0        | 0              | 0      |
|           |              |                             |       |       |               |                         | t on burst me |            |                | 5556-  |
|           | DNAA         | 0109H                       | DREQ7 | DREQ6 | DREQ5         | DREQ4                   | DREQ3         | DREQ2      | DREQ1          | DREQ0  |
| DMAR      | DMA          | (Prohibit                   |       |       |               | 1                       | W             |            |                | 1 -    |
|           | request      | RMW)                        | 0     | 0     | 0             | 0                       | 0             | 0          | 0              | 0      |
|           | ~ \          | $\sim$                      |       | >     | 1             | : DMA reque             | est in softwa | re         |                |        |

## (4) Memory controller (1/2)

| Symbol         | Name                                                            | Address                    | 7                          | 6                                                                                                | 5                                             | 4                                                                                                        | 3                               | 2                                                                              | 1                                                                                                                                           | 0                                                 |
|----------------|-----------------------------------------------------------------|----------------------------|----------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                |                                                                 |                            |                            | B0WW2                                                                                            | B0WW1                                         | B0WW0                                                                                                    |                                 | B0WR2                                                                          | B0WR1                                                                                                                                       | B0WR0                                             |
|                | Block 0                                                         |                            |                            |                                                                                                  | W                                             | I.                                                                                                       |                                 |                                                                                | W                                                                                                                                           | I.                                                |
|                | MEMC                                                            | 0140H                      |                            | 0                                                                                                | 1                                             | 0                                                                                                        |                                 | 0                                                                              | 1                                                                                                                                           | 0                                                 |
| B0CSL          | Control                                                         | (Prohibit                  |                            | Write waits                                                                                      |                                               | ı                                                                                                        |                                 | Read waits                                                                     | I                                                                                                                                           | I                                                 |
| DOOOL          | register                                                        | RMW)                       |                            | 001: 0 WAI                                                                                       | T 010: 1                                      | WAIT                                                                                                     |                                 | 001:0 WAI                                                                      | T 010: 1                                                                                                                                    | WAIT                                              |
|                | Low                                                             | T (WIVV)                   |                            | 101: 2 WAI                                                                                       |                                               | 3 WAIT                                                                                                   |                                 | 101: 2 WAI                                                                     |                                                                                                                                             | WAIT                                              |
|                | LOW                                                             |                            |                            | 111: 4 WAI                                                                                       |                                               | VAIT pin                                                                                                 |                                 | 111: 4 WA)                                                                     | T) ✓ 011: ⊽                                                                                                                                 | VAIT pin                                          |
|                |                                                                 |                            |                            | Others: Res                                                                                      | served                                        | 1                                                                                                        |                                 | Others: Res                                                                    |                                                                                                                                             | 1                                                 |
|                |                                                                 |                            | B0E                        |                                                                                                  |                                               | B0REC                                                                                                    | B00M1                           | /BOOMO                                                                         | B0BUS1                                                                                                                                      | B0BUS0                                            |
|                |                                                                 |                            | W                          |                                                                                                  |                                               |                                                                                                          | ////                            | <u></u>                                                                        | <del>i</del>                                                                                                                                |                                                   |
|                | Block 0                                                         |                            | 0                          |                                                                                                  |                                               | 0                                                                                                        | 0                               | 0                                                                              | 0                                                                                                                                           | 0                                                 |
|                | MEMC                                                            | 0141H                      | CS select                  |                                                                                                  |                                               | 0: Not                                                                                                   | 00! ROM/SF                      |                                                                                | Data Bus w                                                                                                                                  | ridth                                             |
| B0CSH          | Control                                                         | (Prohibit                  | 0: Disable                 |                                                                                                  |                                               | insert a                                                                                                 | 01: Reserve                     |                                                                                | 00: 8-bit                                                                                                                                   |                                                   |
|                | register                                                        | RMW)                       | 1: Enable                  |                                                                                                  |                                               | dummy<br>cycle                                                                                           | 10: Reserve                     |                                                                                | 01: 16-ibt<br>10: Reserve                                                                                                                   | ad                                                |
|                | High                                                            |                            |                            |                                                                                                  |                                               | 1: insert a                                                                                              | III. Keşerve                    | iu 🦯                                                                           | 11: Reserve                                                                                                                                 |                                                   |
|                |                                                                 |                            |                            |                                                                                                  |                                               | dummy                                                                                                    |                                 | 52                                                                             | 1.1.00011                                                                                                                                   | Ju                                                |
|                |                                                                 |                            |                            |                                                                                                  |                                               | cycle/ <                                                                                                 | ↑ ·                             |                                                                                |                                                                                                                                             |                                                   |
|                |                                                                 |                            |                            | B1WW2                                                                                            | B1WW1                                         | B1WW0                                                                                                    |                                 | B1WR2                                                                          | B1WR1                                                                                                                                       | B1WR0                                             |
|                | Block 1                                                         |                            |                            |                                                                                                  | w (                                           |                                                                                                          |                                 |                                                                                | 9W                                                                                                                                          | l.                                                |
|                | MEMC                                                            | 0144H                      |                            | 0                                                                                                | 1                                             | 0                                                                                                        |                                 | 70                                                                             | 1                                                                                                                                           | 0                                                 |
| B1CSL          | Control                                                         | (Prohibit                  |                            | Write waits                                                                                      | 40                                            |                                                                                                          |                                 | Read waits                                                                     | l                                                                                                                                           | l.                                                |
| BIOOL          | register                                                        | RMW)                       |                            | 001: 0 WAI                                                                                       | T010:1                                        | WĂIT                                                                                                     |                                 | 001:0 WAI                                                                      | T 010: 1                                                                                                                                    | WAIT                                              |
|                | Low                                                             | T (WIVV)                   |                            | 101: 2 WAI                                                                                       |                                               | <b>WAIT</b>                                                                                              | (O)                             | 101: 2 WAI                                                                     |                                                                                                                                             | WAIT                                              |
|                | 20                                                              |                            |                            | 111: 4 WAF                                                                                       | _ '                                           | VAIT pin                                                                                                 |                                 | 1)1)1: 4 WAI                                                                   |                                                                                                                                             | VAIT pin                                          |
|                |                                                                 |                            |                            | Others: Res                                                                                      | served                                        |                                                                                                          |                                 | Others: Res                                                                    |                                                                                                                                             | ı                                                 |
|                |                                                                 |                            | B1E                        |                                                                                                  |                                               | B1/RÉC                                                                                                   | B1OM1                           | B1OM0                                                                          | B1BUS1                                                                                                                                      | B1BUS0                                            |
|                |                                                                 |                            | W                          |                                                                                                  |                                               |                                                                                                          |                                 | W                                                                              | 1                                                                                                                                           | 1                                                 |
|                | Block 1                                                         | 0145H                      | 0                          | $\mathcal{L}$                                                                                    |                                               | 0                                                                                                        |                                 | 0                                                                              | 0                                                                                                                                           | 0                                                 |
|                | MEMC                                                            | 0.1.01.                    | CS select                  | $\supset$                                                                                        | /                                             | 0: Not                                                                                                   | 00: ROM/SF                      |                                                                                | Data Bus w                                                                                                                                  | ridth                                             |
| B1CSH          | control                                                         | (Prohibit                  | 0:Disable<br>1:Enable      | $\overline{}$                                                                                    |                                               | insert a                                                                                                 | 01: Reserve                     |                                                                                | 00: 8-bit<br>01: 16-ibt                                                                                                                     |                                                   |
|                | register                                                        |                            | i i.Liiabie \              | ) )                                                                                              | _                                             |                                                                                                          |                                 |                                                                                |                                                                                                                                             |                                                   |
|                | -                                                               | `RMW)                      |                            |                                                                                                  | <                                             | _ / / .                                                                                                  |                                 |                                                                                |                                                                                                                                             | ed.                                               |
|                | High                                                            | `                          |                            |                                                                                                  | <u></u>                                       | cycle                                                                                                    | 11: Reserve                     |                                                                                | 10: Reserve                                                                                                                                 |                                                   |
|                | -                                                               | `                          | (7/5                       |                                                                                                  |                                               | _ / / .                                                                                                  |                                 |                                                                                | 10: Reserve                                                                                                                                 |                                                   |
|                | -                                                               | `                          |                            | )                                                                                                |                                               | cycle<br>1: insert a<br>dummy<br>cycle                                                                   |                                 |                                                                                | 10: Reserve                                                                                                                                 |                                                   |
|                | -                                                               | `                          |                            | B2WW2                                                                                            | B2WW1                                         | cycle<br>1: insert a<br>dummy                                                                            |                                 |                                                                                | 10: Reserve                                                                                                                                 |                                                   |
|                | -                                                               | `                          |                            | B2WW2                                                                                            | B2WW1                                         | cycle<br>1: insert a<br>dummy<br>cycle                                                                   |                                 | d                                                                              | 10: Reserve                                                                                                                                 | ed                                                |
|                | High                                                            | `                          |                            | 0                                                                                                |                                               | cycle<br>1: insert a<br>dummy<br>cycle                                                                   |                                 | B2WR2                                                                          | 10: Reserve                                                                                                                                 | ed                                                |
| B2CSL          | High Block 2                                                    | RMW)                       |                            | 0<br>Write waits                                                                                 | 1                                             | cycle<br>1: insert a<br>dummy<br>cycle<br>B2WW0                                                          |                                 | B2WR2  0 Read waits                                                            | 10: Reserve                                                                                                                                 | B2WR0                                             |
| B2CSL          | High  Block 2  MEMC                                             | RMW)                       |                            | 0<br>Write waits<br>001: 0 WAI                                                                   | W 1 1 010: 1                                  | cycle 1: insert a dummy cycle B2WW0 0                                                                    |                                 | B2WR2  0 Read waits 001: 0 WAI                                                 | 10: Reserve<br>11: Reserve<br>B2WR1<br>W<br>1                                                                                               | B2WR0 0 WAIT                                      |
| B2CSL          | Block 2<br>MEMC<br>control                                      | RMW) 0148H (Prohibit       |                            | Write waits<br>001: 0 WAI'<br>101: 2 WAI'                                                        | W 1 1 010: 1 110: 3                           | cycle 1: insert a dummy cycle B2WW0  0  I WAIT B WAIT                                                    |                                 | B2WR2  0 Read waits 001: 0 WAI 101: 2 WAI                                      | 10: Reserve<br>11: Reserve<br>11: Reserve<br>11: Reserve<br>W<br>1                                                                          | B2WR0  0  WAIT                                    |
| B2CSL          | Block 2<br>MEMC<br>control<br>regis(er_/                        | RMW) 0148H (Prohibit       |                            | 0<br>Write waits<br>001: 0 WAI<br>101: 2 WAI<br>111: 4 WAI                                       | T 010: 1<br>T 110: 3<br>T 011: $\bar{\nu}$    | cycle 1: insert a dummy cycle B2WW0 0                                                                    |                                 | B2WR2<br>0<br>Read waits<br>001: 0 WAI<br>101: 2 WAI<br>111: 4 WAI             | 10: Reserve<br>11: Reserve<br>11: Reserve<br>W<br>1<br>T 010: 1<br>T 110: 3<br>T 011: $\overline{V}$                                        | B2WR0 0 WAIT                                      |
| B2CSL          | Block 2<br>MEMC<br>control<br>regis(er_/                        | RMW) 0148H (Prohibit       |                            | Write waits<br>001: 0 WAI<br>101: 2 WAI<br>111: 4 WAI<br>Others: Res                             | T 010: 1<br>T 110: 3<br>T 011: $\bar{\nu}$    | cycle 1: insert a dummy cycle B2WW0  0  I WAIT BWAIT pin                                                 | 11: Reserve                     | B2WR2  0 Read waits 001: 0 WAI 101: 2 WAI 111: 4 WAI Others: Res               | 10: Reserved 11: Reserved  B2WR1  W  1  T 010: 1  T 110: 3  T 011: $\bar{V}$ served                                                         | B2WR0  0  WAIT BWAIT VAIT pin                     |
| B2CSL          | Block 2<br>MEMC<br>control<br>regis(er_/                        | RMW) 0148H (Prohibit       | B2E                        | Write waits<br>001: 0 WAI<br>101: 2 WAI<br>111: 4 WAI<br>Others: Res                             | T 010: 1<br>T 110: 3<br>T 011: $\bar{\nu}$    | cycle 1: insert a dummy cycle B2WW0  0  I WAIT B WAIT                                                    |                                 | B2WR2  0 Read waits 001: 0 WAI 101: 2 WAI 111: 4 WAI Others: Res B2OM0         | 10: Reserve<br>11: Reserve<br>11: Reserve<br>W<br>1<br>T 010: 1<br>T 110: 3<br>T 011: $\overline{V}$                                        | B2WR0  0  WAIT                                    |
| B2CSL          | Block 2<br>MEMC<br>control<br>register<br>Low                   | RMW) 0148H (Prohibit       |                            | Write waits 001: 0 WAI 101: 2 WAI 11: 4 WAI Others: Res                                          | T 010: 1<br>T 110: 3<br>T 011: $\bar{\nu}$    | cycle 1: insert a dummy cycle B2WW0  0 I WAIT B WAIT WAIT pin  B2REC                                     | 11: Reserve                     | B2WR2  0 Read waits 001: 0 WAI 101: 2 WAI 111: 4 WAI Others: Res B2OM0 W       | 10: Reserved 11: Reserved  B2WR1  W  1  T 010: 1  T 110: 3  T 011: $\overline{V}$ served  B2BUS1                                            | B2WR0  0  WAIT WAIT pin  B2BUS0                   |
| B2CSL          | Block 2 MEMC control register Low                               | RMW)  0148H (Prohibit RMW) | B2E                        | Write waits 001: 0 WAIT 101: 2 WAIT 11: 4 WAIT Others: Res B2M                                   | W 1 1 010: 1 110: 3 T 011: $\bar{\nu}$ served | cycle 1: insert a dummy cycle B2WW0  0 I WAIT B WAIT pin  B2REC                                          | B2OM1                           | B2WR2  0 Read waits 001: 0 WAI 101: 2 WAI 111: 4 WAI Others: Res B2OM0 W       | 10: Reserved 11: Reserved  B2WR1  W  1  T 010: 1 T 110: 3 T 011: V served  B2BUS1  0/1 (Note)                                               | B2WR0  0  WAIT WAIT pin  B2BUS0  0/1 (Note)       |
|                | Block 2 MEMC control register Low Block 2 MEMC                  | 0148H<br>(Prohibit<br>RMW) | B2E<br>V<br>C\$ select     | 0<br>Write waits<br>001: 0 WAI<br>101: 2 WAI<br>111: 4 WAI<br>Others: Res<br>B2M<br>V<br>0:16 MB | W 1 1 010: 1 110: 3 T 011: $\bar{\nu}$ served | cycle 1: insert a dummy cycle B2WW0  0 I WAIT WAIT pin  B2REC  0 0: Not                                  | B2OM1  0 00: ROM/SF             | B2WR2  0 Read waits 001: 0 WAI 101: 2 WAI 111: 4 WAI Others: Res B2OM0 W 0 RAM | 10: Reserved 11: Reserved  B2WR1  W  1  T 010: 1 T 110: 3 T 011: V served  B2BUS1  0/1 (Note) Data Bus w                                    | B2WR0  0  WAIT WAIT pin  B2BUS0  0/1 (Note)       |
| B2CSL<br>B2CSH | Block 2 MEMC control register Low Block 2 MEMC control          | 0148H<br>(Prohibit<br>RMW) | B2E V C\$ select 0:Disable | Write waits 001: 0 WAIT 101: 2 WAIT 11: 4 WAIT Others: Res B2M                                   | W 1 1 010: 1 110: 3 T 011: $\bar{\nu}$ served | cycle 1: insert a dummy cycle B2WW0  0 I WAIT B WAIT pin  B2REC                                          | B2OM1                           | B2WR2  0 Read waits 001: 0 WAI 101: 2 WAI 111: 4 WAI Others: Res B2OM0 W 0 RAM | 10: Reserved 11: Reserved  B2WR1  W  1  T 010: 1 T 110: 3 T 011: V served  B2BUS1  0/1 (Note)  Data Bus w 00: 8-bit                         | B2WR0  0  WAIT WAIT pin  B2BUS0  0/1 (Note)       |
|                | Block 2 MEMC control register Low Block 2 MEMC control register | 0148H<br>(Prohibit<br>RMW) | B2E<br>V<br>C\$ select     | Write waits 001: 0 WAN 101: 2 WAN 11: 4 WAN Others: Res B2M  0 0:16 MB 1: Sets                   | W 1 1 010: 1 110: 3 T 011: $\bar{\nu}$ served | cycle 1: insert a dummy cycle B2WW0  0 I WAIT BWAIT pin  B2REC  0 0: Not insert a                        | B2OM1  0 00: ROM/SF 01: Reserve | B2WR2  0 Read waits 001: 0 WAI 101: 2 WAI 111: 4 WAI Others: Res B2OM0 W 0 RAM | 10: Reserved 11: Reserved  B2WR1  W  1  T 010: 1 T 110: 3 T 011: V served  B2BUS1  0/1 (Note) Data Bus w                                    | B2WR0  0  WAIT WAIT pin  B2BUS0  0/1 (Note)       |
|                | Block 2 MEMC control register Low Block 2 MEMC control          | 0148H<br>(Prohibit<br>RMW) | B2E V C\$ select 0:Disable | Write waits 001: 0 WAN 101: 2 WAN 11: 4 WAN Others: Res B2M  0 0:16 MB 1: Sets                   | W 1 1 010: 1 110: 3 T 011: $\bar{\nu}$ served | cycle 1: insert a dummy cycle B2WW0  0 I WAIT BWAIT DIN B2REC  0 0: Not insert a dummy cycle 1: insert a | B2OM1  0 00: ROM/SF 01: Reserve | B2WR2  0 Read waits 001: 0 WAI 101: 2 WAI 111: 4 WAI Others: Res B2OM0 W 0 RAM | 10: Reserved 11: Reserved  B2WR1  W  1  T 010: 1 T 110: 3 T 011: V served  B2BUS1  0/1 (Note)  Data Bus w 00: 8-bit 01: 16-ibt              | B2WR0  0  WAIT WAIT pin  B2BUS0  0/1 (Note) ridth |
|                | Block 2 MEMC control register Low Block 2 MEMC control register | 0148H<br>(Prohibit<br>RMW) | B2E V C\$ select 0:Disable | Write waits 001: 0 WAN 101: 2 WAN 11: 4 WAN Others: Res B2M  0 0:16 MB 1: Sets                   | W 1 1 010: 1 110: 3 T 011: $\bar{\nu}$ served | cycle 1: insert a dummy cycle B2WW0  0 I WAIT BWAIT Pin  B2REC  0 0: Not insert a dummy cycle            | B2OM1  0 00: ROM/SF 01: Reserve | B2WR2  0 Read waits 001: 0 WAI 101: 2 WAI 111: 4 WAI Others: Res B2OM0 W 0 RAM | 10: Reserved 11: Reserved  B2WR1  W  1  T 010: 1 T 110: 3 T 011: V served  B2BUS1  0/1 (Note)  Data Bus w 00: 8-bit 01: 16-ibt 10: Reserved | B2WR0  0  WAIT WAIT pin  B2BUS0  0/1 (Note) ridth |

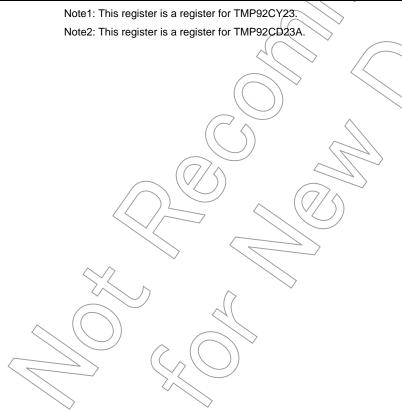
Note: Since after reset becomes unfixed, please be sure to set up bus bit B2CSH<B2BUS1:0> of the control register before accessing the external block address area 2.

Memory controller (2/3)

| Symbol     | Name     | Address   | 7            | 6                        | 5            | 4                | 3                        | 2                        | 1                                     | 0             |
|------------|----------|-----------|--------------|--------------------------|--------------|------------------|--------------------------|--------------------------|---------------------------------------|---------------|
|            |          |           |              | B3WW2                    | B3WW1        | B3WW0            |                          | B3WR2                    | B3WR1                                 | B3WR0         |
|            | Block 3  |           |              |                          | W            |                  |                          |                          | W                                     | •             |
|            | MEMC     | 014CH     |              | 0                        | 1            | 0                |                          | 0                        | 1                                     | 0             |
| B3CSL      | control  | (Prohibit |              | Write waits              | l .          | I                |                          | Read waits               |                                       | l.            |
| DOOOL      | register | RMW)      |              | 001: 0 WAI               | T 010: 1     | 1 WAIT           |                          | 001:0 WAI                | T 010: 1                              | WAIT          |
|            | Low      | TXIVIV)   |              | 101: 2 WAI               | T 110: 3     | 3 WAIT           |                          | 101; 2 WAI               |                                       | WAIT          |
|            | LOW      |           |              | 111: 4 WAI               | T 011: \( \) | WAIT pin         |                          | 111: 4 WA)               | T) ✓ 011: ⊽                           | VAIT pin      |
|            |          |           |              | Others: Re               | served       |                  |                          | Others: Res              | served                                |               |
|            |          |           | B3E          |                          |              | B3REC            | _B3OM1 (                 | /B3QM0                   | B3BUS1                                | B3BUS0        |
|            | <b>5</b> |           | W            |                          |              |                  |                          | $\langle v \rangle$      | -                                     |               |
|            | Block 3  |           | 0            |                          |              | 0                | 0                        | 0                        | 0                                     | 0             |
| 500011     | MEMC     | 014DH     | CS select    |                          |              |                  | 00; ROM/S                |                          | Data Bus w                            | ridth         |
| B3CSH      | control  | (Prohibit | 0:Disable    |                          |              |                  | 01: Reserve              |                          | 00: 8-bit                             |               |
|            | register | RMW)      | 1:Enable     |                          |              | cycle (          | 10: Reserve              |                          | 01: 16-ibt                            |               |
|            | High     |           |              |                          |              | 1: insert a \    | 11: Reserve              | ed                       | 10: Reserve                           |               |
|            |          |           |              |                          |              | dummy            |                          | $\Diamond$               | 11: Reserve                           | ed            |
|            |          |           |              | DE\(() + 0 + 10          | 55040444     | cycle            | $\overline{}$            | 55.00                    | 14=1015                               | 551/14/54     |
|            |          |           |              | BEXWW2                   | BEXWW1       | BEXWW0           | 1                        | BEXWR2                   | BEXWR1                                | BEXWR0        |
|            | BLOCK EX |           |              | _                        | W            |                  |                          |                          | (/w)                                  |               |
|            | MEMC     | 0158H     |              | 0                        | 1 (          | 0                |                          | 0/                       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 0             |
| BEXCSL     | Control  | (Prohibit |              | Write waits              |              |                  | (                        | Read waits               |                                       | \^/^!T        |
|            | register | RMW)      |              | 001: 0 WAI<br>101: 2 WAI |              | 1 WAIT<br>3 WAIT |                          | 901: 0 WAI<br>101: 2 WAI |                                       | WAIT<br>SWAIT |
|            | Low      |           |              | 101. 2 WAI<br>111: 4 WAI | T 0110.      | WAIT pin         |                          | 101: 2 WAI               |                                       | VAIT pin      |
|            |          |           |              | Others: Re               |              | MAII PIII        |                          | Others: Res              |                                       | van pin       |
|            |          |           |              | 0410101110               |              | BEXREC           | BEXOM1                   | BEXOM0                   | BEXBUS1                               | BEXBUS0       |
|            |          |           | /            |                          | $\sim$       | DEXITES          | PENOME                   | W                        | DEXBOOT                               | BEABOOO       |
|            | BLOCK EX |           | /            | X                        | - T          | 0                |                          | 0                        | 0                                     | 0             |
|            | MEMC     | 0159H     |              | +(                       | \ \ \ \ \    | - (              | 00; RØM/S                | _                        | Data Bus w                            |               |
| BEXCSH     | Control  | (Prohibit |              |                          | )            | a dummy          |                          |                          | 00: 8-bit                             | idiri         |
|            | register | RMW)      |              | $\supset$ $\searrow$     | 1            | cycle            | 10: Reserve              |                          | 01: 16-ibt                            |               |
|            | High     |           | ( (          |                          |              | 1: insert a      | 11: Reserve              |                          | 10: Reserve                           | ed            |
|            |          |           |              |                          | <            | dummy            |                          |                          | 11: Reserve                           | ed            |
|            |          |           |              |                          |              | cycle            |                          |                          |                                       |               |
|            |          |           | 44           |                          |              | OPGE             | OPWR1                    | OPWR0                    | PR1                                   | PR0           |
|            |          |           |              |                          | 794          | $\wedge$         |                          | R/W                      |                                       |               |
|            |          | ( /.      |              |                          | 744          | ) o              | 0                        | 0                        | 1                                     | 0             |
|            | Page ROM |           |              |                          |              | ROM              | Wait number              | er on page               | Byte number                           | er in a page  |
| PMEMCR     | Control  | 0166H     |              |                          | 7/           | page             | 00:1 state               |                          | 00:64 byte                            |               |
| FIVIEIVICK |          | רוסטוט \  | $\checkmark$ |                          |              | access           | (n-1-1-1 n               | node)                    | 01:32 byte                            |               |
|            | register | >         |              |                          |              |                  | 01:2 state               |                          | 10:16 byte                            |               |
|            | 7        | \ \ \     |              | _                        | $\vee$       | 1: Enable        | (n-2-2-2 n<br>10:3 state | noae)                    | 11:8 byte                             |               |
|            |          |           |              | ( )                      |              |                  | (n-3-3-3 n               | node)                    |                                       |               |
|            |          |           | <            | 4                        |              |                  | 11:Reserve               | ,                        |                                       |               |
| $\wedge$   | 11       | ))        |              |                          | 1            | 1                |                          | -                        | 1                                     |               |
|            |          |           | > ((         | // ~                     |              |                  |                          |                          |                                       |               |
|            | _//      | ( (       |              | ))                       |              |                  |                          |                          |                                       |               |

Memory controller (3/3)

| Symbol        | Name                                     | Address                         | 7                                    | 6                                    | 5         | 4              | 3            | 2              | 1            | 0     |  |  |
|---------------|------------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|-----------|----------------|--------------|----------------|--------------|-------|--|--|
| MAMR0         | Memory                                   | 04.401.1                        | M0V20                                | M0V19                                | M0V18     | M0V17          | M0V16        | M0V15          | M0V14-9      | M0V8  |  |  |
|               |                                          |                                 | R/W                                  |                                      |           |                |              |                |              |       |  |  |
|               | Mask register 0                          | 0142H                           | 1                                    | 1                                    | 1         | 1              | 1            | 1              | 1            | 1     |  |  |
|               | register 0                               |                                 |                                      | 0: Compare enable 1: Compare disable |           |                |              |                |              |       |  |  |
|               | Memory                                   |                                 | M0S23                                | M0S22                                | M0S21     | M0S20          | M0S19        | M0\$18         | M0S17        | M0S16 |  |  |
| MSAR0         | Start                                    | 0143H                           | R/W                                  |                                      |           |                |              |                |              |       |  |  |
| WOARO         | Address                                  | 014311                          | 1                                    | 1                                    | 1         | 1              | 1            | ((1)           | <b>√</b> 1   | 1     |  |  |
|               | register 0                               |                                 |                                      |                                      | Se        | et start addre | ess A23 to A |                | )            |       |  |  |
|               | Memory                                   |                                 | M1V21                                | M1V20                                | M1V19     | M1V18          | M1V17        | 7M1V16         | MV15-9       | M1V8  |  |  |
| MAMR1         | Mask                                     | 0146H                           | R/W ))                               |                                      |           |                |              |                |              |       |  |  |
| IVIZIVIIXI    | register 1                               | U140H                           | 1                                    | 1                                    | 1         | 1              | <u> </u>     | $\checkmark$ 1 | 1            | 1     |  |  |
|               | . og.o.o.                                |                                 |                                      | 0: Compare enable 1: Compare disable |           |                |              |                |              |       |  |  |
|               | Memory<br>Start<br>Address<br>register 1 | 0147H                           | M1S23                                | M1S22                                | M1S21     | M1S20          | M1S19        | √M1S18         | M1S17        | M1S16 |  |  |
| MSAR1         |                                          |                                 | R/W                                  |                                      |           |                |              |                |              |       |  |  |
| WOART         |                                          |                                 | 1                                    | 1                                    | 1         | 1 <            |              | 1 (            | $\sqrt{1}$   | ) 1   |  |  |
|               |                                          |                                 | Set start-address A23 to A16         |                                      |           |                |              |                |              |       |  |  |
|               | Memory<br>Mask<br>register 2             | 014AH                           | M2V22                                | M2V21                                | M2V20     | M2V19 (        | M2V18        | M2V/17         | M2V16        | M2V15 |  |  |
| MAMR2         |                                          |                                 | RW O                                 |                                      |           |                |              |                |              |       |  |  |
| 1017 11011 12 |                                          |                                 | 1                                    | 1                                    | 1 (       | 1              | 1            | 1              | 5(1/         | 1     |  |  |
|               |                                          |                                 | 0: Compare enable 1: Compare disable |                                      |           |                |              |                |              |       |  |  |
|               | Memory<br>Start<br>Address<br>register 3 | 014BH                           | M2S23                                | M2S22                                | M2\$21    | M2S20          | M2S19 (      | M2S18          | M2S17        | M2S16 |  |  |
| MSAR2         |                                          |                                 |                                      |                                      |           | R/             | W            |                | T            |       |  |  |
|               |                                          |                                 | 1                                    | 1                                    |           | √ 1            | (10)         | $\sqrt{1}$     | 1            | 1     |  |  |
|               |                                          | Sot start address File (5 Till) |                                      |                                      |           |                |              |                |              | 1     |  |  |
|               | Memory                                   |                                 | M3V22                                | M3V21                                | M3V20     | M3V19          | M3V18        | M3V17          | M3V16        | M3V15 |  |  |
| MAMR3         | Mask                                     | 014EH                           | R/W                                  |                                      |           |                |              |                |              |       |  |  |
|               | register 3                               | 011211                          | 1                                    |                                      | <u> 1</u> | 1/             | 1)           | 1              | 1            | 1     |  |  |
|               | Memory                                   | 014FH                           |                                      |                                      | 0: Compa  |                |              | re disable     | 1            |       |  |  |
|               |                                          |                                 | M3S23                                | M3S22                                | M3S21     | M3S20          | M3S19        | M3S18          | M3S17        | M3S16 |  |  |
| MSAR3         | Start                                    |                                 | ((                                   |                                      |           | \\ R/          |              | i              | <del> </del> |       |  |  |
|               | Address                                  |                                 | 1                                    |                                      | 1 <       | 1/2/           | 1            | 1              | 1            | 1     |  |  |
|               | register 3                               |                                 | $\overline{()}$                      |                                      | ∠Se       | et start addre | ess A23 to A | 16             |              |       |  |  |


## (5) Clock control/PLL (1/2)

| Symbol   | Name                                     | Address     | 7                         | 6                   | 5                          | 4             | 3                                         | 2                      | 1       | 0            |
|----------|------------------------------------------|-------------|---------------------------|---------------------|----------------------------|---------------|-------------------------------------------|------------------------|---------|--------------|
|          |                                          |             | XEN                       | XTEN                |                            |               |                                           | WUEF                   |         |              |
|          |                                          |             |                           | W                   |                            | $\overline{}$ |                                           | R/W                    |         |              |
| ĺ        |                                          |             | 1                         | 0                   |                            | $\overline{}$ |                                           | 0                      |         |              |
|          |                                          |             | High-                     | Low-                |                            |               |                                           | Warm-up                |         |              |
|          |                                          |             | frequency                 | frequency           |                            |               | <                                         | timer                  |         |              |
|          |                                          |             | oscillator                | oscillator          |                            |               |                                           | 0: Write               |         |              |
|          | System                                   |             | (fosch)                   | (fs)                |                            |               |                                           | don't                  |         |              |
| SYSCR0   | Clock                                    | 10E0H       | 0: Stop<br>1: Oscillation | 0: Stop             |                            |               |                                           | care<br>1: Write       | ľ       |              |
| STOCKU   | Control                                  | IUEUN       |                           |                     |                            |               |                                           | start                  |         |              |
|          | register 0                               |             |                           |                     |                            | 4             |                                           | timer                  |         |              |
|          |                                          |             |                           |                     |                            |               | 7//                                       | 0: Read                |         |              |
|          |                                          |             |                           |                     |                            |               |                                           | end<br>> warm-up       |         |              |
|          |                                          |             |                           |                     |                            |               |                                           | 1: Read                |         |              |
|          |                                          |             |                           |                     |                            |               |                                           | do not                 |         |              |
|          |                                          |             |                           |                     |                            | 4/            |                                           | end                    | ( \>    |              |
|          |                                          |             |                           |                     |                            | $\overline{}$ | dycory                                    | warm-up                | 25,21   | 05450        |
|          |                                          | 10E1H       |                           |                     |                            | 40/4          | SYSCK                                     | GEAR2                  | GEAR1   | GEAR0        |
|          | System<br>Clock<br>Control<br>register 1 |             |                           |                     |                            |               | 0                                         | 1                      | W)      | 0            |
|          |                                          |             |                           |                     |                            | $\rightarrow$ | Select                                    | Select gear            |         | h-frequency  |
|          |                                          |             |                           |                     |                            |               | system /                                  | (fc)                   | <u></u> |              |
| SYSCR1   |                                          |             |                           |                     | 4( )                       | $\rightarrow$ | clock                                     | 000: fc                |         |              |
| STOCKT   |                                          |             |                           |                     |                            |               | 0: fc                                     | 001: fc/2              |         |              |
|          |                                          |             |                           |                     |                            | /             | 1: fs                                     | 010: fc/4<br>011: fc/8 |         |              |
|          |                                          |             |                           | .(_                 |                            |               | $\langle \langle \langle \rangle \rangle$ | 100: fc/16             |         |              |
|          |                                          |             |                           | (1)                 |                            |               |                                           | 101: (Reser            |         |              |
|          |                                          |             |                           |                     |                            |               |                                           | 110: (Reser            |         |              |
|          |                                          |             |                           | +                   | WUPTM1                     | WUPTM0        | HALTM1                                    | 111: (Reser<br>HALTM0  | vea)    | DRVE         |
|          |                                          |             |                           |                     | WOPTIVIT                   |               | W                                         | HALTIVIO               |         | R/W          |
|          | System                                   |             | 0 (                       | $\langle A \rangle$ | 1                          | \_0           | 1                                         | 1                      |         | 0            |
| SYSCR2   | Clock                                    | 10E2H       | Always                    |                     | Warm-up tir                | 1 1           | HALT mode                                 |                        |         | 1:           |
| STOCKZ   | Control                                  | 10020       | write "0"                 |                     | 00: Reserve                |               | 00: Reserve                               |                        |         | The inside   |
|          | register 2                               |             | $((// \land$              |                     | 01: 28/input               | frequency     | 01: STOP n                                |                        |         | of STOP      |
|          |                                          |             |                           |                     | 10: 2 <sup>14</sup> /input | frequency     | 10: IDLE1 n                               |                        |         | mode also    |
|          |                                          | // ).       |                           | E00E1               | 11: (2 <sup>16</sup> /inpu | frequency     | 11: IDLE2 r                               | node                   |         | drives a pin |
|          |                                          |             |                           | FCSEL               | LUPFG                      |               |                                           |                        |         |              |
|          |                                          |             |                           | R/W                 | R                          | $\overline{}$ |                                           |                        |         |              |
| D        | PLL Control                              |             | $\checkmark$              | Select fc           | Lock up                    |               |                                           |                        |         |              |
| PLLCR0   | register 0                               | ) 10E8H     |                           | clock               | timer                      |               |                                           |                        |         |              |
|          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\   | 5           |                           | 0; fosch            | status flag                |               |                                           |                        |         |              |
|          |                                          |             | ^                         | 1: f <sub>PLL</sub> | 0: Not end                 |               |                                           |                        |         |              |
| _^       |                                          |             |                           |                     | 1: End                     |               |                                           |                        |         |              |
|          |                                          |             | PLLON                     | 72                  |                            | $\overline{}$ |                                           |                        |         |              |
|          | PLL Control<br>register 1                |             | R/W                       |                     |                            | $\overline{}$ |                                           |                        |         |              |
| PLLCR1   |                                          | 10E9H       | Control                   |                     |                            | _             |                                           |                        |         |              |
| TELECITI |                                          | \ \ \ \ \ \ | Control on/off            |                     |                            |               |                                           |                        |         |              |
|          |                                          |             | 0: OFF                    |                     |                            |               |                                           |                        |         |              |
|          |                                          |             | 1: ON                     |                     |                            |               |                                           |                        |         |              |

TOSHIBA

Clock control/PLL (2/2)

| Symbol   | Name                   | Address       | 7                                                                                                                             | 6             | 5  | 4  | 3                            | 2           | 1         | 0                    |  |
|----------|------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|----|----|------------------------------|-------------|-----------|----------------------|--|
|          |                        |               | PROTECT                                                                                                                       |               |    |    |                              | EXTIN       | =         | DRVOSCL              |  |
|          |                        |               | R                                                                                                                             |               |    |    |                              |             | R/W       |                      |  |
| EMCCR0   | EMC Control            | 405011        | 0                                                                                                                             |               |    |    |                              | 0           | 1         | 1                    |  |
| (Note1)  | register 0             | 10E3H         | Protect flag                                                                                                                  |               |    |    |                              | 1: External | Always    | fs oscillator        |  |
|          |                        |               | 0: OFF                                                                                                                        |               |    |    | 4                            | clock       | write "1" | driver ability       |  |
|          |                        |               | 1: ON                                                                                                                         |               |    |    |                              |             |           | 1: Normal<br>0: Weak |  |
|          |                        |               | PROTECT                                                                                                                       |               |    |    |                              | ( _ )       | / _       | DRVOSCL              |  |
|          | EMC Control register 0 | I 10F3H       | R                                                                                                                             | $\overline{}$ | // | // | $\left\langle \right\rangle$ | RAW         |           | DICYOGOL             |  |
| EMCCR0   |                        |               | 0                                                                                                                             |               | // | // | 7                            | 7/\0        | 1         | 1                    |  |
| (Note2)  |                        |               | Protect flag                                                                                                                  |               |    | ~  |                              | Always      | Always    | fs oscillator        |  |
| (140102) |                        |               | 0: OFF                                                                                                                        |               |    |    | >//                          | write "0"   | write "1" | driver ability       |  |
|          |                        |               | 1: ON                                                                                                                         |               |    |    |                              | >           |           | 1: Normal            |  |
| -        |                        |               |                                                                                                                               |               |    |    |                              | Y           |           | 0: Weak              |  |
|          | EMC                    | Control 10E4H |                                                                                                                               |               |    |    |                              |             |           |                      |  |
| EMCCR1   | _                      |               | $\langle \langle \rangle \rangle \langle \langle \rangle \rangle$                                                             |               |    |    |                              |             |           |                      |  |
|          | register 1             |               | Switch the protect ON/OFF by writing the following to 1st VEV and VEV                                                         |               |    |    |                              |             |           |                      |  |
|          |                        |               | Switch the protect ON/OFF by writing the following to 1st-KEY, 2nd-KEY  1st-KEY: write in sequence EMCCR1 = 5AH, EMCCR2 = A5H |               |    |    |                              |             |           |                      |  |
| EMCCR2   | EMC<br>Control         | -             | 2nd-KEY: write in sequence EMCCR1 = A5H, EMCCR2 = 5AH                                                                         |               |    |    |                              |             |           |                      |  |
|          |                        |               | ZITUTAL 1. WITE III SEQUETOS LINGUIX - ASTI, LINGUIX - SATI                                                                   |               |    |    |                              |             |           |                      |  |
|          |                        | 10E5H         |                                                                                                                               |               |    |    |                              |             |           |                      |  |
|          | register 2             |               |                                                                                                                               |               | 7  |    | ((                           |             |           |                      |  |



## (6) 8-bit timer (1/2)

|          |                          | A 1.1          | _                                | _        | _                                        |               |                       | -                     | ,                   | -         |  |  |  |  |
|----------|--------------------------|----------------|----------------------------------|----------|------------------------------------------|---------------|-----------------------|-----------------------|---------------------|-----------|--|--|--|--|
| Symbol   | Name                     | Address        | 7                                | 6        | 5                                        | 4             | 3                     | 2                     | 1                   | 0         |  |  |  |  |
|          | 8-bit timer              |                | TA0RDE                           |          |                                          |               | I2TA01                | TA01PRUN              | TA1RUN              | TA0RUN    |  |  |  |  |
|          |                          |                | R/W                              |          |                                          |               |                       | R/                    | W                   |           |  |  |  |  |
|          |                          |                | 0                                |          |                                          |               | 0                     | 0                     | 0                   | 0         |  |  |  |  |
| TA01RUN  | RUN                      | 1100H          | Double                           |          |                                          |               | IDLE2                 | TMRA01                | UC1                 | UC0       |  |  |  |  |
|          | register                 |                | buffer                           |          |                                          |               | 0: Stop               | prescaler             |                     | JCU       |  |  |  |  |
|          |                          |                | 0: Disable                       |          |                                          |               | 1: Operate            | 0: Stop and           |                     |           |  |  |  |  |
|          |                          |                | 1: Enable                        |          | <u> </u>                                 |               |                       | 1: Run (Cou           | unt up)             |           |  |  |  |  |
| TA 25-5  | 8-bit timer              | 1102H          |                                  |          |                                          |               |                       |                       |                     |           |  |  |  |  |
| TA0REG   | register 0               | (Prohibit      |                                  |          |                                          |               | W (                   | $\rightarrow$         |                     |           |  |  |  |  |
|          | -                        | RMW)           |                                  |          |                                          | Und           | efined (              | // \)                 |                     |           |  |  |  |  |
| <b> </b> | 8-bit timer              | 1103H          |                                  |          |                                          |               | - ///                 | $\subseteq \subseteq$ |                     |           |  |  |  |  |
| TA1REG   | register 1               | (Prohibit      |                                  |          |                                          |               | N (                   |                       |                     |           |  |  |  |  |
|          | 3                        | RMW)           |                                  | 7        | •                                        | Und           | efined )              | <u> </u>              | 7                   | 1         |  |  |  |  |
|          |                          |                | TA01M1                           | TA01M0   | PWM01                                    | PWM00         | TA1CLK1               | TA1CLK0               | TA0CLK1             | TA0CLK0   |  |  |  |  |
|          | 8-bit timer              |                |                                  | T        |                                          | ( 1           | /W \                  | Τ                     | $\mathcal{A}$       | b         |  |  |  |  |
|          | source                   |                | 0                                | 0        | 0                                        | 0             | O Č                   | 0                     | 0                   | 0         |  |  |  |  |
| TA01MOD  | CLK &                    | 1104H          | Operation mo                     |          | PWM cycle                                | $(\bigcap)$   | Source clock          | for TMRA1             | Source clock        |           |  |  |  |  |
|          | mode                     |                | 00: 8-bit time                   |          | 00: Reserved<br>01: 2 <sup>6</sup>       |               | 00: TA0TRG            | > (C                  | 00: TAOIN pir       | n input   |  |  |  |  |
|          | register                 |                | 01: 16-bit time<br>10: 8-bit PPG |          | 10: 2 <sup>7</sup>                       |               | Ø1: φT1<br>10: φT16   | ~ ~ ~                 | 01: φT1<br>10( φT4  |           |  |  |  |  |
|          |                          |                | 11: 8-bit PWN                    |          | 11: 28                                   |               | 11: φT256             |                       | 11: \phi 116        |           |  |  |  |  |
|          |                          |                |                                  |          | 4                                        |               | TA1FFC1               | TA1EFC0               | TA1FFIE             | TA1FFIS   |  |  |  |  |
|          | 8-bit timer<br>flip-flop | (Prohibit      |                                  |          | 1                                        | 7             | R                     |                       | R/                  |           |  |  |  |  |
|          |                          |                |                                  |          |                                          |               | 1                     | , T                   | 0                   | 0         |  |  |  |  |
| TA1FFCR  |                          |                |                                  |          | 1( //                                    |               | 00: Invert TA         |                       | TA1FF               | TA1FF     |  |  |  |  |
|          | control                  |                |                                  | 20       |                                          |               | 01: Set TA1FF         |                       | control for         | inversion |  |  |  |  |
|          | register                 |                |                                  | (1)      |                                          |               | 10: Clear TA1         |                       | inversion           | select    |  |  |  |  |
|          |                          |                |                                  |          |                                          |               | 11: Don't care        |                       | 0: Disable          | 0: TMRA0  |  |  |  |  |
|          |                          |                | TAODDE                           | +        |                                          |               | DOT 1/00              | TAGODOUN              | 1: Enable           | 1: TMRA1  |  |  |  |  |
|          |                          |                | TA2RDE                           |          |                                          |               | 12TA23                | TA23PRUN              | TA3RUN              | TA2RUN    |  |  |  |  |
|          | 8-bit timer              |                | R/W                              | 4        |                                          | A             |                       | R/                    |                     | 0         |  |  |  |  |
| TA23RUN  | RUN                      | 1108H          | 0 (<br>Double                    |          | $\rightarrow$                            |               | 0<br>IDLE2            | 0<br>TMRA23           | 0                   | 0         |  |  |  |  |
|          | register                 |                | buffer                           |          |                                          | (2)           | 0: Stop               | prescaler             | UC3                 | UC2       |  |  |  |  |
|          | 8-bit timer register 2   | it timer 110AH | 0. Disable                       | \        |                                          | 1/            | 1: Operate            | 0: Stop and           | clear               | I         |  |  |  |  |
|          |                          |                | 1: Enable                        | /        |                                          | $\rightarrow$ |                       | 1: Run (Cou           |                     |           |  |  |  |  |
|          |                          |                |                                  | $\wedge$ | ( ( / / )                                |               |                       |                       |                     |           |  |  |  |  |
| TA2REG   |                          |                |                                  |          |                                          | /             | W                     |                       |                     |           |  |  |  |  |
|          | rogiotoi Z               |                |                                  |          |                                          | Und           | efined                |                       |                     |           |  |  |  |  |
|          | 8-bit timer              | 110BH          | $\rightarrow$                    | 1        |                                          |               | =                     |                       |                     |           |  |  |  |  |
| TA3REG   | register 3               | > (Prohibit    |                                  |          |                                          | \             | W                     |                       |                     |           |  |  |  |  |
|          | Signore S                | RMW)           |                                  |          | $\vee$                                   |               | efined                |                       |                     |           |  |  |  |  |
|          |                          |                | TA23M1                           | /TA23M0  | PWM21                                    | PWM20         | TA3CLK1               | TA3CLK0               | TA2CLK1             | TA2CLK0   |  |  |  |  |
|          | 8-bit timer              |                |                                  | 1/       | •                                        |               | /W                    | <b>.</b>              | <b>.</b>            |           |  |  |  |  |
|          | source CLK               | ))             | 0                                | 0,       | 0                                        | 0             | 0                     | 0                     | 0                   | 0         |  |  |  |  |
| TA23MOD  | . &                      | 110CH/         | Operation mo                     |          | PWM cycle                                | ·             | Source clock          | for TMRA3             | Source clock        |           |  |  |  |  |
|          | mode                     |                | 00: 8-bit time                   | //       | 00: Reserved                             |               | 00: TA2TRG            |                       | 00: Reserved        | l         |  |  |  |  |
|          | register r               |                | 01/16-bit-tim<br>10: 8-bit PPG   |          | 01: 2 <sup>6</sup><br>10: 2 <sup>7</sup> |               | 01: φT1<br>10: φT16   |                       | 01: φT1<br>10: φT4  |           |  |  |  |  |
|          |                          |                | 11: 8-bit PW                     |          | 10: 2<br>11: 2 <sup>8</sup>              |               | 10: φ116<br>11: φT256 |                       | 10: φ14<br>11: φT16 |           |  |  |  |  |
|          | \/                       |                | 5 5121/11/1                      |          |                                          |               | TA3FFC1               | TA3FFC0               | TA3FFIE             | TA3FFIS   |  |  |  |  |
|          |                          |                |                                  |          |                                          |               | R/                    |                       | R/                  |           |  |  |  |  |
|          | 8-bit timer              | 110DH          |                                  |          |                                          | $\bigvee$     | 1                     | 1                     | 0                   | 0         |  |  |  |  |
| TA3FFCR  | flip-flop                | (Prohibit      |                                  |          |                                          |               | 00: Invert TA3        |                       | TA3FF               | TA3FF     |  |  |  |  |
| INDITION | control                  | RMW)           |                                  |          |                                          |               | 01: Set TA3F          |                       | control for         | inversion |  |  |  |  |
|          | register                 | T SIVIVV)      |                                  |          |                                          |               | 10: Clear TA3         | FF                    | inversion           | select    |  |  |  |  |
|          |                          |                |                                  |          |                                          |               | 11: Don't care        | )                     | 0: Disable          | 0: TMRA2  |  |  |  |  |
|          |                          |                |                                  |          |                                          |               |                       |                       | 1: Enable           | 1: TMRA3  |  |  |  |  |

**TOSHIBA** 

8-bit timer (2/2)

| Symbol  | Name                                               | Address                    | 7                                       | 6              | 5                                        | 4     | 3                          | 2                          | 1                            | 0         |  |  |
|---------|----------------------------------------------------|----------------------------|-----------------------------------------|----------------|------------------------------------------|-------|----------------------------|----------------------------|------------------------------|-----------|--|--|
| TA45RUN |                                                    |                            | TA4RDE                                  |                |                                          |       | I2TA45                     | TA45PRUN                   | TA5RUN                       | TA4RUN    |  |  |
|         |                                                    |                            | R/W R/W                                 |                |                                          |       |                            |                            |                              |           |  |  |
|         | 8-bit timer                                        |                            | 0                                       |                |                                          |       | 0                          | 0                          | 0                            | 0         |  |  |
|         | RUN<br>register                                    | 1110H                      | Double<br>buffer                        |                |                                          |       | IDLE4<br>0: Stop           | TMRA45<br>prescaler        | UC5                          | UC4       |  |  |
|         |                                                    |                            | 0: Disable<br>1: Enable                 |                |                                          |       | 1: Operate                 | 0: Stop and<br>1: Run (Cou |                              |           |  |  |
|         | 8-bit timer                                        | 1112H                      |                                         |                |                                          |       | _                          |                            | ~                            |           |  |  |
| TA4REG  | register 4                                         | (Prohibit                  | W                                       |                |                                          |       |                            |                            |                              |           |  |  |
|         | rogiotor +                                         | RMW)                       |                                         |                |                                          | Und   | efined (                   |                            |                              |           |  |  |
|         | 8-bit timer register 5                             | 1113H<br>(Prohibit<br>RMW) | - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                |                                          |       |                            |                            |                              |           |  |  |
| TA5REG  |                                                    |                            | W                                       |                |                                          |       |                            |                            |                              |           |  |  |
|         |                                                    |                            | Undefined )                             |                |                                          |       |                            |                            |                              |           |  |  |
|         |                                                    | (<br>1114H                 | TA45M1                                  | TA45M0         | PWM41                                    | PWM40 | TA5CLK1                    | TA5CLK0                    | TA4CLK1                      | TA4CLK0   |  |  |
|         | 8-bit timer<br>source CLK<br>&<br>mode<br>register |                            | RW                                      |                |                                          |       |                            |                            |                              |           |  |  |
|         |                                                    |                            | 0                                       | 0              | 0                                        | 0     | 0                          | 0                          | (0)                          | 0         |  |  |
| TA45MOD |                                                    |                            | Operation mode 00: 8-bit timer mode     |                | PWM cycle<br>00: Reserved                |       | Source clock<br>00: TA4TRG | / _                        | Source clock<br>00: Reserved |           |  |  |
|         |                                                    |                            | 01: 16-bit tim                          |                | 01: 2 <sup>6</sup><br>10: 2 <sup>7</sup> |       | Ø1: φT1                    | ~~~                        | 01/671                       |           |  |  |
|         |                                                    |                            | 10: 8-bit PPG<br>11: 8-bit PWN          |                | 10: 2<br>11: 2 <sup>8</sup>              |       | 10: φT16<br>11: φT256      |                            | 10: \psi T4/<br>11: \psi T16 |           |  |  |
|         |                                                    |                            |                                         |                | 4                                        |       | TA5FFC1/                   | TASEFC0                    | TA5FFIE                      | TA5FFIS   |  |  |
|         | 8-bit timer<br>flip-flop<br>control<br>register    | -flop<br>ntrol (Prohibit   |                                         |                |                                          | W.    | \                          | XW )                       |                              | W         |  |  |
|         |                                                    |                            |                                         |                |                                          |       | 1                          | >,4                        | 0                            | 0         |  |  |
| TA5FFCR |                                                    |                            |                                         |                | 1( //                                    | _     | 00: Invert TA              | 5F)F                       | TA5FF                        | TA5FF     |  |  |
|         |                                                    |                            |                                         | $\mathcal{A}($ |                                          |       | 01: Set TA5F               |                            | control for                  | inversion |  |  |
|         |                                                    |                            |                                         |                |                                          |       | 10: Clear TA               |                            | inversion                    | select    |  |  |
|         |                                                    |                            |                                         |                | $\rightarrow$                            |       | 11: Dòn't car              | е                          | 0: Disable                   | 0: TMRA4  |  |  |
|         |                                                    |                            |                                         |                | 1                                        |       | _//                        |                            | 1: Enable                    | 1: TMRA5  |  |  |

(7) 16-bit timer (1/2)

| (7)         | 16-bit tin                 | 101 (1/2)          |                                   | 1              | 1                           | 1            | 1                                            | 1                         | 1                    |            |
|-------------|----------------------------|--------------------|-----------------------------------|----------------|-----------------------------|--------------|----------------------------------------------|---------------------------|----------------------|------------|
| Symbol      | Name                       | Address            | 7                                 | 6              | 5                           | 4            | 3                                            | 2                         | 1                    | 0          |
|             |                            |                    | TB0RDE                            | =              |                             |              | I2TB0                                        | TB0PRUN                   |                      | TB0RUN     |
|             |                            |                    | R/                                | W              |                             |              | R/                                           | W                         |                      | R/W        |
|             | 16-bit timer               |                    | 0                                 | 0              |                             |              | 0                                            | 0                         |                      | 0          |
| TB0RUN      | RUN                        | 1180H              | Double                            | Always         |                             |              | IDLE2                                        | TMRB0                     |                      | Up counter |
|             | register                   |                    | buffer                            | write "0"      |                             |              | 0: Stop                                      | prescaler                 |                      | (UC0)      |
|             |                            |                    | 0: Disable<br>1: Enable           |                |                             |              | 1: Operate                                   | 0: Stop and<br>1: Run (Co |                      |            |
|             |                            |                    | 1. Lilabic                        | _              | TB0CP0I                     | TB0CPM1      | TB0CPM0                                      |                           | TB0CLK1              | TB0CLK0    |
|             |                            |                    |                                   | /W             | W                           | TBOCFIVIT    | TBOCFINIO                                    | R/W                       | IDOCERT              | TBUCERU    |
|             | 40 hit time e u            |                    | 0                                 | 0              | 1                           | 0            | \ 0 ((                                       | V/6\                      | 0                    | 0          |
|             | 16-bit timer source        | 1182H              |                                   | write "0"      | Software                    | Capture tim  | ~ · · ·                                      |                           | TMRB0 sou            | _          |
| TB0MOD      | CLK &                      | (Prohibit          | 7                                 |                | capture                     | 00: Disable  |                                              | control                   | 00: Reserve          |            |
| . 2002      | mode                       | RMW)               |                                   |                | control                     | 01: Reserved | 1 1                                          | 0> Disable                | 01: φT1              |            |
|             | register                   | ,                  |                                   |                | 0: Software                 | 10: Reserved |                                              | i: Enable                 | 10: φT4              |            |
|             |                            |                    |                                   |                | capture 1: Undefined        | 1 /          | TAIOOIT                                      |                           | 11: \psi T16         |            |
|             |                            |                    |                                   |                |                             | (1)          |                                              | _ <                       | 4/ /                 | >          |
|             |                            |                    | _                                 | _              | TB0C1T1                     | TB0C0T1      | TB0E1T1                                      | TB0E0T1                   | TB0FFC1              | TB0FFC0    |
|             |                            |                    | V                                 | <b>/</b> *     |                             | -H//<        | W /                                          |                           | ) \ \ \ \ \ \        |            |
|             |                            |                    | 1                                 | 1              | 0 /                         | 0            | 0                                            | (0)                       | (1)                  | 1          |
|             | 16-bit timer               | 440011             | Always v                          | vrite "11".    | TB0FF0 inve                 |              | •                                            |                           | Control TB0F         | F0         |
| TB0FFCR     | flip-flop                  | 1183H<br>(Prohibit |                                   |                | 0: Disable trig             |              | (                                            |                           | 00: Invert           |            |
| 1 DOI 1 CIX | control                    | RMW)               |                                   |                | 1: Enable trig              |              | Invert when                                  |                           | 01: Set<br>10: Clear |            |
|             | register                   | ,                  |                                   |                | Invert when<br>the UC value |              |                                              |                           |                      | е          |
|             |                            |                    |                                   |                | is loaded in                |              | matches the                                  |                           | * Always read        | d as 11.   |
|             |                            |                    |                                   | $\mathcal{A}($ | to                          | to           | value in                                     | value in                  |                      |            |
|             | 10.111                     |                    |                                   |                | TB0CP1H/L                   | TB0CP0H/L    | TB0RG1H/L                                    | TB0RG0H/L                 |                      |            |
| TB0RG0L     | 16-bit timer<br>register 0 | 1188H<br>(Prohibit |                                   |                | $\rightarrow$               |              | <u>,                                    </u> |                           |                      |            |
| IBUNGUL     | Low                        | RMW)               |                                   | +(-)           | )                           |              | efined                                       |                           |                      |            |
|             | 16-bit timer               | 1189H              |                                   | $\supset$      | /                           | ^ -          | JINCO                                        |                           |                      |            |
| TB0RG0H     | register 0                 | (Prohibit          | ((                                |                |                             |              | ٧                                            |                           |                      |            |
|             | High                       | RMW)               |                                   |                |                             | Unde         | efined                                       |                           |                      |            |
|             | 16-bit timer               | 118AH              | (O/c                              | \              |                             | 7/ ~         | _                                            |                           |                      |            |
| TB0RG1L     | register 1                 | (Prohibit          |                                   | )              |                             | √ v          | ٧                                            |                           |                      |            |
|             | Low                        | RMW)               |                                   | ^              | $((///\langle$              | Unde         | efined                                       |                           |                      |            |
|             | 16-bit timer               | (118BH/            |                                   |                |                             |              | -                                            |                           |                      |            |
| TB0RG1H     |                            | (Prohibit          |                                   |                |                             |              | ٧                                            |                           |                      |            |
|             | High                       | RMW)               | $\rightarrow$                     | 1              |                             | Unde         | efined                                       |                           |                      |            |
|             | 16-bit timer<br>Capture    | >                  |                                   |                |                             | -            | <u> </u>                                     |                           |                      |            |
| TB0CP0L     | register                   | 118CH              |                                   |                | $\rightarrow$               |              |                                              |                           |                      |            |
|             | 0Low                       |                    |                                   | ( )            |                             | Unde         | efined                                       |                           |                      |            |
|             | 16-bittimer                |                    | <u> </u>                          | 1              |                             |              | _                                            |                           |                      |            |
| ТВОСРОН     | Capture                    | )<br>118DH (       |                                   |                |                             | F            | ₹                                            |                           |                      |            |
| -           | register 0                 |                    | · ((                              |                |                             | Unde         | efined                                       |                           |                      |            |
|             | High                       |                    | $\langle \rangle \langle \rangle$ | <u> </u>       |                             | 01.00        |                                              |                           |                      |            |
|             | 16-bit timer<br>Capture    | 2                  |                                   |                |                             | -<br>-       | <u> </u>                                     |                           |                      |            |
| TB0CP1L     | register 1                 | 118EH              | $\rightarrow$                     |                |                             |              | ₹                                            |                           |                      |            |
|             | Low                        |                    |                                   |                |                             | Unde         | efined                                       |                           |                      |            |
|             | 16-bit timer               |                    |                                   |                |                             | -            | _                                            |                           |                      |            |
| TB0CP1H     | Capture                    | 118FH              |                                   |                |                             | F            | ₹                                            |                           |                      |            |
| . 2001 111  | register 1                 |                    |                                   |                |                             | Unde         | efined                                       |                           |                      |            |
|             | High                       |                    |                                   |                |                             | Onde         |                                              |                           |                      |            |

16-bitTimer (2/2)

| Symbol   | Name                    | Address            | 7                        | 6                 | 5               | 4                               | 3                    | 2                    | 1                         | 0               |
|----------|-------------------------|--------------------|--------------------------|-------------------|-----------------|---------------------------------|----------------------|----------------------|---------------------------|-----------------|
| Cymbol   | Hamo                    | 71441.000          | TB1RDE                   | _                 |                 |                                 | I2TB1                | TB1PRUN              |                           | TB1RUN          |
|          |                         |                    |                          | /W                |                 |                                 |                      | W                    |                           | R/W             |
|          | 16-bit timer            |                    | 0                        | 0                 |                 |                                 | 0                    | 0                    |                           | 0               |
| TB1RUN   | RUN                     | 1190H              | Double                   | Always            |                 |                                 | IDLE2                | TMRB1                |                           | Up counter      |
|          | register                |                    | buffer                   | write "0"         |                 |                                 | 0: Stop              | prescaler            |                           | (ÚC1)           |
|          |                         |                    | 0: Disable               |                   |                 |                                 | 1: Operate           | 0: Stop and          |                           |                 |
|          |                         |                    | 1: Enable                |                   |                 |                                 |                      | 1: Run (Cou          | /                         |                 |
|          |                         |                    | TB1CT1                   | TB1ET1            | TB1CP0I         | TB1CPM1                         | TB1CPM0              |                      | TB1CLK1                   | TB1CLK0         |
|          |                         |                    |                          | W .               | W               |                                 |                      | R/W                  |                           | _               |
|          | 16-bit timer            |                    | 0<br>TB1FF1 Inve         | 0                 | 1<br>Software   | 0<br>Capture timin              | 0 (                  | Un counter           | 0<br>TMRB1 sou            | 0<br>urco clock |
|          | source                  | 1192H              | 0: Trigger dis           |                   | capture         | 00: Disable                     | 9                    | control              | 00: TB1IN0                |                 |
| TB1MOD   | CLK &                   | (Prohibit          | 1: Trigger en            |                   | control         | INT5 is rising                  | edge                 | 0: Disable           | 01: φT1                   | pp              |
|          | mode                    | RMW)               | Invert when              | Invert when       | 0: Software     | 01: TB1N0 ↑                     |                      | 1: Enable            | 10: φT4                   |                 |
|          | register                | ,                  | capture to               | match UC0         | capture         | INT5 is rising                  | / 5/                 |                      | 11: ∳T16                  |                 |
|          |                         |                    | capture register 1       | with<br>TB1RG1H/L | 1: Undefined    | 10: TB1HN0 ↑<br>INT5 is falling |                      | ^                    | ( \>                      |                 |
|          |                         |                    | register i               | I BINGII/L        |                 | 11; TA30UT                      |                      | $\mathcal{L}$        |                           |                 |
|          |                         |                    |                          |                   |                 | INT5 is rising                  |                      |                      |                           |                 |
|          |                         |                    | TB1FF1C1                 | TB1FF1C0          | TB1C1T1         | TB1C0T1                         | TB1E1T1              | TB1E0T1              | TB1FFC1                   | TB1FFC0         |
|          |                         |                    |                          | /*<br>            |                 |                                 | W                    | 1//                  | (// W                     |                 |
|          |                         |                    | 1                        | 1                 | TD4FF0          | 0                               | 0                    | 0 >                  | 1                         | 1               |
|          | 16-bit timer flip-flop  | 1193H              | TB1FF1 cor<br>00: Invert | ntroi             | 0: Disable t    | ersion trigge<br>rigger         | er (                 | <b>/</b> /))         | Control TB1<br>00: Invert | FFU             |
| TB1FFCR  | control                 | (Prohibit          | 01: Set                  |                   | 1: Enable tr    |                                 |                      |                      | 01: Set                   |                 |
|          | register                | RMW)               | 10: Clear                |                   |                 |                                 |                      | Invert when          | 10: Clear                 |                 |
|          | . og.oto.               |                    | 11: Don't ca             | - / /             |                 |                                 |                      |                      | 11: Don't ca              |                 |
|          |                         |                    | * Always re              | ad as "11"\       | is loaded in to | is loaded in                    | matches the value in | matches the value in | * Always re               | ad as 11.       |
|          |                         |                    |                          |                   |                 | TB1CR0H/L                       | TB1RG1H/L.           |                      |                           |                 |
|          | 16-bit timer            | 1198H              |                          |                   |                 | /-                              |                      |                      |                           |                 |
| TB1RG0L  | register 0              | (Prohibit          |                          | $\supset$         |                 |                                 | <u>v~</u>            |                      |                           |                 |
|          | Low                     | RMW)               |                          |                   | ~               | \\ Unde                         | fined                |                      |                           |                 |
| TB1RG0H  | 16-bit timer            | 1199H<br>(Prohibit |                          |                   |                 |                                 |                      |                      |                           |                 |
| IBIRGUN  | register 0<br>High      | (Profibit<br>RMW)  | (0)                      |                   |                 | //                              | v<br>efined          |                      |                           |                 |
|          | 16-bit timer            | 1/19AH             |                          | )                 |                 | Onde                            | -                    |                      |                           |                 |
| TB1RG1L  | register 1              | (Prohibit)         |                          | $\wedge$          | $-(//\langle$   | \ \ \ \ \                       | V                    |                      |                           |                 |
|          | Low                     | RMW)               |                          |                   |                 | /                               | fined                |                      |                           |                 |
|          | 16-bit timer            | 119BH              |                          |                   |                 | -<br>-                          | _                    |                      |                           |                 |
| TB1RG1H  | register 1              | (Prohibit          | $\supset$                |                   |                 | V                               |                      |                      |                           |                 |
|          | High                    | RMW)               |                          |                   |                 | Unde                            | fined                |                      |                           |                 |
|          | 16-bit timer<br>Capture | 7                  |                          |                   | $\vee$          | -                               | -                    |                      |                           |                 |
| TB1CP0L  | register 0              | 119CH              | ^                        | (                 |                 |                                 | ₹                    |                      |                           |                 |
| $\wedge$ | Low                     |                    |                          |                   |                 | Unde                            | fined                |                      |                           |                 |
|          | 16-bittimer             | <i>)</i> ^         |                          |                   |                 | =                               | =                    |                      |                           |                 |
| TB/ICP0H | Capture                 | 119DH              |                          |                   |                 | F                               | ₹                    |                      |                           |                 |
|          | register 0              | 11001              | $\checkmark$             |                   |                 | Unde                            | fined                |                      |                           |                 |
|          | High                    | <                  | $\wedge \setminus$       |                   |                 |                                 |                      |                      |                           |                 |
|          | 16-bit timer<br>Capture |                    |                          |                   |                 |                                 | <br>₹                |                      |                           |                 |
| TB1CP1L  | register 1              | 119EH              |                          |                   |                 |                                 |                      |                      |                           |                 |
|          | Low                     |                    |                          |                   |                 | Unde                            | fined                |                      |                           |                 |
|          | 16-bit timer            |                    |                          |                   |                 | -                               |                      |                      |                           |                 |
| TB1CP1H  | Capture                 | 119FH              |                          |                   |                 | Ī                               | ₹                    |                      |                           |                 |
|          | register 1              |                    |                          |                   |                 | Unde                            | fined                |                      |                           |                 |
|          | High                    |                    |                          |                   |                 |                                 |                      |                      |                           |                 |

(8) High speed serial (Note)(1/3)

| Symbol | Name                 | Address   | 7            | 6             | 5                                               | 4             | 3              | 2                        | 1                       | 0             |
|--------|----------------------|-----------|--------------|---------------|-------------------------------------------------|---------------|----------------|--------------------------|-------------------------|---------------|
|        |                      |           |              | XEN0          |                                                 |               |                | CLKSEL02                 | CLKSEL01                | CLKSEL00      |
|        |                      |           |              | R/W           |                                                 |               |                |                          | R/W                     | •             |
|        |                      |           |              | 0             |                                                 |               |                | 1                        | 0                       | 0             |
|        |                      | 0C00H     |              | SYSCK         |                                                 |               |                | Select bau               |                         |               |
|        |                      | ОСООП     |              | 0: Disable    |                                                 |               |                |                          | ed 100:f <sub>SY:</sub> | e/16          |
|        |                      |           |              | 1: Enable     |                                                 |               |                | 001: f <sub>SYS</sub> /2 | 101: f <sub>S</sub>     |               |
|        | High Speed           |           |              |               |                                                 |               |                | 010; f <sub>SYS</sub> /4 | 110: f <sub>S</sub>     |               |
|        |                      |           |              |               |                                                 |               |                | 01/1: (SYS/8             |                         |               |
| HSC0MD | Serial<br>Mode       |           | LOOPBACK0    | MSB1ST0       | DOSTAT0                                         |               | TCPOL0         | RCPOL0                   | TDINV0                  | RDINV0        |
|        | register             |           |              | R/W           |                                                 |               | . ((           | 7/A R                    | W                       |               |
|        | register             |           | 0            | 1             | 1                                               |               | 0              | (2,0)                    | 0                       | 0             |
|        |                      |           | LOOPBACK     | Start bit for | HSSO pin                                        |               | Synchronous    | Synchronous              | Invert data             | Invert data   |
|        |                      | 0C01H     | test mode    | transmit      | (no transmit)                                   |               | clock edge     | clock edge               | During                  | During        |
|        |                      |           | 0: Disable   | /receive      | 0: fixed                                        |               | during         | during                   | transmitting            | receiving     |
|        |                      |           | 1: Enable    | 0:LSB         | to "0"                                          |               | transmitting   | receiving                | 0:Disable               | 0:Disable     |
|        |                      |           |              | 1:MSB         | 1:fixed                                         | $\lambda$ (   | 0: fall        | 0: fall                  | 1:Enable                | 1:Enable      |
|        |                      |           |              |               | to "1"                                          |               | 1: rise        | 1: rise                  | 11                      | ?             |
|        |                      |           | _            | _             | UNIT160                                         |               | <b>D</b>       | ALGNENO                  | <b>\</b>                | RXUEN0        |
|        |                      |           |              | R/W           | <u> </u>                                        | 7444          |                |                          | ) R/W                   |               |
|        |                      | 000011    | 0            | 1             | 0                                               |               |                | V_0                      | //0)                    | 0             |
|        |                      | 0C02H     | Always       | Always        | Data (                                          |               |                |                          | Sequential              | Receive       |
|        |                      |           | write "0"    | write "1"     | length                                          |               | /              | alignment                | receive                 | UNIT          |
|        | History              |           |              |               | 0: 8bit                                         |               | (              | 0:Disable                | 0:Disable               | 0:Disable     |
|        | High Speed<br>Serial |           |              |               | 1: 16bit                                        |               |                | 1:Enable                 | 1:Enable                | 1:Enable      |
| HSC0CT | Control              |           | CRC16_7_B0   |               | CRCREST_B0                                      |               | $\sim 77$      |                          |                         | DMAERFR0      |
|        | register             |           |              | R/W           | 7( /)                                           |               |                |                          |                         | /W            |
|        | register             |           | 0            | 0 / (         | /0                                              | $\rightarrow$ | 110            |                          | 0                       | 0             |
|        |                      | 0C03H     | CRC          | CRC data      | CRC                                             | //            |                |                          |                         | Micro DMA     |
|        |                      | 000311    | select       | 0:Transmit    | \/                                              |               | ) )            |                          | 0: Disable              | 0: Disable    |
|        |                      |           | 0:CRC7       | 1:Receive     | register                                        |               | \//            |                          | 1: Enable               | 1: Enable     |
|        |                      |           | 1:CRC16      |               | 0: Reset<br>1:Release                           |               | \ <u>`</u>     |                          |                         |               |
|        |                      |           |              | 7 /           | Reset                                           |               |                |                          |                         |               |
|        |                      |           |              | 7             | /                                               | 1             | TEND0          | REND0                    | RFW0                    | RFR0          |
|        |                      |           |              |               |                                                 | MIL.          | TENDO          | I TREITED                |                         | Turto         |
|        |                      |           | 427          |               |                                                 | At 1          | 1              | 0                        | 1                       | 0             |
|        |                      |           |              | _             |                                                 | $\rightarrow$ | Transmitting   | Receive                  | Transmit                | Receive       |
|        |                      |           |              | ^             | ((//<                                           | $\land$       | 0:operation    | Shift register           |                         | buffer        |
|        |                      | (0C04H/   |              |               | $\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ |               | 1: no          | 0: no data               | 0:                      | 0: no valid   |
|        | High Speed           | \\/       | ~            |               |                                                 |               |                |                          | untransmitted           | data          |
| HSC0ST | Serial               |           |              |               | 7/                                              |               | '              |                          | data exist              | 1: valid data |
|        | Status               |           | $\checkmark$ |               |                                                 |               |                |                          | 1: no                   | exist         |
|        | register             | >         |              |               |                                                 |               |                |                          | untransmitted           |               |
|        | ζ,                   | A         |              | *             | $\vee$                                          |               |                |                          | data                    |               |
|        | , i                  |           | <i></i>      |               |                                                 |               |                |                          |                         |               |
|        |                      | 0C05H     |              | 1             |                                                 |               |                |                          |                         |               |
|        |                      | ) ) 30011 |              |               |                                                 |               |                |                          |                         |               |
|        |                      |           | · ((         | // ~          |                                                 |               |                |                          |                         |               |
|        | 1                    |           | CRCD007      | CRCD006       | CRCD005                                         | CRCD004       | CRCD003        | CRCD002                  | CRCD001                 | CRCD000       |
|        |                      | 0C06H <   |              | /             |                                                 | F             | ₹              |                          |                         |               |
|        | High Speed           | 000011    | 9            | 0             | 0                                               | 0             | 0              | 0                        | 0                       | 0             |
| HSC0CR | Serial               |           |              |               | CRC ca                                          | lculation res | ult load regi  | ster[7:0]                |                         |               |
| HOUUK  | CRC                  | -         | CRCD015      | CRCD014       | CRCD013                                         | CRCD012       | CRCD011        | CRCD010                  | CRCD009                 | CRCD008       |
|        | register             | 000711    |              |               |                                                 |               | ₹              |                          |                         |               |
|        |                      | 0C07H     | 0            | 0             | 0                                               | 0             | 0              | 0                        | 0                       | 0             |
|        |                      |           |              |               | CRC cal                                         | culation res  | ult load regis | ter[15:8]                |                         | •             |
|        |                      |           |              |               | J. (5 50)                                       |               | oud rogic      |                          |                         |               |

Note: High speed serial function in not built into TMP92CY23.

High speed serial (2/3)

| Symbol            | Name                | Address                       | 7                                               | 6         | 5             | 4                  | 3            | 2                   | 1                 | 0                 |
|-------------------|---------------------|-------------------------------|-------------------------------------------------|-----------|---------------|--------------------|--------------|---------------------|-------------------|-------------------|
| ,                 |                     |                               |                                                 |           |               |                    | TENDIS0      | RENDIS0             | RFWIS0            | RFRIS0            |
|                   |                     |                               |                                                 |           |               | //                 |              |                     | W                 |                   |
|                   |                     |                               |                                                 |           |               |                    | 0            | 0                   | 0                 | 0                 |
|                   |                     |                               |                                                 |           |               |                    | Read         | Read                | Read              | Read              |
|                   |                     |                               |                                                 |           |               |                    |              |                     | 0: no             | 0: no             |
|                   | High Speed          | 0C08H                         |                                                 |           |               |                    | interrupt    | interrupt           | interrupt         | interrupt         |
|                   | Serial              |                               |                                                 |           |               |                    | r: interrupt | i. interrupt        | 1: interrupt      | r: interrupt      |
| HSC0IS            | Interrupt           |                               |                                                 |           |               |                    | Write        | Write               | Write             | Write             |
|                   | status              |                               |                                                 |           |               |                    | 0: Don't /   | 0: Don't            | 0: Don't          | 0: Don't          |
|                   | register            |                               |                                                 |           |               |                    | care         | /care               | care              | care              |
|                   |                     |                               |                                                 |           |               |                    | 1: clear     | 1: eléar            | 1: clear          | 1: clear          |
|                   |                     |                               |                                                 |           |               |                    | +            | <del>}</del>        |                   |                   |
|                   |                     | 0C09H                         |                                                 |           |               | $\rightarrow$      |              |                     |                   |                   |
|                   |                     |                               |                                                 |           |               |                    |              |                     |                   |                   |
|                   |                     |                               |                                                 |           |               | (4)                | TEN 10.11=   | DENDUCE             | M /               | DEDIATE           |
|                   |                     |                               |                                                 |           |               |                    | I.FUDME0     | RENDWEO             |                   | RFRWE0            |
|                   |                     |                               |                                                 |           |               | +                  | 0 /          |                     | W >               | 1 0               |
|                   | High Speed          |                               |                                                 |           |               |                    | ) 0 <        | 0                   | 0                 | 0                 |
|                   | Serial              | 0C0AH                         |                                                 |           |               |                    | Clear        | Clear               | Clear             | Clear             |
|                   | interrupt           |                               |                                                 |           |               |                    | HSC0IS       | HSCOIS              | HSCOIS            | HSC0IS            |
| HSC0WE            | status              |                               |                                                 |           | 4(            | $\rightarrow$      | \            | <rendiso></rendiso> | <rfwis0></rfwis0> | <rfris0></rfris0> |
|                   | write               |                               |                                                 |           |               | >                  | 0: Disable   | 0: Disable          | 0: Disable        | 0: Disable        |
|                   | enable              |                               |                                                 |           |               | _                  | 1: Enable    | 1: Enable           | 1: Enable         | 1: Enable         |
|                   | register            |                               |                                                 |           |               |                    | 1            | /                   |                   |                   |
|                   |                     | 0C0BH                         |                                                 |           |               | $ eq \mathcal{L} $ | A            |                     |                   |                   |
|                   |                     |                               |                                                 |           | $\Diamond$    |                    |              |                     |                   |                   |
|                   |                     |                               |                                                 | +         |               |                    | TENDIEO      | RENDIE0             | RFWIE0            | RFRIE0            |
|                   |                     |                               |                                                 |           |               |                    |              |                     | W                 | 1                 |
|                   |                     |                               | $\mathcal{A}$                                   | A         |               |                    | 0            | 0                   | 0                 | 0                 |
|                   | High Speed          | 0C0CH                         |                                                 |           | (             |                    | TEND0        | REND0               | RFW0              | RFR0              |
|                   | Serial              |                               |                                                 |           |               |                    | interrupt    | interrupt           | interrupt         | interrupt         |
| HSC0IE            | Interrupt           |                               | $( \langle //                                 $ | )         |               | <u> </u>           | 0: Disable   | 0: Disable          | 0: Disable        | 0: Disable        |
|                   | enable              |                               |                                                 | ′         | (O)           | ,                  | 1: Enable    | 1: Enable           | 1: Enable         | 1: Enable         |
|                   | register            | ( 7,                          |                                                 |           |               |                    |              |                     |                   |                   |
|                   |                     | 0C0DH                         | 1                                               |           |               |                    |              |                     |                   |                   |
|                   |                     | COODII                        |                                                 |           | $\rightarrow$ |                    |              |                     |                   |                   |
|                   |                     |                               | ~                                               |           |               |                    |              |                     |                   |                   |
|                   |                     |                               |                                                 |           | $\mathcal{L}$ |                    | TENDIR0      | RENDIR0             | RFWIR0            | RFRIR0            |
|                   | < <u>\</u>          | $\langle \mathcal{N} \rangle$ |                                                 |           | Ţ.            |                    |              |                     | ξ                 | I -               |
|                   |                     | \                             | ~                                               | $\forall$ |               |                    | 0            | 0                   | 0                 | 0                 |
| $\langle \rangle$ | High Speed          | )OCOEH                        |                                                 |           |               |                    | TEND0        | REND0               | RFW0              | RFR0              |
| HECOID            | Serial              |                               | · ( )                                           |           |               |                    | interrupt    | interrupt           | interrupt         | interrupt         |
| HSC0IR            | Interrupt           | ((                            | //                                              | ))        |               |                    | 0: None      | 0: None             | 0: None           | 0: None           |
|                   | request<br>register |                               | $\stackrel{\sim}{\swarrow}$                     |           |               |                    | 1: generate  | 1: generate         | 1: generate       | 1:generate        |
| \                 | Togister            | <                             |                                                 |           |               |                    |              |                     |                   |                   |
|                   | $\checkmark$        | 0C0FH                         | $\overline{}$                                   |           |               |                    |              |                     |                   |                   |
|                   |                     |                               |                                                 |           |               |                    |              |                     |                   |                   |
|                   |                     |                               |                                                 |           |               |                    | <u> </u>     |                     | İ                 | İ                 |

High speed serial (3/3)

| Symbol  | Name                | Address | 7       | 6        | 5          | 4            | 3               | 2        | 1            | 0      |
|---------|---------------------|---------|---------|----------|------------|--------------|-----------------|----------|--------------|--------|
|         |                     |         | TXD007  | TXD006   | TXD005     | TXD004       | TXD003          | TXD002   | TXD001       | TXD000 |
|         |                     | 0C10H   |         |          |            | R/           | W               |          | •            |        |
|         | High Speed          | 00100   | 0       | 0        | 0          | 0            | 0               | 0        | 0            | 0      |
| HSC0TD  | Serial transmission |         |         |          | Trai       | nsmission da | ata register [  | 7:0]     | _            |        |
| 1130010 | data                |         | TXD015  | TXD014   | TXD013     | TXD012       | TXD011          | TXD010   | TXD009       | TXD008 |
|         | register            | 0C11H   |         |          |            | R/           | W               |          |              |        |
|         |                     | 001111  | 0       | 0        | 0          | 0            | 0               | (0)      | > 0          | 0      |
|         |                     |         |         |          | Tran       | smission da  | ta register [   | 15:8)    | )            |        |
|         |                     |         | RXD007  | RXD006   | RXD005     | RXD004       | RXD003          | RXD002   | RXD001       | RXD000 |
|         | High Speed          | 0C12H   |         | 1        |            | R/           | W / /           | (        | 1            |        |
|         | Serial              | 00.2    | 0       | 0        | 0          | 0            | 0               | Ó        | 0            | 0      |
| HSC0RD  | receiving           |         |         | i        |            |              | register [7:    |          | <del> </del> |        |
|         | data                |         | RXD015  | RXD014   | RXD013     | RXD012       |                 | RXD010   | RXD009       | RXD008 |
|         | register            | 0C13H   |         | ı        |            | R/           |                 |          |              |        |
|         |                     |         | 0       | 0        | 0          | 00/          | 0>              | 0        | $\sqrt{0}$   | · 0    |
|         |                     |         |         | ı        |            | , ,          | register [15:   |          | . / /        |        |
|         |                     |         | TSD007  | TSD006   | TSD005     | TSD004       | TSD003          | TSD002   | TSD001       | TSD000 |
|         | High Speed          | 0C14H   |         |          |            | \\\\ R\      | /               | > (      |              |        |
|         | Serial              |         | 0       | 0        | 0          | 0            | 0               | 70       | <u> </u>     | 0      |
| HSC0TS  | transmit            |         | T0D045  | TODOLA   |            | 4            | hift register [ |          | TODOGO       | TODOGO |
|         | data shift          |         | TSD015  | TSD014   | TSD013     | TSD012       | TSD011 (        | TSD010   | TSD009       | TSD008 |
|         | register            | 0C15H   | 0       | 0        | 0          | ) 0          | VV O            |          | 0            | 0      |
|         |                     |         | 0       | 0        |            | V            | ift register [  | $\wedge$ | U            | - 0    |
|         |                     |         | RSD007  | RSD006   | RSD005     | RSD004       | RSD003          | RSD002   | RSD001       | RSD000 |
|         |                     |         | NOD001  | I KSDOOD | INODO03    |              | W               | /NOD002  | INSD001      | NODOOO |
|         | High Speed          | 0C16H   | 0       | 0        | <b>√</b> 0 | 0            | 0               | 0        | 0            | 0      |
|         | Serial              |         | -       |          |            | -            | nift register [ |          | Ü            |        |
| HSC0RS  | receive             |         | RSD015  | RSD014   | RSD013     | RSD012       | RSD011          | RSD010   | RSD009       | RSD008 |
|         | data shift          |         | 1.02010 | 7.03017  |            | R/           |                 |          |              |        |
|         | register            | 0C17H   | 0       | 0        | 0 /        | 0/           | 0               | 0        | 0            | 0      |
|         |                     |         |         |          | . \        | eive data sh | ift register [1 |          | -            |        |
|         |                     |         | (7/0    |          | /          | 11/          | - J L           |          |              |        |

# (9) UART/serial channel (1/3)

| Symbol  | Name                   | Address           | 7           | 6                        | 5                      | 4                      | 3               | 2             | 1                      | 0            |
|---------|------------------------|-------------------|-------------|--------------------------|------------------------|------------------------|-----------------|---------------|------------------------|--------------|
|         | Serial                 | 400011            | RB7/TB7     | RB6/TB6                  | RB5/TB5                | RB4/TB4                | RB3/TB3         | RB2/TB2       | RB1/TB1                | RB0/TB0      |
| SC0BUF  | channel 0              | 1200H             |             | I                        | R                      | (Receive)/W            | / (Transmiss    | ion)          | I                      | l            |
| SCUBUF  | Buffer register        | (Prohibit<br>RMW) |             |                          |                        | , ,                    | lefined         | ,             |                        |              |
|         | _                      |                   | RB8         | EVEN                     | PE                     | OERR                   | PERR            | FERR          | SCLKS                  | IOC          |
|         | Serial                 |                   | R           | R                        | W                      | R (Clea                | ared to 0 whe   | en read)      |                        | /W           |
|         | channel 0              |                   | Undefined   | 0                        | 0                      | 0                      | 0               | (6)           | \ 0                    | 0            |
| SC0CR   | Control                | 1201H             | Received    | Parity                   | Parity                 |                        | 1: Error        |               | 0:SCLK0↑               | 0: Baud rate |
|         | register               |                   | data bit8   | 0: Odd                   | addition               | Overrun                | Parity /        | Framing       | 1:SCLK0↓               | generator    |
|         |                        |                   |             | 1: Even                  | 0: Disable             |                        | ((              |               |                        | 1: SCLK0     |
|         |                        |                   |             |                          | 1: Enable              |                        |                 |               |                        | pin input    |
|         |                        |                   | TB8         | CTSE                     | RXE                    | WU                     | SM1             | SM0           | SC1                    | SC0          |
|         |                        |                   |             | ı                        | T                      | 1                      | s/w ( )         |               | T                      | T            |
|         | Serial                 |                   | 0           | 0                        | 0                      | 0                      | O O             | / 0           | 0                      | 0            |
|         | channel 0              |                   | Transfer    | Hand                     | Receive                | Wakeup                 | Serial transm   |               | Serial transm          | ission clock |
| SC0MOD0 | Mode0                  | 1202H             | data bit8   | shake<br>0: CTS          | function<br>0: Receive | function<br>0: Disable | 00: I/O interfa |               | (UART)<br>00: TMRA0 ti | )<br>dager   |
|         | register               |                   |             | disable                  | disable                | 1: Enable              | 10: 8-bit UAR   |               | 01: Baud rate          |              |
|         | 5                      |                   |             |                          | 1: Receive             | ((///                  | 11: 9-bit UAR   |               | 10) Internal c         |              |
|         |                        |                   |             | enable                   | enable                 |                        | <i>'</i>        |               | 11: External           | clcok        |
|         |                        |                   |             |                          |                        | $\sim$                 |                 |               | SCLK0 ir               | put)         |
|         |                        |                   | _           | BR0ADDE                  | BR0CK1                 | BR0CK0                 | BR0S3           | BR0S2         | BR0S1                  | BR0S0        |
|         | Serial                 |                   |             |                          | 4                      | F                      | R/W             | $\mathcal{L}$ |                        |              |
|         | channel 0              |                   | 0           | 0                        | 0                      | , o                    | 0               |               | 0                      | 0            |
| BR0CR   | Baud rate              | 1203H             | Always      | +(16 – K)                | 07€:00                 | $\checkmark$           | (0)             |               |                        |              |
|         | Control                |                   | write "0".  | /16                      | 01: \psiT2             | '                      | \\\\            | 2             |                        | _            |
|         | register               |                   |             | division (<br>0: Disable | 10: ∳T8<br>11: ∮T32    |                        |                 | Divided fred  | uency settin           | g            |
|         |                        |                   |             | 1: Enable                | 11. ψ132               |                        |                 |               |                        |              |
|         |                        |                   |             | 4                        | <u></u>                |                        | BRØK3           | BR0K2         | BR0K1                  | BR0K0        |
|         | Serial                 |                   |             | $\mathcal{A}$            |                        |                        |                 |               | z/W                    |              |
| BR0ADD  | channel 0 K            | 1204H             |             |                          |                        | $\nearrow$             | 0               | 0             | 0                      | 0            |
|         | setting                |                   |             |                          |                        |                        |                 | Sets frequer  | ncy divisor "I         |              |
|         | register               |                   |             |                          | <                      | 1671                   |                 |               | l + (16–K)/1           |              |
|         |                        |                   | (12SØ / /   | FDPX0                    |                        | THE                    |                 |               |                        |              |
|         | Serial                 |                   | R)          | Ŵ                        |                        | $\rightarrow$          |                 |               |                        |              |
|         | channel 0              |                   | ) 0         | 0 ^                      | 47                     |                        |                 |               |                        |              |
| SC0MOD1 | Mode1                  | 1205H             | IDLE2       | Duplex                   |                        | 7)                     |                 |               |                        |              |
|         | register               | \\/\              | 0: Stop     | 0: Half                  |                        |                        |                 |               |                        |              |
|         |                        |                   | 1: Run      | 1: Full                  |                        |                        |                 |               |                        |              |
|         |                        | ^                 | PLSEL       | RXSEL                    | TXEN                   | RXEN                   | SIR0WD3         | SIR0WD2       | SIR0WD1                | SIR0WD0      |
|         | $\langle \vee \rangle$ | Z                 | LOLL        | INOLE                    | IALIY                  | 1                      | R/W             | JINOVVDZ      | JINOVVDI               | SINOVADO     |
|         | I*D 4                  |                   | 0           |                          | 0                      | 0                      | 0               | 0             | 0                      | 0            |
| SIR0CR  | IrDA                   | 1207H             | Select <    | Receive                  | Transmit               | Receive                | -               | ive pulse wi  |                        |              |
| SIKUUK  | control                | \\I20/H           | transmit    | data                     | 0: Disable             | 0: Disable             |                 |               | h for equal c          | r more than  |
|         | register 0             | <i>)</i> .        | pulse width | 0: "H" pulse             |                        | 1: Enable              | 2x × (value     |               |                        |              |
|         |                        |                   | 0: 3/16     | 1:\"\_" pulse            |                        |                        | Can be set:     |               |                        |              |
|         |                        |                   | 1;/1)/16    | 7)                       |                        |                        | Can not be      | set: 0, 15    |                        |              |

**TOSHIBA** 

## UART/serial channel (2/3)

| Symbol  | Name                                   | Address                       | 7                                                  | 6                 | 5                                      | 4                       | 3                              | 2             | 1                              | 0             |
|---------|----------------------------------------|-------------------------------|----------------------------------------------------|-------------------|----------------------------------------|-------------------------|--------------------------------|---------------|--------------------------------|---------------|
|         | Serial                                 | 1208H                         | RB7/TB7                                            | RB6/TB6           | RB5/TB5                                | RB4/TB4                 | RB3/TB3                        | RB2/TB2       | RB1/TB1                        | RB0/TB0       |
| SC1BUF  | channel 1                              | (Prohibit                     |                                                    |                   | R (                                    | Receive)/W              | (Transmissi                    | on)           |                                |               |
| COTBOI  | Buffer<br>register                     | RMW)                          |                                                    |                   |                                        | Unde                    | efined                         |               |                                |               |
|         |                                        |                               | RB8                                                | EVEN              | PE                                     | OERR                    | PERR                           | FERR          | SCLKS                          | IOC           |
|         |                                        |                               | R                                                  | R/                | W                                      | R (Clea                 | red to 0 whe                   | en read)      | R                              | /W            |
|         | Serial                                 |                               | Undefined                                          | 0                 | 0                                      | 0                       | 0                              | (0)           | <b>&gt;</b> 0                  | 0             |
| SC1CR   | channel 1<br>Control                   | 1209H                         | Received                                           | Parity            | Parity                                 |                         | 1: Error                       |               | Ø:SCLK1↑                       | 0: Baud rate  |
|         | register                               |                               | data bit8                                          | 0: Odd            | addition                               | Overrun                 | Parity/                        | Framing       | 1:SCLK1↓                       | generator     |
|         | register                               |                               |                                                    | 1: Even           | 0: Disable 1: Enable                   |                         | < ((                           | (/ ))         |                                | 1: SCLK1      |
|         |                                        |                               |                                                    |                   | 1. LIIADIE                             |                         |                                |               |                                | pin input     |
|         |                                        |                               | TB8                                                | CTSE              | RXE                                    | WU                      | (\$M1                          | SM0           | SC1                            | SC0           |
|         |                                        |                               |                                                    |                   |                                        | R                       | $w \setminus v$                | ~             | •                              | •             |
|         | 0                                      |                               | 0                                                  | 0                 | 0                                      | 0 (                     | 0                              | 0             | 0                              | 0             |
|         | Serial                                 |                               | Transfer                                           | Hand              | Receive                                | Wakeupी√                | Serial transm                  | ission mode   | Serial transn                  | nission clock |
| SC1MOD0 | channel 1<br>Mode0                     | 120AH                         | data bit8                                          | shake             | function                               | function                | 00: I/O interfa                | ( /           | (UART)                         | /             |
|         | register                               |                               |                                                    | 0: CTS<br>disable | 0: Receive disable                     | 0: Disable<br>1: Enable | 01: 7-bit UAF<br>10: 8-bit UAF |               | 00: TMRA0 1                    |               |
|         | rogiotoi                               |                               |                                                    | 1: CTS            | 1: Receive                             | 1. Litable              | 11: 9-bit UAF                  |               | 01: Baud rat<br>10: Internal o |               |
|         |                                        |                               |                                                    | enable            | enable                                 |                         |                                |               | 11 External                    |               |
|         |                                        |                               |                                                    |                   | 4                                      |                         |                                |               | (SCLK1 i                       | nput)         |
|         |                                        |                               | -                                                  | BR1ADDE           | BR1CK1                                 | BR1CK0                  | BR1S3 (                        | BR1S2         | BR1S1                          | BR1S0         |
|         | Serial                                 |                               |                                                    | T                 |                                        | N R                     | W                              |               |                                |               |
|         | channel 1                              |                               | 0                                                  | 0                 | 0                                      | <b>O</b>                | 0                              | \O            | 0                              | 0             |
| BR1CR   | Baud rate                              | 120BH                         | Always                                             | +(16 – K)         | 00: φT0                                |                         |                                | ))            |                                |               |
|         | Control                                |                               | write "0".                                         | /16<br>division   | 01: φT2<br>10: φT8                     |                         |                                | Divided from  | uency settin                   | <b>a</b>      |
|         | register                               |                               |                                                    | 0: Disable        | 10. ψ16<br>11: φT32                    |                         |                                | Divided frequ | dericy settiri                 | y             |
|         |                                        |                               |                                                    | 1: Enable         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                         |                                |               |                                |               |
|         | Serial                                 |                               |                                                    | T X               |                                        |                         | BR1K3                          | BR1K2         | BR1K1                          | BR1K0         |
|         | channel 1 K                            |                               | }                                                  |                   |                                        |                         | \<br>\                         | R             | /W                             |               |
| BR1ADD  | setting                                | 120CH                         | #                                                  |                   |                                        | 7                       | 0                              | 0             | 0                              | 0             |
|         | register                               |                               |                                                    |                   | <                                      | 16                      |                                | Sets frequen  | ncy divisor "ł                 | ("            |
|         | J                                      |                               | $\langle \alpha \rangle_{\Lambda}$                 |                   |                                        |                         | (d                             | ivided by N   | + (16 – K)/1                   | 6).           |
|         |                                        |                               | (12\$1)                                            | FDPX1             |                                        | $\rightarrow$           |                                |               |                                |               |
|         | Serial                                 |                               | /                                                  | W                 | 77/                                    |                         |                                |               |                                |               |
| SC1MOD1 | channel 1                              | 120DH /                       | $\left  \begin{array}{c} \phi \end{array} \right $ | 0                 |                                        |                         |                                |               |                                |               |
|         | Mode1                                  |                               | IDLE2                                              | Duplex            |                                        |                         |                                |               |                                |               |
|         | register                               |                               | 0: Stop                                            | 0: Half           |                                        |                         |                                |               |                                |               |
|         | , ,                                    | ,                             | 1: Run                                             | 1: Full           |                                        |                         |                                |               |                                |               |
|         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                               | PLSEL                                              | RXSEL             | TXEN                                   | RXEN                    | SIR1WD3                        | SIR1WD2       | SIR1WD1                        | SIR1WD0       |
|         |                                        | $\langle \mathcal{V} \rangle$ |                                                    | $\wedge$          | ·<br>•                                 | 1                       | W                              | 1             |                                | 1             |
|         | IrDA                                   |                               | 0 <                                                | ( O               | 0                                      | 0                       | 0                              | 0             | 0                              | 0             |
| SIR1CR  | control                                | ) 120FH                       | Select                                             | Receive           | Transmit                               | Receive                 |                                | ive pulse wi  |                                |               |
| 5       | register 1                             | ) <u>- 3</u> 111              | transmit                                           | data              | 0: Disable                             | 0: Disable              | Set effectiv                   | e pulse widt  | h for equal o                  | or more than  |
|         | 7                                      | ((                            | . / / \                                            | 0: "H" pulse      | 1: Enable                              | 1: Enable               | 2x × (value                    | + 1) + 100    | ns                             |               |
|         | /                                      |                               | 0:3/16                                             | 1. "L" pulse      |                                        |                         | Can be set:                    | : 1 to 14     |                                |               |
|         |                                        | <                             | 1: 1/16                                            |                   |                                        |                         | Can not be                     | set: 0, 15    |                                |               |

**TOSHIBA** 

# UART/serial channel (3/3)

| Symbol  | Name                   | Address            | 7                                                  | 6                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                 | 3             | 2             | 1                         | 0            |
|---------|------------------------|--------------------|----------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|---------------|---------------------------|--------------|
|         | Serial                 |                    | RB7/TB7                                            | RB6/TB6                 | RB5/TB5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RB4/TB4           | RB3/TB3       | RB2/TB2       | RB1/TB1                   | RB0/TB0      |
| SC2BUF  | channel 2              | 1210H<br>(Prohibit |                                                    | l .                     | R (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Receive)/W        | (Transmissi   | on)           | Į.                        | Į.           |
| 302001  | Buffer<br>register     | RMW)               |                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unde              | efined        |               |                           |              |
|         |                        |                    | RB8                                                | EVEN                    | PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OERR              | PERR          | FERR          | SCLKS                     | IOC          |
|         | 0 1                    |                    | R                                                  | R                       | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R (Clea           | red to 0 whe  | en read)      | R                         | W            |
|         | Serial channel 2       |                    | Undefined                                          | 0                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 | 0             | (0)           | > 0                       | 0            |
| SC2CR   | Control                | 1211H              | Received                                           | Parity                  | Parity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 1: Error      |               | 0:SCLK2↑                  | 0: Baud rate |
|         | register               |                    | data bit8                                          | 0: Odd                  | addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Overrun           | Parity        | Framing       | 1:SCLK2↓                  | generator    |
|         | 3                      |                    |                                                    | 1: Even                 | 0: Disable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |               | (/ ))         |                           | 1: SCLK2     |
|         |                        |                    |                                                    |                         | 1: Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | >//           |               |                           | pin input    |
|         |                        |                    | TB8                                                | CTSE                    | RXE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WU                | \$M1          | SM0           | SC1                       | SC0          |
|         |                        |                    |                                                    | 1                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | $\mathbb{W}$  | )*            | i                         | i            |
|         | Serial                 |                    | 0                                                  | 0                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 | 0             | 0             | 0                         | 0            |
| 0001105 | channel 2              | 101011             | Transfer data bit8                                 | Hand<br>shake           | Receive function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wakeup \ function | Serial transm |               | Serial transm             | ission clock |
| SC2MOD0 | Mode0                  | 1212H              |                                                    |                         | 0: Receive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0: Disable        | 01: 7-bit UAF | / /           | (UART)<br>00: TMRA0 ti    | rigger       |
|         | register               |                    |                                                    | disable                 | disable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1: Enable         | 10: 8-bit UAF | / _           | 01: Baud rate             | -            |
|         |                        |                    |                                                    | 1: CTS                  | 1: Receive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 11: 9-bit UAF | Mode T        | 10: Internal c            |              |
|         |                        |                    |                                                    | enable                  | enable (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |               |               | 11 External (<br>SCLK2 ir |              |
|         |                        |                    | _                                                  | BR2ADDE                 | BR2CK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BR2CK0            | BR2S3         | BR2S2         | BR2S1                     | BR2S0        |
|         |                        |                    | =                                                  | DRZADDE                 | DRZUKI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | W             | DRZSZ         | DRZSI                     | DRZSU        |
|         | Serial channel 2       |                    | 0                                                  | 0                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D 0               | 000           | , 6           | 0                         | 0            |
| BR2CR   | Baud rate              | 1213H              | Always                                             | +(16 – K)               | 00: φT0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V -               |               |               |                           | U            |
| DIVZOIX | Control                | 121011             | write "0".                                         | /16                     | 01; \$T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |               |               |                           |              |
|         | register               |                    |                                                    | division                | 10: ∳ <b>T</b> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |               | Divided frequ | uency setting             | g            |
|         | -                      |                    |                                                    | 0: Disable<br>1: Enable | 11: <sub>∲</sub> T32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | ))            |               |                           |              |
|         |                        |                    |                                                    | 4                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | BR2K3         | BR2K2         | BR2K1                     | BR2K0        |
|         | Serial                 |                    |                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |               | W                         |              |
| BR2ADD  | channel 2 K<br>setting | 1214H              | 7                                                  | A                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The               | 0             | 0             | 0                         | 0            |
|         | register               |                    |                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 9             | Sets frequen  | cy divisor "K             | 711          |
|         |                        |                    | $\langle \alpha \rangle_{\Lambda}$                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | (d            | ivided by N   | + (16 – K)/1              | 6).          |
|         |                        |                    | (12\$2)                                            | FDPX2                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |               |                           |              |
|         | Serial                 |                    | /                                                  | w                       | 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |               |               |                           |              |
| SC2MOD1 | channel 2              | 1215H/             | $\left  \begin{array}{c} \phi \end{array} \right $ | 0                       | The State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the S |                   |               |               |                           |              |
|         | Mode1                  | / \                | IDLE2                                              | Duplex                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |               |                           |              |
|         | register               |                    | 0: Stop                                            | 0: Half                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |               |                           |              |
|         | / /                    | ,                  | 1: Run                                             | 1: Full                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |               |                           |              |
|         | >,'                    |                    | PLSEL                                              | RXSEL                   | TXEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RXEN              | SIR2WD3       | SIR2WD2       | SIR2WD1                   | SIR2WD0      |
|         |                        |                    | -                                                  | $\bigcirc$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                 | /W            |               |                           |              |
|         | I/DA                   |                    | 0 <                                                | 0                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 | 0             | 0             | 0                         | 0            |
| SIR2CR  | control                | ) )1217H           | Select                                             | Receive                 | Transmit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Receive           |               | ive pulse wi  |                           |              |
|         | register 2             |                    | transmit                                           | data                    | 0: Disable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0: Disable        |               | •             | •                         | or more than |
|         |                        |                    | . / / \                                            | 0) "H" pulse            | 1: Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1: Enable         | ,             | + 1) + 100    | ns                        |              |
|         |                        | ~                  | ^                                                  | 1. "L" pulse            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Can be set:   |               |                           |              |
|         |                        |                    | 1:1/16                                             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Can not be    | set: 0, 15    |                           |              |

(10) I<sup>2</sup>C Bus/Serial channel (1/4)

| Symbol       | Name                  | Address               | 7                                               | 6                | 5                    | 4                    | 3                                        | 2                          | 1                            | 0                     |
|--------------|-----------------------|-----------------------|-------------------------------------------------|------------------|----------------------|----------------------|------------------------------------------|----------------------------|------------------------------|-----------------------|
|              |                       | 1240H                 | BC2                                             | BC1              | BC0                  | ACK                  |                                          | SCK2                       | SCK1                         | SCK0/<br>SWRMON       |
|              |                       | (I <sup>2</sup> C bus |                                                 | W                |                      | R/W                  |                                          | V                          | ٧                            | R/W                   |
|              |                       | mode)                 | 0                                               | 0                | 0                    | 0                    |                                          | . 0                        | 0                            | 0/1                   |
|              |                       | /Dualsilsit           |                                                 | transferred I    |                      | Acknowledge          |                                          | / /-                       | ne divide val                |                       |
|              | Serial bus            | (Prohibit<br>RMW)     | 000: 8<br>011: 3                                | 001: 1<br>100: 4 | 010: 2<br>101: 5     | mode<br>0: Disable   |                                          | 000: 5<br>011: 8           | 001: 6<br>100: 9             | 010: 7<br>101: 10     |
| 0010004      | interface 0           | TXIVIVV)              | 110: 6                                          | 111: 7           | 101.5                | 1: Enable            |                                          | 110: 11                    | 100. 9<br>111: Reser         |                       |
| SBI0CR1      | control               |                       | SIOS                                            | SIOINH           | SIOM1                | SIOM0                |                                          | SCK2                       | SCK1                         | SCK0                  |
|              | register 1            | 1240H                 |                                                 | ,                | W                    | •                    | $\sim$                                   | // \                       | W                            | '                     |
|              |                       | (SIO                  | 0                                               | 0                | 0                    | 0                    | 1                                        | $\bigcirc 0$               | 0                            | 0                     |
|              |                       | mode)                 | Transfer                                        | Transfer         | Transfer mod         |                      |                                          | _                          | ne divide val                |                       |
|              |                       | (Prohibit             | 0: Stop                                         | 0:Continue       | 00: 8-bit trans      |                      |                                          | 000: 4<br>011: 7           | 001: 5<br>100: 8             | 010: 6<br>101: 9      |
|              |                       | RMW)                  | 1: Start                                        | 1:Abort          | 10: 8-bit trans      |                      |                                          | -                          |                              | clock SCK0            |
|              |                       |                       |                                                 |                  | 11: 8-bit rece       | — <del>`</del>       |                                          |                            |                              |                       |
| 0010000      | SBI                   | 1241H                 | DB7                                             | DB6              | DB5                  | DB4                  | DB3                                      | DB2                        | DB1                          | DB0                   |
| SBI0DBR      | buffer<br>Register    | (Prohibit<br>RMW)     |                                                 |                  | R (F                 | Receiving)/W<br>Unde | <i>\'</i>                                | sion)                      | $\rightarrow$                |                       |
|              | register              | TCIVIVV)              | SA6                                             | SA5              | SA4                  | SA3                  | SA2                                      | \$A1                       | SAO                          | ALS                   |
|              |                       |                       | SAU                                             | SAS              | 384                  | N N                  |                                          | SAU                        | 3,40                         | ALS                   |
|              | I <sup>2</sup> CBUS 0 | 1242H                 | 0                                               | 0                | .0                   | 0                    | 0 (                                      | 0                          | 0                            | 0                     |
| I2C0AR       | address               | (Prohibit             |                                                 | I.               | 4                    | $\rightarrow$        |                                          | $\mathcal{S}(\mathcal{O})$ | I.                           | address               |
|              | Register              | RMW)                  |                                                 |                  | Setti                | ng Slave ado         | dress                                    | , ~                        |                              | recognition           |
|              |                       |                       |                                                 |                  | 7( //                |                      |                                          | ))                         |                              | 0:Enable<br>1:Disable |
|              |                       |                       | MOT                                             | TDV              |                      | 5151                 | AL/                                      | AAS/                       | AD0/                         | LRB/                  |
|              |                       |                       | MST                                             | TRX              | BB                   | PIŃ                  | SBIM1                                    | SBIM0                      | SWRST1                       | SWRST0                |
|              | Serial bus            |                       |                                                 |                  | \ \                  | R/                   | \ //                                     | i                          | i                            | _                     |
| SBI0SR       | interface 0           | 1243H                 | 0<br>0:Slave                                    | 0;Receive        | 0<br>Bus status      | 1<br>INTSBE0         | Ø<br>Arbitration                         | 0<br>Slave                 | 0<br>General                 | 0<br>Last             |
| when<br>Read | status                | (I <sup>2</sup> C bus | 1:Master                                        | 1:Transmit       |                      | interrupt            | lost                                     | address                    | call                         | receive bit           |
| Neau         | Register              | mode)                 |                                                 |                  | 0:Free               | 0:request            | detection                                | match                      | detection                    | monitor               |
|              |                       |                       |                                                 |                  | 1:Busy               | 1:Cancel             | monitor                                  | detection                  | 1:Detect                     | 0: "0"                |
|              |                       | (Prohibit             | $( \langle //                                 $ | )                |                      | 7                    | 1:Detect                                 | monitor<br>1:Detect        |                              | 1: "1"                |
|              | Serial bus            | RMW)                  |                                                 | ,                | Start/stop           |                      | Operation m                              | ode selection              | Software res                 | et generate           |
| SBI0CR2      | interface 0           | ( //                  |                                                 |                  | condition            | )                    | 00: Port mod                             |                            |                              | d "01", then an       |
| when         | control               | \\\                   | 7                                               |                  | generation<br>0:Stop |                      | 10: I <sup>2</sup> C mode<br>01: SIO mod |                            | internal reset<br>generated. | signal is             |
| Write        | Register 2            |                       |                                                 |                  | 1:Start              |                      | 11: Reserve                              |                            | generateu.                   |                       |
| ,            | \/                    | >                     |                                                 |                  |                      |                      | SIOF/                                    | SEF/                       |                              |                       |
|              | 2,                    |                       |                                                 |                  | $\Diamond$           |                      | SBIM1                                    | SBIM0                      | _                            | _                     |
| SBI0SR       | Serial bus            |                       |                                                 |                  |                      |                      |                                          | /W                         |                              | V                     |
| when         | interface 0           | 1243H                 |                                                 |                  |                      |                      | 0<br>Transfer                            | 0<br>Shift status          | 0                            | 0                     |
| Read         | status<br>Register    | ) (SIO                |                                                 |                  |                      |                      | status                                   | 0:Stopped                  |                              |                       |
|              | IVERIORE              | mode)                 |                                                 | ))               |                      |                      | 0:Stopped                                | 1:In progress              |                              |                       |
| 1            |                       | (Prohibit             |                                                 |                  |                      |                      | 1:In                                     |                            |                              |                       |
|              | <u></u>               | RMW)                  |                                                 |                  |                      |                      | Operation m                              | ode selection              | Always                       | Always                |
| SBI0CR2      | Serial bus            | - '                   | $\vee$                                          |                  |                      |                      | 00: Port mod                             |                            | write "0".                   | write "0".            |
| when         | interface 0 control   |                       |                                                 |                  |                      |                      | 10: I <sup>2</sup> C mode                |                            |                              |                       |
| Write        | Register 2            |                       |                                                 |                  |                      |                      | 01: SIO mod                              |                            |                              |                       |
|              | - 35. =               |                       |                                                 |                  |                      |                      | i i . Keserve                            | u                          |                              |                       |

I<sup>2</sup>C Bus/Serial channel (2/4)

| Symbol  | Name                  | Address            | 7          | 6          | 5 | 4 | 3             | 2                     | 1 | 0 |
|---------|-----------------------|--------------------|------------|------------|---|---|---------------|-----------------------|---|---|
|         |                       |                    | -          | 12SB10     |   |   |               |                       |   |   |
|         | Serial bus            | 404411             | W          | R/W        |   |   |               |                       |   |   |
| SBI0BR0 | interface 0           | 1244H<br>(Prohibit | 0          | 0          |   |   |               |                       |   |   |
| SDIUDKU | baud rate             | RMW)               | Always     | IDLE2      |   |   |               | _                     |   |   |
|         | register 0            | TXIVIV)            | write "0". | 0: Stop    |   |   |               |                       |   |   |
|         |                       |                    |            | 1: Run     |   |   |               |                       |   |   |
|         |                       |                    | P4EN       | _          |   |   |               | 7                     |   |   |
|         | 0                     |                    | ١          | V          |   |   |               |                       |   |   |
|         | Serial bus            | 1245H              | 0          | 0          |   |   | $\mathcal{A}$ | 777                   |   |   |
| SBI0BR1 | interface 0 baud rate | (Prohibit          | Internal   | Always     |   |   |               | $(\langle \ \rangle)$ |   |   |
|         | register 1            | RMW)               | clock      | write "0". |   |   |               |                       |   |   |
|         | 109.0001              |                    | 0: Stop    |            |   |   |               | $\supset$             |   |   |
|         |                       |                    | 1: Run     |            |   |   |               | V                     |   |   |



**TOSHIBA** 

I<sup>2</sup>C Bus/Serial channel (3/4)

| Symbol        | Name                  | Address                  | 7                   | 6              | 5                   | 4                       | 3                                     | 2                  | 1                      | 0                 |
|---------------|-----------------------|--------------------------|---------------------|----------------|---------------------|-------------------------|---------------------------------------|--------------------|------------------------|-------------------|
|               |                       | 1248H                    | BC2                 | BC1            | BC0                 | ACK                     |                                       | SCK2               | SCK1                   | SCK0/<br>SWRMON   |
|               |                       | (I <sup>2</sup> C bus    |                     | W              |                     | R/W                     |                                       | \                  | N                      | R/W               |
|               |                       | mode)                    | 0                   | 0              | 0                   | 0                       |                                       | 0                  | 0                      | 0/1               |
|               |                       |                          | Number of t         | ransferred b   | oits                | Acknowledge             |                                       | Setting of th      | ne divide val          | ue "n"            |
|               |                       |                          | 000: 8              | 001: 1         | 010: 2              | mode                    |                                       | 000:5              | 001: 6                 | 010: 7            |
|               | Serial bus            | RMW)                     | 011: 3              | 100: 4         | 101: 5              | 0: Disable<br>1: Enable |                                       | 011:8              | 100: 9                 | 101: 10           |
| SBI1CR1       | interface 1           |                          | 110: 6              | 111: 7         |                     | 1. Enable               |                                       | 110: 11            | 111: Reserv            | /ed               |
|               | control               |                          | SIOS                | SIOINH         | SIOM1               | SIOM0                   | $\overline{}$                         | SCK2               | SCK1                   | SCK0              |
|               | register 1            | 1248H                    |                     | ١              | N                   |                         | 7                                     | (/ ))              | W                      |                   |
|               |                       | (SIO                     | 0                   | 0              | 0                   | 0                       | 2//                                   | Ø                  | 0                      | 0                 |
|               |                       | mode)                    | Transfer            | Transfer       | Transfer mod        |                         |                                       | Setting of th      | ne divide val          | ue "n"            |
|               |                       | (Prohibit                | 0: Stop<br>1: Start |                | 00: 8-bit tran      |                         |                                       | 000: 4             | 001: 5                 | 010: 6            |
|               |                       | RMW)                     | i. Start            | 1:Abort        | 10: Reserved        |                         |                                       | 011: 7             | 100: 8                 | 101: 9            |
|               |                       | T (IVIVV)                |                     |                | 11: 8-bit rece      | ~ I I                   |                                       | 110: 10 11         | 1: External of         | lock SCK1         |
|               | SBI 1                 | 1249H                    | DB7                 | DB6            | DB5                 | DB4                     | DB3                                   | DB2                | DB1                    | DB0               |
| SBI1DBR       | buffer                | (Prohibit                |                     |                |                     | Receiving)/W            |                                       | 14                 |                        |                   |
|               | Register              | RMW)                     |                     |                | 1                   | Unde                    |                                       | 2                  |                        |                   |
|               |                       |                          | SA6                 | SA5            | SA4                 | SA3                     | SA2                                   | SA1                | SAØ                    | ALS               |
|               |                       |                          |                     | I              |                     | N C                     |                                       | 2/                 | >                      |                   |
|               | I <sup>2</sup> CBUS 1 | 124AH                    | 0                   | 0              | 0                   | 0                       | 0 (                                   | (A)                | 0                      | 0                 |
| I2C1AR        | address               | (Prohibit                |                     |                |                     |                         |                                       |                    |                        | Address           |
|               | Register              | RMW)                     |                     |                |                     | >                       | (O)                                   | $\rangle_{\wedge}$ |                        | recognition       |
|               |                       |                          |                     |                | 2 Setti             | ng Slave add            | iress ///                             | ))                 |                        | 0:Enable          |
|               |                       |                          |                     | $\mathcal{A}($ |                     |                         |                                       |                    |                        | 1:Disable         |
|               |                       |                          |                     | -510           | \                   | <u> </u>                | ΆL                                    | AAS/               | AD0/                   | LRB/              |
|               |                       |                          | MST                 | TRX            | BB                  | RIN                     | SBIM1                                 | SBIM0              | SWRST1                 | SWRST0            |
|               |                       |                          |                     |                |                     | R/                      | w//                                   |                    |                        |                   |
| SBI1SR        | Serial bus            |                          | 0 (                 |                | 0                   | 1                       | 0                                     | 0                  | 0                      | 0                 |
| when          | interface 1           | 124BH                    | 0:Slave (           | 0:Receive      | Bus status          | INTSBE1                 | Arbitration                           |                    | General                | Last              |
| Read          | status<br>Register    | (I <sup>2</sup> C bus    | 1:Master            | 1:Transmit     | monitor             | interrupt               | lost                                  | address            | call                   | receive bit       |
|               | Register              | mode)                    |                     |                | 0:Free              | 0:Request<br>1:Cancel   | detection                             | match<br>detection | detection              | monitor<br>0: "0" |
|               |                       |                          | (                   |                | 1:Busy              | 1.Cancel                | monitor<br>1:Detect                   | monitor            | 1:Detect               | 1: "1"            |
|               |                       | (Prohibit                |                     | <b>/</b>       | (0)                 |                         | 1.201001                              | 1:Detect           |                        |                   |
|               |                       | $\langle RMW \rangle / $ |                     |                | Start/stop          | 1)                      | Operation                             | mode               | Software re            | eset              |
| SBI1CR2       | Serial bus            |                          |                     |                | condition           | /                       | selection                             |                    |                        | rite "10" and     |
| when          | interface 1           |                          |                     |                | generation          |                         | 00: Port m                            |                    | "01", then a           |                   |
| Write         | control<br>Register 2 | Ì                        | $\checkmark$        |                | 0: Stop<br>1: Start |                         | 10: I <sup>2</sup> C mo<br>01: SIO mo |                    | reset signa generated. | lis               |
|               | register 2            | >                        |                     |                | 1. Start            |                         | 11: Reserv                            |                    | generateu.             |                   |
|               | ⟨                     |                          |                     |                |                     |                         | SIOF/                                 | SEF/               |                        |                   |
|               |                       |                          | 1                   |                |                     |                         | SBIM1                                 | SBIM0              | _                      | -                 |
| $\wedge$      | Serial bus            |                          |                     | 1              |                     |                         |                                       | /W                 | \                      | V                 |
| SBI1SR        | interface 1           | / ^                      | A                   | MY.            |                     |                         | 0                                     | 0                  | 0                      | 0                 |
| when          | status                | 124BH                    | 11                  |                |                     |                         | Transfer                              | Shift status       |                        |                   |
| Read          | Register              | (SIO                     | $\mathcal{N}$       |                |                     |                         |                                       | 0:Stopped          |                        |                   |
|               | _                     | mode) <                  |                     |                |                     |                         | 0:Stopped                             |                    |                        |                   |
| Ì             | $\rightarrow$         |                          |                     |                |                     |                         | 1:In progress                         | progress           |                        |                   |
|               |                       | (Prohibit                |                     |                |                     |                         | Operation                             |                    | Always                 | Always            |
| 0014.000      | Serial bus            | RMW)                     |                     |                |                     |                         | selection                             | mode               | write "0".             | write "0".        |
| SBI1CR2       | interface 1           |                          |                     |                |                     |                         | 00: Port m                            | ode                |                        |                   |
| when<br>Write | control               |                          |                     |                |                     |                         | 10: I <sup>2</sup> C mo               |                    |                        |                   |
| vviile        | Register 2            |                          |                     | 1              | 1                   |                         | 01: SIO mo                            | odo                | 1                      | 1                 |
|               | ixegister 2           |                          |                     |                |                     |                         | 11: Reserv                            |                    |                        |                   |

I<sup>2</sup>C Bus/Serial channel (4/4)

| Symbol  | Name                  | Address   | 7          | 6          | 5 | 4 | 3 | 2             | 1 | 0 |
|---------|-----------------------|-----------|------------|------------|---|---|---|---------------|---|---|
|         |                       |           | -          | I2SBI1     |   |   |   |               |   |   |
|         | Serial bus            | 124CH     | W          | R/W        |   |   |   |               |   |   |
| SBI1BR0 | interface 1           | (Prohibit | 0          | 0          |   |   |   |               |   |   |
| SBIIBKU | baud rate             | RMW)      | Always     | IDLE2      |   |   |   | _             |   |   |
|         | register 0            | 144111    | write "0". | 0: Stop    |   |   |   |               |   |   |
|         |                       |           |            | 1: Run     |   |   |   |               |   |   |
|         |                       |           | P4EN       | -          |   |   |   | 7             |   |   |
|         |                       |           | ١          | V          |   |   |   | $\mathcal{F}$ |   |   |
|         | Serial bus            | 124DH     | 0          | 0          |   |   | 7 | 77            |   |   |
| SBI1BR1 | interface 1 baud rate | (Prohibit | Internal   | Always     |   |   |   |               |   |   |
|         | register 1            | RMW)      | clock      | write "0". |   |   |   |               |   |   |
|         | rogiotoi i            |           | 0: Stop    |            |   |   |   | $\supset$     |   |   |
|         |                       |           | 1: Run     |            |   |   |   | /             |   |   |



(11) AD converter (1/3)

| Symbol | Name       | Address                                                                                             | 7                         | 6                        | 5          | 4             | 3                       | 2                                 | 1                                                                     | 0                    |
|--------|------------|-----------------------------------------------------------------------------------------------------|---------------------------|--------------------------|------------|---------------|-------------------------|-----------------------------------|-----------------------------------------------------------------------|----------------------|
|        |            |                                                                                                     | EOCF                      | ADBF                     | _          | _             | ITM0                    | REPEAT                            | SCAN                                                                  | ADS                  |
|        |            |                                                                                                     | F                         | ۲                        |            | •             | R                       | W                                 |                                                                       | •                    |
|        |            |                                                                                                     | 0                         | 0                        | 0          | 0             | 0                       | 0                                 | 0                                                                     | 0                    |
|        |            |                                                                                                     | AD                        | AD                       | Always     | Always        | Interrupt               | Repeat mode                       | Scan mode                                                             | AD                   |
|        |            |                                                                                                     | conversion                | conversion               | write "0". | write "0".    | specification           | specification                     | specification                                                         | conversion           |
|        | AD Mode    |                                                                                                     | end flag                  | busy flag                |            |               | in                      | 0: Single                         | 0: Conversion                                                         | start                |
| ADMOD0 | Control    | 12B8H                                                                                               |                           | 0: Conversion            |            |               | conversion              | conversion                        |                                                                       | 0: Don't care        |
|        | register 0 |                                                                                                     | in progress 1: Conversion | stopped<br>1: Conversion |            |               | channel<br>fixed repeat | 1: Repeat                         | fixed mode 1: Conversion                                              | 1: Start conversion  |
|        |            |                                                                                                     | complete                  | in progress              |            |               | mode                    | mode                              | channel                                                               | CONVENSION           |
|        |            |                                                                                                     | , , , , , ,               | 1 -3                     |            |               | 0; Every                | // 3)                             | scan mode                                                             | Always "0"           |
|        |            |                                                                                                     |                           |                          |            |               | conversion              |                                   |                                                                       | when read            |
|        |            |                                                                                                     |                           |                          |            |               | 1: Every fourth         |                                   |                                                                       |                      |
|        |            |                                                                                                     |                           |                          |            |               | conversion              | V                                 |                                                                       |                      |
|        |            |                                                                                                     | VREFON                    | I2AD                     | _          | - (           | ADCH3                   | ADCH2                             | ADCH1                                                                 | ADCH0                |
|        |            |                                                                                                     |                           |                          | 1          | V41           | W                       | 1                                 |                                                                       | 1                    |
|        |            |                                                                                                     | 0                         | 0                        | 0          | 0             | 0                       | 0 <                               | 0                                                                     | 0                    |
|        |            |                                                                                                     | VREF                      | IDLE2                    | Always     | Always        | · ·                     | ut channel se                     | election                                                              |                      |
|        |            |                                                                                                     | application control       | 0: Stop<br>1: Operate    | write "0". | write "0". <  | 0000: ANO               |                                   | ))                                                                    |                      |
|        |            |                                                                                                     | 0: OFF                    | 1. Operate               |            |               | 1                       | AN0 → AN1                         | $\cup$ / //                                                           |                      |
|        |            |                                                                                                     | 1: ON                     |                          | ((         |               | 0010: AN2               |                                   | ( )                                                                   | 10                   |
|        |            |                                                                                                     |                           |                          |            |               | 0011: AN3<br>0100: AN4  |                                   | $\rightarrow$ AN2 $\rightarrow$ AI                                    |                      |
|        |            |                                                                                                     |                           |                          | 4(         |               | 0100: AN4<br>0101: AN5  | V/11                              | $\rightarrow$ AN2 $\rightarrow$ AI $\rightarrow$ AN2 $\rightarrow$ AI |                      |
|        |            |                                                                                                     |                           |                          |            |               | OTOT. ANS               | $\rightarrow$ AN5                 | $\rightarrow$ AINZ $\rightarrow$ AI                                   | NJ → AIN4            |
|        | AD Mode    |                                                                                                     |                           |                          |            | V             | 0110: (AN6              | / ^                               | $\rightarrow$ AN2 $\rightarrow$ AI                                    | N3 → AN4             |
| ADMOD1 | Control    | 12B9H                                                                                               |                           | ((                       |            |               | / / \                   | $\rightarrow$ AN5 $\rightarrow$ A | N6                                                                    |                      |
|        | register 1 |                                                                                                     |                           | (1)                      |            |               | 0111: AN7               |                                   | $\rightarrow$ AN2 $\rightarrow$ AI                                    | $N3 \rightarrow AN4$ |
|        |            |                                                                                                     |                           |                          |            |               | 4000                    | $\rightarrow$ AN5 $\rightarrow$ A |                                                                       | .10                  |
|        |            |                                                                                                     |                           |                          | \          |               | 1000: AN8               |                                   | $\rightarrow$ AN2 $\rightarrow$ AI<br>$\sim$ AN7 $\rightarrow$        |                      |
|        |            |                                                                                                     |                           |                          | )          |               | 1001: AN9               |                                   | $\rightarrow AN2 \rightarrow AI$                                      |                      |
|        |            |                                                                                                     |                           | $\supset \bigwedge$      |            | $\wedge$      | 7.10                    |                                   | $N6 \rightarrow AN7 \rightarrow$                                      |                      |
|        |            |                                                                                                     |                           |                          | /          |               | 1010: AN10              | $AN0 \rightarrow AN1$             | $\rightarrow$ AN2 $\rightarrow$ AI                                    | $N3 \rightarrow AN4$ |
|        |            |                                                                                                     |                           |                          |            | (12)          |                         |                                   | $N6 \rightarrow AN7 \rightarrow$                                      | AN8                  |
|        |            |                                                                                                     | (7/                       | \                        |            | 7/ ~          |                         | $\rightarrow$ AN9 $\rightarrow$ A |                                                                       |                      |
|        |            |                                                                                                     |                           | )                        |            | $\rightarrow$ | 1011: AN11              | $AN0 \rightarrow AN1$             | $\rightarrow$ AN2 $\rightarrow$ AI<br>$\downarrow$ AN7 $\rightarrow$  |                      |
|        |            |                                                                                                     |                           | $\wedge$                 | ((///      |               |                         |                                   | $N10 \rightarrow AN7 \rightarrow AN11$                                | AINO                 |
|        |            | //</td <td></td> <td></td> <td></td> <td>V</td> <td>1100 to 1111</td> <td></td> <td></td> <td></td> |                           |                          |            | V             | 1100 to 1111            |                                   |                                                                       |                      |
|        |            |                                                                                                     | -                         |                          | //         | -             | -                       | -                                 | _                                                                     | ADTRGE               |
|        |            |                                                                                                     |                           |                          |            | R             | W                       |                                   | 1                                                                     |                      |
|        | ^ /        | >                                                                                                   | 0                         | 0                        | 0          | 0             | 0                       | 0                                 | 0                                                                     | 0                    |
|        | >.<        |                                                                                                     | Always                    | Always                   | Always     | Always        | Always                  | Always                            | Always                                                                | AD                   |
|        | AD Mode    | $(\mathcal{L})$                                                                                     | -                         | write "0".               | write "0". | write "0".    | write "0".              | write "0".                        | write "0".                                                            | conversion           |
| ADMOD2 | Control    | 12BAH                                                                                               |                           | 1                        |            |               |                         |                                   |                                                                       | trigger              |
|        | register 2 | ) )                                                                                                 |                           |                          |            |               |                         |                                   |                                                                       | start                |
|        |            |                                                                                                     |                           |                          |            |               |                         |                                   |                                                                       | control              |
|        | 7/         | ((                                                                                                  |                           | ))                       |            |               |                         |                                   |                                                                       | 0: Disable           |
|        |            |                                                                                                     |                           |                          |            |               |                         |                                   |                                                                       | 1: Enable            |
|        | _          | (                                                                                                   |                           |                          |            |               | <u> </u>                |                                   | Ì                                                                     | i. Liiabie           |

AD converter (2/3)

| Symbol        | Name       | Address  | 7             | 6                    | 5             | 4                                                           | 3                        | 2             | 1                                   | 0              |  |  |  |  |  |  |
|---------------|------------|----------|---------------|----------------------|---------------|-------------------------------------------------------------|--------------------------|---------------|-------------------------------------|----------------|--|--|--|--|--|--|
| ,             | AD result  |          | ADR01         | ADR00                |               |                                                             |                          |               |                                     | ADR0RF         |  |  |  |  |  |  |
| ADREG0L       | register 0 | 12A0H    |               | ₹                    |               |                                                             |                          |               |                                     | R              |  |  |  |  |  |  |
|               | low        |          |               | efined               | //            | //                                                          |                          |               | ADR03 ADR13 ADR23 ADR33 ADR43 ADR63 | 0              |  |  |  |  |  |  |
|               | AD result  |          | ADR09         | ADR08                | ADR07         | ADR06                                                       | ADR05                    | ADR04         | ADR03                               | ADR02          |  |  |  |  |  |  |
| ADREG0H       | register 0 | 12A1H    | 7121100       | 7151100              | 7151107       | R                                                           |                          |               |                                     |                |  |  |  |  |  |  |
|               | High       |          |               |                      |               |                                                             | efined                   | 7             |                                     |                |  |  |  |  |  |  |
|               | AD result  |          | ADR11         | ADR10                |               |                                                             |                          | 4             | 2                                   | ADR1RF         |  |  |  |  |  |  |
| ADREG1L       | register 1 | 12A2H    |               | ₹                    | //            | //                                                          |                          |               | <b>F</b>                            | R              |  |  |  |  |  |  |
|               | low        |          | Unde          | efined               |               |                                                             |                          | 77/           |                                     | 0              |  |  |  |  |  |  |
|               | AD result  |          | ADR19         | ADR18                | ADR17         | ADR16                                                       | ADR15                    | ADR14         | ADR13                               | ADR12          |  |  |  |  |  |  |
| ADREG1H       | register 1 | 12A3H    |               | I                    |               | F                                                           | 3 >//                    |               | I                                   |                |  |  |  |  |  |  |
|               | High       |          |               |                      |               | Unde                                                        | efined                   | >             |                                     |                |  |  |  |  |  |  |
|               | AD result  |          | ADR21         | ADR20                |               |                                                             |                          |               |                                     | ADR2RF         |  |  |  |  |  |  |
| ADREG2L       | register 2 | 12A4H    | F             | ₹                    |               | 7                                                           |                          |               |                                     | R              |  |  |  |  |  |  |
|               | low        |          | Unde          | efined               |               |                                                             |                          |               | 4/1/                                | <del>)</del> 0 |  |  |  |  |  |  |
|               | AD result  |          | ADR29         | ADR28                | ADR27         | ADR26                                                       | ADR25                    | ADR24         | ADR23                               | ADR22          |  |  |  |  |  |  |
| ADREG2H       | register 2 | 12A5H    |               |                      |               | ((// <i< td=""><td>4</td><td></td><td>7</td><td>•</td></i<> | 4                        |               | 7                                   | •              |  |  |  |  |  |  |
|               | High       |          |               |                      |               | Unde                                                        | fined                    | 2             |                                     |                |  |  |  |  |  |  |
|               | AD result  |          | ADR31         | ADR30                | $\mathcal{A}$ | $\mathcal{M}$                                               |                          |               | 764                                 | ADR3RF         |  |  |  |  |  |  |
| ADREG3L       | register 3 | 12A6H    | F             | ₹                    |               | 7                                                           |                          |               |                                     | R              |  |  |  |  |  |  |
|               | low        |          | Unde          | efined               | 7             | f                                                           |                          | $\mathcal{F}$ |                                     | 0              |  |  |  |  |  |  |
|               | AD result  |          | ADR39         | ADR38                | ADR37         | ADR36                                                       | ADR35                    | ADR34         | ADR33                               | ADR32          |  |  |  |  |  |  |
| ADREG3H       | register 3 | 12A7H    |               | R                    |               |                                                             |                          |               |                                     |                |  |  |  |  |  |  |
|               | High       |          |               |                      | 1 \           | Unde                                                        | efined                   | ))            |                                     |                |  |  |  |  |  |  |
|               | AD result  |          | ADR41         | ADR40                |               | <i>Y</i>                                                    |                          |               |                                     | ADR4RF         |  |  |  |  |  |  |
| ADREG4L       | register 4 | 12A8H    | F             | ۲                    |               | $ \neq $                                                    | $\mathcal{A}$            |               |                                     | R              |  |  |  |  |  |  |
|               | low        |          | Unde          | efined               | 1             |                                                             | $\rightarrow \downarrow$ |               |                                     | 0              |  |  |  |  |  |  |
|               | AD result  |          | ADR49         | ADR48                | ADR47         | ADR46                                                       | ADR45                    | ADR44         | ADR43                               | ADR42          |  |  |  |  |  |  |
| ADREG4H       | register 4 | 12A9H    |               | $\supset$ $\swarrow$ |               | F                                                           |                          |               |                                     |                |  |  |  |  |  |  |
|               | High       |          |               |                      |               | \\ Unde                                                     | efined                   |               | _                                   | •              |  |  |  |  |  |  |
|               | AD result  |          | ADR51         | ADR50                |               | 12                                                          |                          |               |                                     | ADR5RF         |  |  |  |  |  |  |
| ADREG5L       | register 5 | 12AAH    | (7)           | \                    | 4             |                                                             |                          |               |                                     | R              |  |  |  |  |  |  |
|               | low        |          | \ \ \ Unde    |                      |               |                                                             |                          |               |                                     | 0              |  |  |  |  |  |  |
|               | AD result  | //)      | ADR59         | ADR58                | ADR57         | ADR56                                                       | ADR55                    | ADR54         | ADR53                               | ADR52          |  |  |  |  |  |  |
| ADREG5H       | register 5 | 12ABH    |               |                      |               | <i>)</i> F                                                  |                          |               |                                     |                |  |  |  |  |  |  |
|               | High       | /,(      |               |                      |               | Unde                                                        | efined                   | _             | _                                   |                |  |  |  |  |  |  |
|               | AD result  | 12121    | ADR61         | ADR60                | A             |                                                             |                          |               |                                     | ADR6RF         |  |  |  |  |  |  |
| ADREG6L       | register 6 | 12ACH    |               | 3                    |               |                                                             |                          |               |                                     | R              |  |  |  |  |  |  |
|               | low        |          |               | efined               |               |                                                             |                          |               |                                     | 0              |  |  |  |  |  |  |
| 4 D D E O O U | AD result  |          | ADR69         | ADR68                | ADR67         | ADR66                                                       | ADR65                    | ADR64         | ADR63                               | ADR62          |  |  |  |  |  |  |
| ADREG6H       | register 6 | 12ADH    |               | 1                    |               | F                                                           |                          |               |                                     |                |  |  |  |  |  |  |
|               | High       | ) )      | 156-5         | 1,22-0               |               | Unde                                                        | efined                   |               |                                     |                |  |  |  |  |  |  |
| ADDE071       | AD result  | 400 = 10 | ADR71         | ADR70                |               |                                                             |                          |               |                                     | ADR7RF         |  |  |  |  |  |  |
| ADREG7L       | register 7 | 12AEH    | $\rightarrow$ | ۲))                  |               |                                                             |                          |               |                                     | R              |  |  |  |  |  |  |
|               |            |          |               | fined                | 125==         | 105=1                                                       | 100                      | 125=:         | 15                                  | 0              |  |  |  |  |  |  |
| ADDECT        | AD result  | 400-11   | ADR79         | ADR78                | ADR77         | ADR76                                                       | ADR75                    | ADR74         | ADR73                               | ADR72          |  |  |  |  |  |  |
| ADREG7H       | register 7 | 12AFH    | R             |                      |               |                                                             |                          |               |                                     |                |  |  |  |  |  |  |
|               | High       |          |               |                      |               | Unde                                                        | etined                   |               | Undefined                           |                |  |  |  |  |  |  |

**TOSHIBA** 

| AD o             | converter  | (3/3)   |           |       |       |               | _             |                   |                           |        |
|------------------|------------|---------|-----------|-------|-------|---------------|---------------|-------------------|---------------------------|--------|
| Symbol           | Name       | Address | 7         | 6     | 5     | 4             | 3             | 2                 | 1                         | 0      |
|                  | AD result  |         | ADR81     | ADR80 |       |               |               |                   |                           | ADR8RF |
| ADREG8L          | register 8 | 12B0H   | F         | ₹     |       |               |               |                   |                           | R      |
|                  | low        |         | Unde      | fined |       |               |               |                   |                           | 0      |
|                  | AD result  |         | ADR89     | ADR88 | ADR87 | ADR86         | ADR85         | ADR84             | ADR803                    | ADR82  |
| ADREG8H          | - 3        | 12B1H   |           |       |       |               | ₹             |                   |                           |        |
|                  | High       |         |           |       |       | Unde          | efined        |                   |                           | 1      |
|                  | AD result  |         | ADR91     | ADR90 |       |               |               | $\mathcal{I}$     | Z /                       | ADR9RF |
| ADREG9L          | register 9 | 12B2H   | F         |       |       |               | $\rightarrow$ |                   |                           | R      |
|                  | low        |         | Unde      | fined |       |               | 4             | 777               |                           | 0      |
|                  | AD result  |         | ADR99     | ADR98 | ADR97 | ADR96         | ADR95         | ADR94             | ADR93                     | ADR92  |
| ADREG9H          | 3          | 12B3H   |           |       |       | F             | 2             |                   |                           |        |
|                  | High       |         |           |       |       | Unde          | efined        |                   |                           |        |
| ADREGAL register | AD result  |         | ADRA1     | ADRA0 |       |               |               |                   |                           | ADRARF |
|                  | register A |         | F         | ₹     |       | 4             |               |                   |                           | R      |
|                  | low        |         | Unde      | fined |       |               |               |                   | # //                      | ) 0    |
|                  | AD result  |         | ADRA9     | ADRA8 | ADRA7 | ADRA6         | ADRA5         | ADRA4             | ADRA3                     | ADRA2  |
| ADREGAH          | register A | 12B5H   |           |       |       | ((///         | À ~           |                   |                           |        |
|                  | High       |         |           |       |       | Unde          | efined        | ) (C              |                           |        |
|                  | AD result  |         | ADRB1     | ADRB0 | 4     | $\mathcal{N}$ |               |                   | 7                         | ADRBRF |
| ADREGBL          | register B | 12B6H   | F         | ₹     | 7     | 4             |               |                   | $\int_{-\infty}^{\infty}$ | R      |
|                  | low        |         | Unde      | fined | 7     |               |               | <i>A</i>          |                           | 0      |
|                  | AD result  |         | ADRB9     | ADRB8 | ADRB7 | ADRB6         | ADRB5         | ADRB4             | ADRB3                     | ADRB2  |
| ADREGBH          | register B | 12B7H   |           |       |       | → I           | R (7)         | 7 <sub>\(\)</sub> |                           |        |
|                  | High       |         | Undefined |       |       |               |               |                   |                           |        |
|                  |            |         | (         |       |       | \<br>\        |               | <del></del>       |                           |        |

(12) Watch dog timer

| Symbol | Name                       | Address                    | 7         | 6                                                                                                                                                                              | 5        | 4                     | 3                    | 2                              | 1                                               | 0 |
|--------|----------------------------|----------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|----------------------|--------------------------------|-------------------------------------------------|---|
|        |                            |                            | WDTE      | WDTP1                                                                                                                                                                          | WDTP0    |                       | -                    | I2WDT                          | RESCR                                           | - |
|        |                            |                            |           | R/W                                                                                                                                                                            |          |                       |                      | R                              | W                                               |   |
|        |                            |                            | 1         | 0                                                                                                                                                                              | 0        |                       | 0                    | 0                              | 0                                               | 0 |
| WDMOD  | WDT Mode<br>register       | 1300H                      | 1: Enable | WDT detect<br>00: 2 <sup>15</sup> /f <sub>SYS</sub><br>01: 2 <sup>17</sup> /f <sub>SYS</sub><br>10: 2 <sup>19</sup> /f <sub>SYS</sub><br>11: 2 <sup>21</sup> /f <sub>SYS</sub> |          |                       | Always<br>write "0". | IDLE2<br>0: Stop<br>1: Operate | 1: Internally connects WDT out to the reset pin | , |
| WDCR   | WDT<br>Control<br>register | 1301H<br>(Prohibit<br>RMW) |           |                                                                                                                                                                                | B1H: WDT | v<br>V<br>disable cod | e 4E: WDT            | clear code                     |                                                 |   |

(13) Special timer for CLOCK

|        | , I                  |         |           |   |      |                      |           | $\wedge$                            |            |           |
|--------|----------------------|---------|-----------|---|------|----------------------|-----------|-------------------------------------|------------|-----------|
| Symbol | Name                 | Address | 7         | 6 | 5    | 4                    | > 3       | 2                                   | 7          | 0         |
|        |                      |         | -         |   |      | $\frac{1}{\sqrt{2}}$ | /         | RTCSEL1                             | RTCSEL0    | RTCRUN    |
|        |                      |         | R/W       |   | /    | J<br>Ž               | <i>} </i> |                                     | //R/W      |           |
|        | DTC assistant        |         | 0         |   | 4    |                      |           |                                     | $\bigcirc$ | 0         |
| RTCCR  | RTC control register | 1310H   | Always    |   |      |                      |           | 00: 2 <sup>14</sup> /f <sub>S</sub> |            | 0: Stop & |
|        | register             |         | write "0" |   | 4( ) | $\searrow$           |           | 01: 2) f <sub>S</sub>               |            | Clear     |
|        |                      |         |           |   |      |                      |           | 10: 2 <sup>12</sup> /f <sub>S</sub> |            | 1: RUN    |
|        |                      |         |           |   |      |                      | ((///     | 11: 2 <sup>11</sup> /f <sub>S</sub> |            |           |

(14) Key-on wake up

| Symbol | Name                                   | Address            | 7          | (6)        | 5          | 4              | /3         | 2          | 1          | 0          |
|--------|----------------------------------------|--------------------|------------|------------|------------|----------------|------------|------------|------------|------------|
|        |                                        |                    | KI7EN _    | KI6EN      | KI5EN      | KI4EN          | KI3EN      | KI2EN      | KI1EN      | KI0EN      |
|        | KEY input                              | 40 4 0 1 1         |            | ~ ^        |            | $\wedge$       | ٧          |            |            |            |
| KIEN   | enable                                 | 13A0H<br>(Prohibit | 0 \        | ) ø        | 0 _        | //0            | 0          | 0          | 0          | 0          |
| KIEN   | setting                                | RMW)               | KI7Input   | Kl6Input   | KI5Input   | KI4Input       | KI3Input   | Kl2Input   | KI1Input   | KI0Input   |
|        | register                               | register           | 0 Disable  | 0: Disable | 0: Disable | 0: Disable     | 0: Disable | 0: Disable | 0: Disable | 0: Disable |
|        |                                        |                    | 1: Enable  | 1: Enable  | 1: Enable  | 1: Enable      | 1: Enable  | 1: Enable  | 1: Enable  | 1: Enable  |
|        |                                        | // )               | KI7EDGE    | KI6DGE     | KI5EDGE)   | KI4EDGE        | KI3EDGE    | KI2EDGE    | KI1EDGE    | KI0EDGE    |
|        | IZEV :t                                | 424411             |            |            |            | <sup>/</sup> \ | ٧          |            |            |            |
| KICR   | KEY input<br>Control                   | 13A1H<br>(Prohibit | 0          | 0          | 70         | 0              | 0          | 0          | 0          | 0          |
| KICK   | register                               | RMW)               | KI7 edge   | KI6 edge   | KI5 edge   | KI4 edge       | KI3 edge   | KI2 edge   | KI1 edge   | KI0 edge   |
|        | Togister                               | ZI ICIVIVV)        | 0: Rising  | 0: Rising  | 0: Rising  | 0: Rising      | 0: Rising  | 0: Rising  | 0: Rising  | 0: Rising  |
|        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1                  | 1: Falling | 1: Falling | 1. Falling | 1: Falling     | 1: Falling | 1: Falling | 1: Falling | 1: Falling |

(15) Program patch function (1/4)

|              | _                           | Ī                                     | 7       | 1              | _          | _              | _              | _                                     | _              | ^       |
|--------------|-----------------------------|---------------------------------------|---------|----------------|------------|----------------|----------------|---------------------------------------|----------------|---------|
| Symbol       | Name                        | Address                               | 7       | 6              | 5          | 4              | 3              | 2                                     | 1              | 0       |
|              | Address                     | 1400H                                 | ROMC07  | ROMC06         | ROMC05     | ROMC04         | ROMC03         | ROMC02                                |                |         |
| ROMCMP00     | compare                     | (Prohibit                             | _       | <del>  _</del> | V          | <u> </u>       | <u> </u>       | · -                                   |                |         |
|              | register 00                 | RMW)                                  | 0       | 0<br>Tana      | 0          | 0              | 0              | 0                                     |                |         |
|              |                             |                                       | DOMO45  |                | et ROM add |                |                | POMOTO                                | DOMOGO         | DOMOGO  |
|              | Address                     | 1401H                                 | ROMC15  | ROMC14         | ROMC13     | ROMC12         | ROMC11<br>W    | ROMC10                                | ROMC09         | ROMC08  |
| ROMCMP01     | compare                     | (Prohibit                             | 0       | 0              | 0          | 0              | 0              | 0                                     | 0              | 0       |
|              | register 01                 | RMW)                                  | U       | U              |            | _              | ress (Middle   |                                       | V 0            | 0       |
|              |                             |                                       | ROMC23  | ROMC22         | ROMC21     | ROMC20         | ROMC19         |                                       | ROMC17         | ROMC16  |
|              | Address                     | 1402H                                 | TTOMOZO | TTOWOLL        | TOMOLI     | I              | w (            | // ( )                                | TOWOTT         | TOMO TO |
| ROMCMP02     | compare                     | (Prohibit                             | 0       | 0              | 0          | 0              | 0              | $\bigcirc$                            | 0              | 0       |
|              | register 02                 | RMW)                                  | -       |                |            | _              | lress (Upper   | 8 bit)                                |                |         |
|              |                             |                                       | ROMS07  | ROMS06         | ROMS05     | ROMS04         | ROMS03         | ROMS02                                | ROMS01         | ROMS00  |
|              | Address                     | 1404H                                 |         |                |            |                | W              | ,                                     |                |         |
| ROMSUB0LL    | substitution                | (Prohibit                             | 0       | 0              | 0          | 0 (            | 0              | 0                                     | (0)            | 0       |
|              | register 0LL                | RMW)                                  |         | •              | •          | Patch code     | (Lower 8 bits  | s) <                                  | 4/ 0           | •       |
|              | A -l -l                     | 140511                                | ROMS15  | ROMS14         | ROMS13     | ROMS12         | ROMS11         | ROMS16                                | ROM\$09        | ROMS08  |
| DOMELIDOL II | Address                     | 1405H<br>(Prohibit                    |         |                |            | (              | ýv _           | $\langle () \rangle$                  |                |         |
| ROMSUB0LH    | substitution register 0LH   | RMW)                                  | 0       | 0              | 0          |                | 0              | 0                                     | (//0)          | 0       |
|              | register our                | TXIVIVV)                              |         |                |            | Patch code     | (Upper 8 bits  |                                       | 10/            |         |
|              | Address                     | 1406H                                 | ROMS23  | ROMS22         | ROMS21     | ROMS20         | ROMS19         | ROMS18                                | ROMS17         | ROMS16  |
| ROMSUB0HL    | substitution                | (Prohibit                             |         |                | 4          | $\rightarrow$  | w (            | $\leq ))$                             |                |         |
| KOWSOBOTIL   | register 0HL                | RMW)                                  | 0       | 0              | 0/         | > 0            | 0              | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 0              | 0       |
|              |                             | ,                                     |         |                |            |                | (Lower 8 bits  | 7                                     |                | 1       |
|              | Address                     | 1407H                                 | ROMS31  | ROMS30         | ROMS29     | ROMS28         | ROMS27         | ROMS26                                | ROMS25         | ROMS24  |
| ROMSUB0HH    | OMSUB0HH substitution (Prof | (Prohibit                             | _       |                | <u> </u>   | -//            | W              | · -                                   | <del>  _</del> | _       |
|              |                             | RMW)                                  | 0       | 0              | 0          | 0              | 0              | 0                                     | 0              | 0       |
|              | 109:000                     |                                       | DOMO07  | DOMCOC         | 1          |                | (Upper/8 bits  | ,                                     |                |         |
|              | Address                     | 1408H                                 | ROMC07  | ROMC06         | ROMC05     | ROMC04         | ROMC03         | ROMC02                                |                |         |
| ROMCMP10     | compare                     | (Prohibit                             | 0 ((    | ~ \( \dag{b}   | 0          | V <sub>O</sub> | 0              | 0                                     |                |         |
|              | register 10                 | RMW)                                  | 0 //    | -              | et ROM add | \ \ \          | _              | 0                                     |                |         |
|              |                             |                                       | ROMC15  | ROMC14         |            | ROMC12         | ROMC11         | ROMC10                                | ROMC09         | ROMC08  |
|              | Address                     | 1409H                                 |         | )              | 110111010  |                | W              | T.O.M.O.TO                            | TOMOGO         | rtomoco |
| ROMCMP11     | compare                     | (Prohibit                             | 0       | 0              | (0)//      | 0              | 0              | 0                                     | 0              | 0       |
|              | register 11                 | (RMW)                                 |         |                | Targ       | et ROM add     | ress (Middle   | 8 bit)                                | I              |         |
|              |                             | 14001                                 | ROMC23  | ROMC22         | RQMG21     | ROMC20         | ROMC19         | ROMC18                                | ROMC17         | ROMC16  |
| ROMCMP12     | Address                     | 140AH                                 | /       |                | 7/         | ,              | W              |                                       |                |         |
| ROMCMP12     | compare register 12         | (Prohibit<br>RMW)                     | 0       | 0              | 0          | 0              | 0              | 0                                     | 0              | 0       |
|              | register 12                 | ) IXIVIVV)                            |         |                | Targ       | et ROM add     | lress (Upper   | 8 bit)                                |                |         |
|              | Address                     | 140CH                                 | ROMS07  | /ROMS06        | ROMS05     | ROMS04         | ROMS03         | ROMS02                                | ROMS01         | ROMS00  |
| ROMSUB1LL    | substitution                | (Prohibit                             |         |                |            | ١              | W              |                                       |                |         |
| KOWSOBILL    | register 1LL                | RMW)                                  | 0       | 0              | 0          | 0              | 0              | 0                                     | 0              | 0       |
|              | 103.00.122                  | )                                     |         |                |            |                | (Lower 8 bits  |                                       | ı              | •       |
|              | Address                     | 140DH                                 | ROM\$15 | ROMS14         | ROMS13     | ROMS12         | ROMS11         | ROMS10                                | ROMS09         | ROMS08  |
| ROMSUBILH    | substitution                | (Prohibit                             | $\sim$  | //             | i          | ,              | W              | i                                     | i              | 1       |
|              | register 1LH                | RMW)                                  | / 0     | 0              | 0          | 0              | 0              | 0                                     | 0              | 0       |
|              |                             | , , , , , , , , , , , , , , , , , , , |         |                |            |                | (Upper 8 bits  |                                       |                | 1       |
|              | Address                     | 140EH                                 | ROMS23  | ROMS22         | ROMS21     | ROMS20         | ROMS19         | ROMS18                                | ROMS17         | ROMS16  |
| ROMSUB1HL    | substitution                | (Prohibit                             | •       | -              |            |                | W              | 1 -                                   | <u> </u>       |         |
|              | register 1HL                | RMW)                                  | 0       | 0              | 0          | 0              | (1 0. h. ) (1. | 0                                     | 0              | 0       |
|              |                             |                                       | DOM:00: | DO11005        |            |                | (Lower 8 bits  | í –                                   | DO1:005        | DOM:00: |
|              | Address                     | 140FH                                 | ROMS31  | ROMS30         | ROMS29     | ROMS28         | ROMS27         | ROMS26                                | ROMS25         | ROMS24  |
| ROMSUB1HH    | substitution                | (Prohibit                             | 0       | 0              | 0          | 0              | W<br>I o       | 0                                     | 0              | 0       |
|              | register 1HH                | RMW)                                  | 0       | U              |            |                | Upper 8 bits   |                                       | l U            | U       |
|              |                             | <u> </u>                              |         |                |            | aton code      | (opper o nits  | ?)                                    |                |         |

Program patch function (2/4)

| Symbol      | Name                                    | Address            | 7          | 6                  | 5            | 4                                     | 3                                     | 2                         | 1        | 0                                                     |
|-------------|-----------------------------------------|--------------------|------------|--------------------|--------------|---------------------------------------|---------------------------------------|---------------------------|----------|-------------------------------------------------------|
| Cynnoc.     | Ttallio                                 | 7 (44) 000         | ROMC07     | ROMC06             | ROMC05       | ROMC04                                | ROMC03                                | ROMC02                    |          |                                                       |
|             | Address                                 | 1410H              | IXOIVICO7  | INDIVIDUO          | V            |                                       | IXOIVIC03                             | ROMOUZ                    |          |                                                       |
| ROMCMP20    | compare                                 | (Prohibit          | 0          | 0                  | 0            | 0                                     | 0                                     | 0                         |          |                                                       |
|             | register 20                             | RMW)               | -          | Targ               | et ROM add   | ress (Lower                           |                                       |                           |          |                                                       |
|             |                                         |                    | ROMC15     | ROMC14             | ROMC13       | ROMC12                                | ROMC11                                | ROMC10                    | ROMC09   | ROMC08                                                |
| DOMOMBO4    | Address                                 | 1411H<br>(Prohibit |            | I.                 | l .          | ,                                     | W                                     | 7/                        | ı        | l .                                                   |
| ROMCMP21    | compare register 21                     | RMW)               | 0          | 0                  | 0            | 0                                     | 0                                     | (0)                       | , 0      | 0                                                     |
|             | register 21                             | raint)             |            |                    |              | et ROM add                            | lress (Middle                         | 8 bit)                    | <u> </u> |                                                       |
|             | Address                                 | 1412H              | ROMC23     | ROMC22             | ROMC21       | ROMC20                                | ROMC19                                | ROMC18                    | ROMC17   | ROMC16                                                |
| ROMCMP22    | compare                                 | (Prohibit          |            | <del></del>        | <del>.</del> | · · · · · · · · · · · · · · · · · · · | w (/                                  | $\langle \rangle \rangle$ |          | ı                                                     |
|             | register 22                             | RMW)               | 0          | 0                  | 0            | 0                                     | 0                                     | <u></u> 0                 | 0        | 0                                                     |
|             | ŭ                                       | ŕ                  |            | r                  |              |                                       | lress (Upper                          | 7                         | 1        | •                                                     |
|             | Address                                 | 1414H              | ROMS07     | ROMS06             | ROMS05       | ROMS04                                | ROMS03                                | <sup>✓</sup> ROMS02       | ROMS01   | ROMS00                                                |
| ROMSUB2LL   | substitution                            | (Prohibit          | _          | <del>  _</del>     | <del></del>  | - 6                                   |                                       | · -                       |          | _                                                     |
|             | register 2LL                            | RMW)               | 0          | 0                  | 0            | 0 /                                   | 0                                     | 0                         | 0        | 0                                                     |
|             |                                         |                    | DOMOAF     | DOMC44             |              |                                       | (Lower 8 bits                         | / />                      | DOMCOO   | DOMCOO                                                |
|             | Address                                 | 1415H              | ROMS15     | ROMS14             | ROMS13       | ROMS12                                | ROMS11                                | ROMS16                    | ROMS09   | ROMS08                                                |
| ROMSUB2LH   | substitution                            | (Prohibit          | 0          |                    |              |                                       | 0                                     |                           |          | 0                                                     |
|             | register 2LH                            | RMW)               | 0          | 0                  | 0            |                                       | ·                                     | 070                       | 0)       | 0                                                     |
|             |                                         |                    | DOMCOO     | DOMCOO             |              |                                       | (Upper 8 bits                         | ROMS18                    | DOMC47   | DOMO40                                                |
|             | Address                                 | 1416H              | ROMS23     | ROMS22             | ROMS21       | ROMS20                                | ROMS19<br>W                           | KONS18                    | ROMS17   | KON516                                                |
| ROMSUB2HL   | substitution                            | (Prohibit          | 0          | 0                  | 0            | 0                                     | 0                                     | 0                         | 0        | 0                                                     |
|             | register 2HL                            | RMW)               | 0          | 0                  |              | 7                                     | (Lower 8 bits                         |                           | U        | U                                                     |
|             |                                         |                    | ROMS31     | ROMS30             | ROMS29       | ROMS28                                | \ \ \ \ / ·                           | ROMS26                    | ROMS25   | ROMS24                                                |
|             | Address 1417H HH substitution (Prohibit | TOWOST             | T TOWING O | NO(NO23            |              | W                                     | TKOMOZO                               | TOMOZS                    | RONOZŦ   |                                                       |
|             | substitution                            | `                  | 0          | 0                  | 0            | ⟨ 6                                   | 0                                     | 0                         | 0        | 0                                                     |
|             | register 2HH                            | RMW)               |            |                    | \            | Patch code                            | (Upper/8 bits                         | 3)                        | _        | 0 ROMC16 0 ROMS00 0 ROMS08 0 ROMS16 0 ROMS24 0 ROMC08 |
|             | A -l -l                                 | 4.4401.1           | ROMC07     | ROMC06             | ROMC05       | ROMC04                                | ROMC03                                | ROMC02                    |          |                                                       |
| ROMCMP30    | Address compare                         | 1418H<br>(Prohibit |            | $\supset \searrow$ | V            | ٧٨                                    |                                       |                           |          |                                                       |
| KOWCWF30    | register 30                             | RMW)               | 0 (        | 79                 | 0            | //0                                   | 0                                     | 0                         |          |                                                       |
|             | rogiotor oo                             | ,                  |            | , ,                | et ROM add   | 1 2 1                                 | · · · · · · · · · · · · · · · · · · · | 1                         |          |                                                       |
|             | Address                                 | 1419H              | ROMC15     | ROMC14             | ROM©13       | ROMC12                                | ROMC11                                | ROMC10                    | ROMC09   | ROMC08                                                |
| ROMCMP31    | compare                                 | (Prohibit          |            |                    |              |                                       | W                                     |                           |          |                                                       |
|             | register 31                             | RMW)               |            | 0                  | (0)/         | 0                                     | 0                                     | 0 (-:+)                   | 0        | 0                                                     |
|             |                                         |                    | DOMCOO     | DOMCOO             |              |                                       | ress (Middle                          |                           | ROMC17   | DOMC16                                                |
|             | Address                                 | 141AH              | KUNIC23    | RONGZZ             | RONGET       |                                       | W KOMC19                              | KUIVIC 18                 | KUNC17   | RONCIO                                                |
| ROMCMP32    | compare                                 | (Prohibit          | 0          | 0                  | 0            | 0                                     | 0                                     | 0                         | 0        | 0                                                     |
|             | register 32                             | RMW)               | 0          | 0                  |              |                                       | lress (Upper                          |                           | 0        | U                                                     |
|             | 7                                       |                    | ROMS07     | ∕ROMS06            | ROMS05       | ROMS04                                | ROMS03                                | ROMS02                    | ROMS01   | ROMSOO                                                |
|             | Address                                 | 141CH              | TOWOOT     | / ISOIVIOU         | TONIOUS      |                                       | W                                     | TONIOUZ                   | TOMOUT   | TONIOUU                                               |
| ROMSUB3LL   | substitution                            | (Prohibit          | 0          | 0                  | 0            | 0                                     | 0                                     | 0                         | 0        | 0                                                     |
|             | register 3LL                            | RMW)               |            |                    |              | Patch code                            | (Lower 8 bits                         | s)                        | ı        |                                                       |
|             | ///                                     | (.)                | ROM\$15    | ROMS14             | ROMS13       | ROMS12                                | ROMS11                                | ROMS10                    | ROMS09   | ROMS08                                                |
|             | Address                                 | 141DH (            |            | ))                 |              | ,                                     | W                                     | •                         | •        | •                                                     |
| ROMSUB3LH   | substitution                            | (Prohibit<br>RMW)  | 2          | 0                  | 0            | 0                                     | 0                                     | 0                         | 0        | 0                                                     |
|             | register 3LH                            | KIVIVV)            |            |                    |              | Patch code                            | (Upper 8 bits                         | s)                        | •        | •                                                     |
|             | Address                                 | 444511             | ROMS23     | ROMS22             | ROMS21       | ROMS20                                | ROMS19                                | ROMS18                    | ROMS17   | ROMS16                                                |
| DOMOLIBALII | Address substitution                    | 141EH<br>(Prohibit |            |                    |              |                                       | W                                     |                           |          |                                                       |
| ROMSUB3HL   | register 3HL                            | RMW)               | 0          | 0                  | 0            | 0                                     | 0                                     | 0                         | 0        | 0                                                     |
|             | regioner or IL                          | 13,4144)           |            |                    |              | Patch code                            | (Lower 8 bits                         | s)                        |          |                                                       |
|             | Address                                 | 141FH              | ROMS31     | ROMS30             | ROMS29       | ROMS28                                | ROMS27                                | ROMS26                    | ROMS25   | ROMS24                                                |
| ROMSUB3HH   | substitution                            | (Prohibit          |            |                    | 1            |                                       | W                                     | T                         | T        | Τ                                                     |
| 200001111   | register 3HH                            | RMW)               | 0          | 0                  | 0            | 0                                     | 0                                     | 0                         | 0        | 0                                                     |
|             |                                         | <b>'</b>           |            |                    |              | Patch code                            | (Upper 8 bits                         | s)                        |          |                                                       |

Program patch function (3/4)

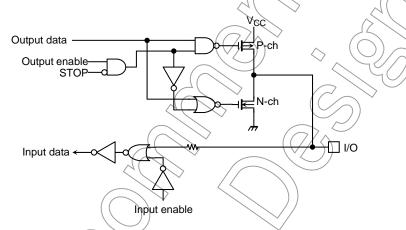
|                                           | Name                                                                                                                                              | Address                                                                                                              | 7                                       | 6                         | 5                                   | 4                                                                                                              | 3                                                                                                                                              | 2                                                    | 1                                       | 0                                       |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------------------------------|
|                                           | Address                                                                                                                                           | 4.4001.1                                                                                                             | ROMC07                                  | ROMC06                    | ROMC05                              | ROMC04                                                                                                         | ROMC03                                                                                                                                         | ROMC02                                               |                                         |                                         |
| ROMCMP40                                  | compare                                                                                                                                           | 1420H<br>(Prohibit                                                                                                   |                                         |                           | V                                   | V                                                                                                              |                                                                                                                                                |                                                      |                                         |                                         |
| KOWGWF 40                                 | register 40                                                                                                                                       | RMW)                                                                                                                 | 0                                       | 0                         | 0                                   | 0                                                                                                              | 0                                                                                                                                              | 0                                                    |                                         |                                         |
|                                           | register 40                                                                                                                                       | ,                                                                                                                    |                                         | Targ                      | et ROM add                          | ress (Lower                                                                                                    | 6 bit)                                                                                                                                         |                                                      |                                         |                                         |
|                                           | Address                                                                                                                                           | 4.40411                                                                                                              | ROMC15                                  | ROMC14                    | ROMC13                              | ROMC12                                                                                                         | ROMC11                                                                                                                                         | ROMC10                                               | ROMC09                                  | ROMC08                                  |
| ROMCMP41                                  | compare                                                                                                                                           | 1421H<br>(Prohibit                                                                                                   |                                         |                           |                                     | 1                                                                                                              | N                                                                                                                                              |                                                      |                                         |                                         |
| KOWCWF41                                  | register 41                                                                                                                                       | RMW)                                                                                                                 | 0                                       | 0                         | 0                                   | 0                                                                                                              | 0                                                                                                                                              | 0                                                    | 0                                       | 0                                       |
|                                           | register 41                                                                                                                                       | ,                                                                                                                    |                                         |                           | Targ                                | et ROM add                                                                                                     | ress (Middle                                                                                                                                   | 8 (bit)                                              | r                                       |                                         |
|                                           | A 11                                                                                                                                              | 4.4001.1                                                                                                             | ROMC23                                  | ROMC22                    | ROMC21                              | ROMC20                                                                                                         | ROMC19                                                                                                                                         | ROMC18                                               | ROMC17                                  | ROMC16                                  |
| ROMCMP42                                  | Address                                                                                                                                           | 1422H<br>(Prohibit                                                                                                   |                                         |                           |                                     | 1                                                                                                              | <u>x</u> (()                                                                                                                                   | // \                                                 |                                         |                                         |
| KOWCWF42                                  | compare register 42                                                                                                                               | RMW)                                                                                                                 | 0                                       | 0                         | 0                                   | 0                                                                                                              | \\Q\\\`                                                                                                                                        | $\bigcirc$ ø                                         | 0                                       | 0                                       |
|                                           | register 42                                                                                                                                       | ,                                                                                                                    |                                         |                           | Targ                                | et ROM add                                                                                                     | ress (Upper                                                                                                                                    | 8 bit)                                               |                                         |                                         |
|                                           | A 11                                                                                                                                              | 4.40.41.1                                                                                                            | ROMS07                                  | ROMS06                    | ROMS05                              | ROMS04                                                                                                         | ROMS03                                                                                                                                         | ROMS02                                               | ROMS01                                  | ROMS00                                  |
| DOMOUD 41.1                               | Address                                                                                                                                           | 1424H<br>(Prohibit                                                                                                   |                                         |                           | •                                   |                                                                                                                | AL CO                                                                                                                                          |                                                      |                                         |                                         |
| ROMSUB4LL                                 | substitution register 4LL                                                                                                                         | RMW)                                                                                                                 | 0                                       | 0                         | 0                                   | 0 ((                                                                                                           | Q                                                                                                                                              | 0                                                    | 0                                       | 0                                       |
| <u> </u>                                  | register 4LL                                                                                                                                      | ,                                                                                                                    |                                         |                           |                                     | Patch code                                                                                                     | Lower 8 bits                                                                                                                                   | s) <                                                 | 11 />                                   |                                         |
|                                           |                                                                                                                                                   |                                                                                                                      | ROMS15                                  | ROMS14                    | ROMS13                              | ROMS12                                                                                                         | ROMS11                                                                                                                                         | ROMS10                                               | ROMS09                                  | ROMS08                                  |
|                                           | Address                                                                                                                                           | 1425H                                                                                                                |                                         |                           |                                     | ((// <                                                                                                         | ٧ ´                                                                                                                                            |                                                      |                                         |                                         |
| ROMSUB4LH                                 | substitution                                                                                                                                      | (Prohibit<br>RMW)                                                                                                    | 0                                       | 0                         | 0                                   | (6)                                                                                                            | 0                                                                                                                                              |                                                      | (0)                                     | 0                                       |
|                                           | register 4LH                                                                                                                                      | ,                                                                                                                    |                                         |                           |                                     | Patch code (                                                                                                   | Upper 8 bits                                                                                                                                   |                                                      | 10/                                     |                                         |
|                                           |                                                                                                                                                   |                                                                                                                      | ROMS23                                  | ROMS22                    | ROMS21                              | ROM\$20                                                                                                        | ROMS19/                                                                                                                                        | ROMS18                                               | ROMS17                                  | ROMS16                                  |
|                                           | Address                                                                                                                                           | 1426H                                                                                                                |                                         |                           | 7                                   | 1                                                                                                              | N ((                                                                                                                                           |                                                      |                                         |                                         |
| ROMSUB4HL                                 | substitution                                                                                                                                      | (Prohibit<br>RMW)                                                                                                    | 0                                       | 0                         | 0                                   | 0                                                                                                              | 0                                                                                                                                              | ~6/                                                  | 0                                       | 0                                       |
|                                           | register 4HL                                                                                                                                      | IXIVIVV)                                                                                                             |                                         | <u> </u>                  | / / /                               |                                                                                                                | Lower 8 bits                                                                                                                                   |                                                      | , ,                                     |                                         |
|                                           |                                                                                                                                                   |                                                                                                                      | ROMS31                                  | ROMS30                    | ROMS29                              | ROMS28                                                                                                         | ROMS27                                                                                                                                         | ROMS26                                               | ROMS25                                  | ROMS24                                  |
|                                           | OMSUB4HH substitution (Pr                                                                                                                         | 1427H                                                                                                                | TOMOGT                                  | 7(                        | 110.11020                           |                                                                                                                | M NO STATE                                                                                                                                     | 7,10,111020                                          | TTOWIGE                                 | TOMOLI                                  |
| ROMSUB4HH                                 |                                                                                                                                                   | (Prohibit<br>RMW)                                                                                                    | 0                                       | 0                         | Ŏ                                   | 76                                                                                                             | 0                                                                                                                                              | 0                                                    | 0                                       | 0                                       |
|                                           |                                                                                                                                                   | IXIVIVV)                                                                                                             | -                                       |                           |                                     | Patch code (                                                                                                   | Upper 8 bits                                                                                                                                   |                                                      |                                         |                                         |
|                                           |                                                                                                                                                   |                                                                                                                      | ROMC07                                  | ROMC06                    | ROMC05                              | ROMC04                                                                                                         | ROMC03                                                                                                                                         | ROMC02                                               |                                         |                                         |
| l                                         | Address                                                                                                                                           | 1428H                                                                                                                |                                         | -                         | V                                   |                                                                                                                |                                                                                                                                                |                                                      |                                         |                                         |
| ROMCMP50                                  | compare                                                                                                                                           | (Prohibit<br>RMW)                                                                                                    | 0 (                                     | <u>\</u> 0                | 0                                   | <b>\</b> 0                                                                                                     | 0                                                                                                                                              | 0                                                    |                                         |                                         |
|                                           | register 50                                                                                                                                       | ,                                                                                                                    |                                         | Targ                      | et ROM addi                         | ress (Lower                                                                                                    | 6 bit)                                                                                                                                         |                                                      |                                         |                                         |
|                                           |                                                                                                                                                   |                                                                                                                      | ROMC15                                  | ROMC14                    | ROMC13                              | ROMC12                                                                                                         | ROMC11                                                                                                                                         | ROMC10                                               | ROMC09                                  | ROMC08                                  |
| ı                                         | Address                                                                                                                                           | 1429H                                                                                                                | ((// <                                  | \                         |                                     | - / /                                                                                                          | N                                                                                                                                              |                                                      |                                         |                                         |
| DOLLOLIDE /                               |                                                                                                                                                   |                                                                                                                      | \ \ / / /                               | 0                         | (0)                                 | 0                                                                                                              | 0                                                                                                                                              | 0                                                    | 0                                       | 0                                       |
| ROMCMP51                                  | compare                                                                                                                                           | (Prohibit                                                                                                            | $\setminus 0$                           | U                         |                                     |                                                                                                                |                                                                                                                                                |                                                      | U                                       | U                                       |
| ROMCMP51                                  | register 51                                                                                                                                       | RMW)                                                                                                                 | 0                                       |                           | 1 / - / / /                         | et ROM add                                                                                                     | ress (Middle                                                                                                                                   | 8 bit)                                               | U                                       | 0                                       |
| ROMCMP51                                  | register 51                                                                                                                                       | (RMWV)                                                                                                               | ROMC23                                  | $\wedge$                  | 1 / - / / /                         |                                                                                                                | ress (Middle                                                                                                                                   | 8 bit)<br>ROMC18                                     | ROMC17                                  | ROMC16                                  |
|                                           | register 51 Address                                                                                                                               | RMW)                                                                                                                 |                                         | $\wedge$                  | Targ                                | ROMC20                                                                                                         | ress (Middle                                                                                                                                   | · ·                                                  | -                                       | -                                       |
| ROMCMP51                                  | register 51  Address compare                                                                                                                      | RMW)  142AH (Prohibit                                                                                                |                                         | $\wedge$                  | Targ                                | ROMC20                                                                                                         | ress (Middle<br>ROMC19                                                                                                                         | · ·                                                  | -                                       | -                                       |
|                                           | register 51 Address                                                                                                                               | RMW)                                                                                                                 | ROMC23                                  | ROMC22                    | ROMC21                              | ROMC20<br>\<br>0                                                                                               | ress (Middle<br>ROMC19                                                                                                                         | ROMC18                                               | ROMC17                                  | ROMC16                                  |
|                                           | Address compare register 52                                                                                                                       | 142AH<br>(Prohibit<br>RMW)                                                                                           | ROMC23                                  | ROMC22                    | ROMC21  Targ                        | ROMC20<br>\<br>0                                                                                               | ress (Middle<br>ROMC19<br>W                                                                                                                    | 0<br>8 bit)                                          | ROMC17                                  | ROMC16                                  |
| ROMCMP52                                  | Address compare register 52                                                                                                                       | 142AH<br>(Prohibit<br>RMW)                                                                                           | ROMĆ23                                  | ROMC22                    | ROMC21                              | ROMC20<br>0<br>et ROM add<br>ROMS04                                                                            | ress (Middle<br>ROMC19<br>W<br>0<br>ress (Upper                                                                                                | ROMC18                                               | ROMC17                                  | ROMC16<br>0                             |
|                                           | Address compare register 52  Address substitution                                                                                                 | 142AH<br>(Prohibit<br>RMW)                                                                                           | ROMĆ23                                  | ROMC22                    | ROMC21  Targ                        | ROMC20<br>0<br>et ROM add<br>ROMS04                                                                            | ress (Middle<br>ROMC19<br>W 0<br>ress (Upper<br>ROMS03                                                                                         | 0<br>8 bit)                                          | ROMC17<br>0                             | ROMC16<br>0                             |
| ROMCMP52                                  | Address compare register 52                                                                                                                       | 142AH<br>(Prohibit<br>RMW)                                                                                           | ROMĆ23  0  ROMS07                       | ROMC22                    | ROMC21  0  Targ  ROMS05             | ROMC20<br>0<br>et ROM add<br>ROMS04                                                                            | ress (Middle<br>ROMC19<br>N<br>0<br>ress (Upper<br>ROMS03                                                                                      | 0<br>8 bit)<br>ROMS02                                | ROMC17  0  ROMS01                       | ROMC16  0  ROMS00                       |
| ROMCMP52                                  | Address compare register 52  Address substitution register 5LL                                                                                    | 142AH<br>(Prohibit<br>RMW)<br>142CH<br>(Prohibit<br>RMW)                                                             | ROMĆ23  0  ROMS07                       | ROMC22                    | ROMC21  0  Targ  ROMS05             | ROMC20<br>0<br>et ROM add<br>ROMS04                                                                            | ress (Middle ROMC19 N 0 ress (Upper ROMS03 N 0                                                                                                 | 0<br>8 bit)<br>ROMS02                                | ROMC17  0  ROMS01                       | ROMC16  0  ROMS00                       |
| ROMCMP52                                  | Address compare register 52  Address substitution register 5LL  Address                                                                           | 142AH<br>(Prohibit<br>RMW)<br>142CH<br>(Prohibit<br>RMW)                                                             | ROMC23  0  ROMS07                       | ROMC22 ROMS06             | ROMC21  0  Targ ROMS05              | ROMC20  0 et ROM add ROMS04  0 Patch code ( ROMS12                                                             | ress (Middle ROMC19 N 0 ress (Upper ROMS03 N 0 (Lower 8 bits                                                                                   | ROMC18  0 8 bit) ROMS02  0                           | 0 ROMS01                                | ROMC16  0  ROMS00  0                    |
| ROMCMP52  ROMSUB5LL  ROMSUB5LH            | Address compare register 52  Address substitution register 5LL  Address substitution                                                              | 142AH<br>(Prohibit<br>RMW)<br>142CH<br>(Prohibit<br>RMW)                                                             | ROMC23  0  ROMS07  0  ROMS15            | ROMC22  ROMS06  ROMS14    | ROMS05  ROMS13                      | ROMC20  0 et ROM add ROMS04  0 Patch code ( ROMS12                                                             | ress (Middle ROMC19 N 0 ress (Upper ROMS03 N 0 Lower 8 bits ROMS11                                                                             | 0<br>8 bit)<br>ROMS02<br>0<br>s)<br>ROMS10           | 0<br>ROMS01<br>0<br>ROMS09              | ROMC16  0  ROMS00  0  ROMS08            |
| ROMCMP52  ROMSUB5LL  ROMSUB5LH            | Address compare register 52  Address substitution register 5LL  Address                                                                           | 142AH<br>(Prohibit<br>RMW)<br>142CH<br>(Prohibit<br>RMW)                                                             | ROMC23  0  ROMS07                       | ROMC22 ROMS06             | Targ ROMC21  Targ ROMS05  0  ROMS13 | ROMC20  0 et ROM add ROMS04  0 Patch code ( ROMS12                                                             | ress (Middle ROMC19 N 0 ress (Upper ROMS03 N 0 Lower 8 bits ROMS11 N 0                                                                         | 0<br>8 bit)<br>ROMS02<br>0<br>s)<br>ROMS10           | 0 ROMS01                                | ROMC16  0  ROMS00  0                    |
| ROMCMP52  ROMSUB5LL  ROMSUB5LH            | Address compare register 52  Address substitution register 5LL  Address substitution register 5LL                                                 | 142AH<br>(Prohibit<br>RMW)<br>142CH<br>(Prohibit<br>RMW)                                                             | ROM©23  0  ROMS07  0  ROMS15            | ROMS06  ROMS14            | ROMC21  0  Targ ROMS05  0  ROMS13   | ROMC20  0 et ROM add ROMS04  0 Patch code ( ROMS12  0 Patch code (                                             | ress (Middle ROMC19 N 0 ress (Upper ROMS03 N 0 Lower 8 bits ROMS11 N 0 (Upper 8 bits                                                           | 0<br>8 bit)<br>ROMS02<br>0<br>s)<br>ROMS10           | 0 ROMS01 0 ROMS09                       | ROMC16  0  ROMS00  0  ROMS08            |
| ROMCMP52  ROMSUB5LL  ROMSUB5LH            | Address compare register 52  Address substitution register 5LL  Address substitution register 5LH  Address                                        | 142AH<br>(Prohibit<br>RMW)<br>142CH<br>(Prohibit<br>RMW)<br>142DH<br>(Prohibit<br>RMW)                               | ROMC23  0  ROMS07  0  ROMS15            | ROMC22  ROMS06  ROMS14    | Targ ROMC21  Targ ROMS05  0  ROMS13 | ROMC20  0 et ROM add ROMS04  0 Patch code ( ROMS12  0 Patch code ( ROMS20                                      | ress (Middle ROMC19 N 0 ress (Upper ROMS03 N 0 (Lower 8 bits ROMS11 N 0 (Upper 8 bits ROMS19                                                   | 0<br>8 bit)<br>ROMS02<br>0<br>s)<br>ROMS10           | 0<br>ROMS01<br>0<br>ROMS09              | ROMC16  0  ROMS00  0  ROMS08            |
| ROMCMP52  ROMSUB5LL  ROMSUB5LH            | Address compare register 52  Address substitution register 5LL  Address substitution register 5LH  Address substitution substitution register 5LH | 142AH<br>(Prohibit<br>RMW)<br>142CH<br>(Prohibit<br>RMW)<br>142DH<br>(Prohibit<br>RMW)                               | ROMC23  0  ROMS07  0  ROMS15  0  ROMS23 | ROMS06  ROMS14  0  ROMS22 | ROMS05  ROMS13  ROMS21              | ROMC20  0 et ROM add ROMS04  0 Patch code ( ROMS12  0 Patch code ( ROMS20                                      | ress (Middle ROMC19 N 0 ress (Upper ROMS03 N 0 (Lower 8 bits ROMS11 N 0 (Upper 8 bits ROMS19 N                                                 | 0 8 bit) ROMS02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | ROMC17  0  ROMS01  0  ROMS09  0  ROMS17 | ROMC16  0  ROMS00  0  ROMS08  0  ROMS16 |
| ROMCMP52  ROMSUB5LL  ROMSUB5LH            | Address compare register 52  Address substitution register 5LL  Address substitution register 5LH  Address                                        | 142AH<br>(Prohibit<br>RMW)<br>142CH<br>(Prohibit<br>RMW)<br>142DH<br>(Prohibit<br>RMW)                               | ROM©23  0  ROMS07  0  ROMS15            | ROMS06  ROMS14            | ROMS05  ROMS13  ROMS21  0           | ROMC20  o et ROM add ROMS04  o Patch code ( ROMS12  o Patch code ( ROMS20  \ 0  0                              | ress (Middle ROMC19 N 0 ress (Upper ROMS03 N 0 (Lower 8 bits ROMS11 N 0 (Upper 8 bits ROMS19 N 0                                               | 0 8 bit) ROMS02 0 8 NOMS02 0 8 NOMS10 0 1 NOMS10     | 0 ROMS01 0 ROMS09                       | ROMC16  0  ROMS00  0  ROMS08            |
| ROMCMP52  ROMSUB5LL  ROMSUB5LH            | Address compare register 52  Address substitution register 5LL  Address substitution register 5LH  Address substitution register 5LH              | 142AH<br>(Prohibit<br>RMW)<br>142CH<br>(Prohibit<br>RMW)<br>142DH<br>(Prohibit<br>RMW)                               | ROM623  0  ROMS07  0  ROM615  0  ROMS23 | ROMS06  ROMS14  0  ROMS22 | ROMS05  ROMS13  ROMS21  0           | ROMC20  o et ROM add ROMS04  o Patch code ( ROMS12  o Patch code ( ROMS20  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ress (Middle ROMC19 N 0 ress (Upper ROMS03 N 0 (Lower 8 bits ROMS11 N 0 (Upper 8 bits ROMS19 N 0 (Lower 8 bits                                 | ROMC18  0 8 bit)  ROMS02  0 s)  ROMS10  0 s)  ROMS18 | ROMC17  0  ROMS01  0  ROMS09  0  ROMS17 | ROMC16  0  ROMS00  0  ROMS08  0  ROMS16 |
| ROMCMP52  ROMSUB5LL  ROMSUB5LH  ROMSUB5HL | Address compare register 52  Address substitution register 5LL  Address substitution register 5LH  Address substitution register 5HL  Address     | 142AH<br>(Prohibit<br>RMW)<br>142CH<br>(Prohibit<br>RMW)<br>142DH<br>(Prohibit<br>RMW)<br>142EH<br>(Prohibit<br>RMW) | ROMC23  0  ROMS07  0  ROMS15  0  ROMS23 | ROMS06  ROMS14  0  ROMS22 | ROMS05  ROMS13  ROMS21  0           | ROMC20  o et ROM add ROMS04  o Patch code ( ROMS12  o Patch code ( ROMS20  v O Patch code ( ROMS20  ROMS28     | ress (Middle ROMC19 N 0 ress (Upper ROMS03 N 0 (Lower 8 bits ROMS11 N 0 (Upper 8 bits ROMS19 N 0 (Lower 8 bits ROMS19 N 0 (Lower 8 bits ROMS27 | 0 8 bit) ROMS02 0 8 NOMS02 0 8 NOMS10 0 1 NOMS10     | ROMC17  0  ROMS01  0  ROMS09  0  ROMS17 | ROMC16  0  ROMS00  0  ROMS08  0  ROMS16 |
| ROMSUB5LH ROMSUB5HL ROMSUB5HL             | Address compare register 52  Address substitution register 5LL  Address substitution register 5LH  Address substitution register 5LH              | 142AH<br>(Prohibit<br>RMW)<br>142CH<br>(Prohibit<br>RMW)<br>142DH<br>(Prohibit<br>RMW)                               | ROM623  0  ROMS07  0  ROM615  0  ROMS23 | ROMS06  ROMS14  0  ROMS22 | ROMS05  ROMS13  ROMS21  0           | ROMC20  o et ROM add ROMS04  o Patch code ( ROMS12  o Patch code ( ROMS20  v O Patch code ( ROMS20  ROMS28     | ress (Middle ROMC19 N 0 ress (Upper ROMS03 N 0 (Lower 8 bits ROMS11 N 0 (Upper 8 bits ROMS19 N 0 (Lower 8 bits                                 | ROMC18  0 8 bit)  ROMS02  0 s)  ROMS10  0 s)  ROMS18 | ROMC17  0  ROMS01  0  ROMS09  0  ROMS17 | ROMC16  0  ROMS00  0  ROMS08  0  ROMS16 |

Program patch function (4/4)

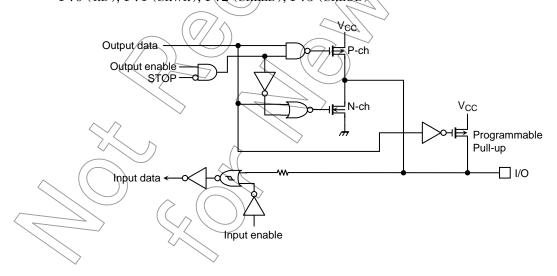
| Symbol      | Name                      | Address            | 7         | 6          | 5          | 4                                     | 3             | 2           | 1            | 0       |
|-------------|---------------------------|--------------------|-----------|------------|------------|---------------------------------------|---------------|-------------|--------------|---------|
|             | Address                   | 1430H              | ROMC07    | ROMC06     | ROMC05     | ROMC04                                | ROMC03        | ROMC02      |              |         |
| ROMCMP60    | compare                   | (Prohibit          |           | 1          | t          | V                                     |               | i           |              |         |
|             | register 60               | RMW)               | 0         | 0          | 0          | 0                                     | 0             | 0           |              |         |
|             | _                         |                    | 5011015   |            | et ROM add |                                       |               | V > 0.10.10 | D011000      | D011000 |
|             | Address                   | 1431H              | ROMC15    | ROMC14     | ROMC13     | ROMC12                                | ROMC11        | ROMC10      | ROMC09       | ROMC08  |
| ROMCMP61    | compare                   | (Prohibit          | 0         | 0          | 0          | 0                                     | W 0           | 0           | 0            | 0       |
|             | register 61               | RMW)               | 0         | 0          | _          | ŭ                                     | ress (Middle  |             | 0            | 0       |
|             |                           |                    | ROMC23    | ROMC22     | ROMC21     | ROMC20                                | ROMC19        |             | ROMC17       | ROMC16  |
|             | Address                   | 1432H              | KOWIC23   | KOWCZZ     | KOWC21     |                                       | W             | TOWIC TO    | KOWCT        | KOWICTO |
| ROMCMP62    | compare                   | (Prohibit          | 0         | 0          | 0          | 0                                     | 0             |             | 0            | 0       |
|             | register 62               | RMW)               | - 0       | U          | L          |                                       | lress (Upper  |             |              | O       |
|             |                           |                    | ROMS07    | ROMS06     | ROMS05     | ROMS04                                | ROMS03        | ROMS02      | ROMS01       | ROMS00  |
|             | Address                   | 1434H              | TOWOO7    | TOMOGO     | TONIOUS    |                                       | W             | TOMOUZ      | TOWOOT       | TOMOOO  |
| ROMSUB6LL   | substitution              | (Prohibit<br>RMW)  | 0         | 0          | 0          | 0.((                                  | 0             | 0           | 0            | 0       |
|             | register 6LL              | IXIVIVV)           |           |            |            | - ( 4 /                               | (Lower 8 bits |             | 4/ ->        |         |
|             |                           |                    | ROMS15    | ROMS14     | ROMS13     | ROMS12                                | ROMS11        | ROMS16      | ROMS09       | ROMS08  |
|             | Address                   | 1435H              |           |            | •          | ((//3)                                | W ^           |             |              | •       |
| ROMSUB6LH   | substitution              | (Prohibit<br>RMW)  | 0         | 0          | 0 _        | 0                                     | 0             | 0           | (/)0)        | 0       |
|             | register 6LH              | ,                  |           |            |            | Patch code                            | (Upper 8 bits |             | 10/          | •       |
|             |                           |                    | ROMS23    | ROMS22     | ROM\$21    | ROMS20                                | ROMS19        | ROMS18      | ROMS17       | ROMS16  |
| DOMOLIDOLII | Address                   | 1436H              |           | •          | 4          | √                                     | w             | $\leq 1$    | •            | •       |
| ROMSUB6HL   | substitution register 6HL | (Prohibit<br>RMW)  | 0         | 0          | 0/         | , 0                                   | 0             | Co          | 0            | 0       |
|             | register of it.           | ,                  |           |            |            | Patch code                            | (Lower 8 bits | 3           |              |         |
| Addross     | Address                   | 140711             | ROMS31    | ROMS30     | ROMS29     | ROMS28                                | ROMS27        | ROMS26      | ROMS25       | ROMS24  |
| ROMSUB6HH   | substitution              | 1437H<br>(Prohibit |           | <1         |            |                                       | W/            |             | <del>.</del> | •       |
|             | register 6HH              | RMW)               | 0         | 0          | 0          | 10                                    | \0\           | 0           | 0            | 0       |
|             | · ·                       |                    |           |            | i e        | _                                     | (Upper/8 bits |             |              |         |
|             | Address                   | 1438H              | ROMC07    | ROMC06     | ROMC05     | ROMC04                                | ROMC03        | ROMC02      |              |         |
| ROMCMP70    | compare                   | (Prohibit          | -         | $\bigcirc$ | i .        | V                                     |               |             |              |         |
|             | register 70               | RMW)               | 0 (       | 1 -1       | et ROM add | rocc (t ower                          | 0<br>6 bit)   | 0           |              |         |
|             |                           |                    | ROMC15    | ROMC14     | ROM©13     | ROMC12                                | ROMC11        | ROMC10      | ROMC09       | ROMC08  |
|             | Address                   | 1439H              | IXONIC/3  | 1.ONC14    | IXOIVIO 13 | 4                                     | W             | IXOIVIC 10  | ROMOUS       | KOWCOO  |
| ROMCMP71    | compare                   | (Prohibit<br>RMW)  | 0         | 0          | (0)//      | 0                                     | 0             | 0           | 0            | 0       |
|             | register 71               | /((((())))         |           |            |            | et ROM add                            | ress (Middle  |             |              |         |
|             |                           |                    | ROMC23    | ROMC22     | ROMG21     |                                       |               |             | ROMC17       | ROMC16  |
| D 014014D=0 | Address                   | 143AH              | \         |            | 7/         |                                       | W             | •           |              | •       |
| ROMCMP72    | compare register 72       | (Prohibit<br>RMW)  | 0         | Q          | 0          | 0                                     | 0             | 0           | 0            | 0       |
|             | register 72               | ) ´                |           |            | Targ       | et ROM add                            | ress (Upper   | 8 bit)      |              |         |
|             | Address                   | 11001              | ROMS07    | ∕ŖOMS06    | ROMS05     | ROMS04                                | ROMS03        | ROMS02      | ROMS01       | ROMS00  |
| ROMSUB7LL   | substitution              | 143CH<br>(Prohibit | ^         |            |            |                                       | W             |             |              |         |
| KOWISOB/LL  | register 7LL              | (Proffibit         | 0         | 0          | 0          | 0                                     | 0             | 0           | 0            | 0       |
|             | Togistol 722              | <i>(</i> )         |           |            |            |                                       | (Lower 8 bits |             |              |         |
|             | Address                   | 143DH              | ROM\$15   | ROMS14     | ROMS13     | ROMS12                                | ROMS11        | ROMS10      | ROMS09       | ROMS08  |
| ROMSUB7LH   | substitution              | (Prohibit          | $\sqrt{}$ | //         |            | · · · · · · · · · · · · · · · · · · · | W             | +           | <del>.</del> |         |
| TOWOOD/ET   | register 7LH              | RMW)               | 0         | 0          | 0          | 0                                     | 0             | 0           | 0            | 0       |
|             |                           |                    |           |            |            |                                       | (Upper 8 bits |             | 1            |         |
|             | Address                   | 143EH              | ROMS23    | ROMS22     | ROMS21     | ROMS20                                | ROMS19        | ROMS18      | ROMS17       | ROMS16  |
| ROMSUB7HL   | substitution              | (Prohibit          |           |            | 1          |                                       | W             | 1           | ı            |         |
|             | register 7HL              | RMW)               | 0         | 0          | 0          | 0                                     | 0             | 0           | 0            | 0       |
|             | -                         |                    |           |            | 1          |                                       | (Lower 8 bits | <u> </u>    | l = = · · ·  |         |
|             | Address                   | 143FH              | ROMS31    | ROMS30     | ROMS29     | ROMS28                                | ROMS27        | ROMS26      | ROMS25       | ROMS24  |
| ROMSUB7HH   | substitution              | (Prohibit          |           |            |            |                                       | W             |             |              |         |
|             | register 7HH              | RMW)               | 0         | 0          | 0          | 0<br>Datab and a                      | (Upper 0 bits | 0           | 0            | 0       |
|             |                           |                    |           |            |            | ratch code                            | (Upper 8 bits | 5)          |              |         |

# 6. Port Section Equivalent Circuit Diagram

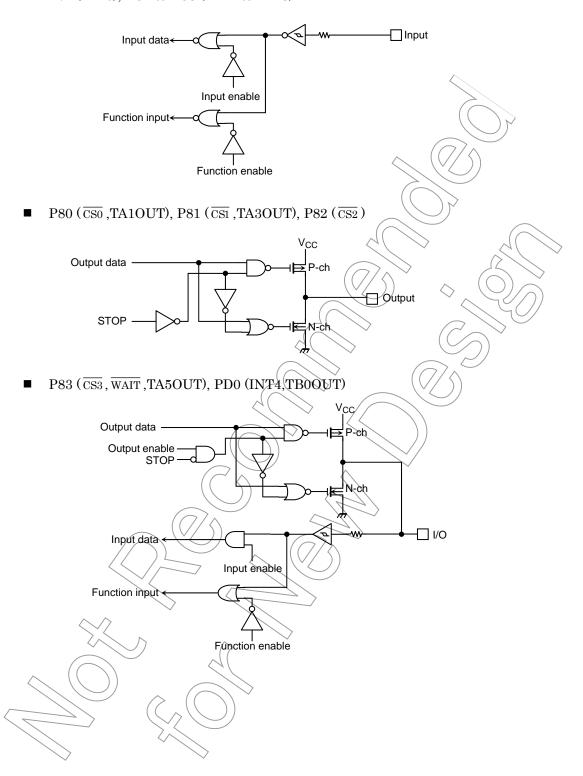
■ Reading the circuit diagram


Basically, the gate symbols written are the same as those used for the standard CMOS logic IC [74HCXX] series.

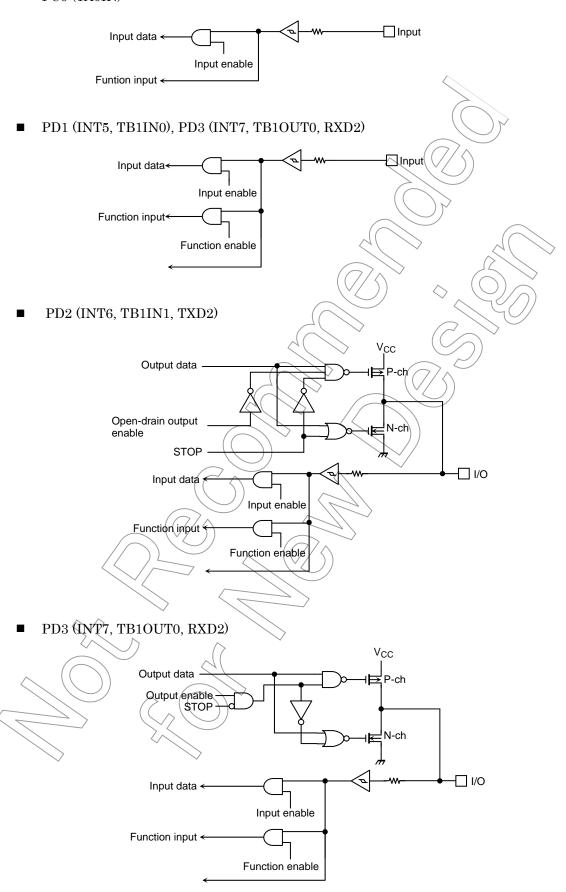
The dedicated signal is described below.


STOP: This signal becomes active "1" when the halt mode setting register is set to the STOP mode and the CPU executes the HALT instruction. When the drive enable bit <DRVE> is set to "1", however, STOP remains at "0".

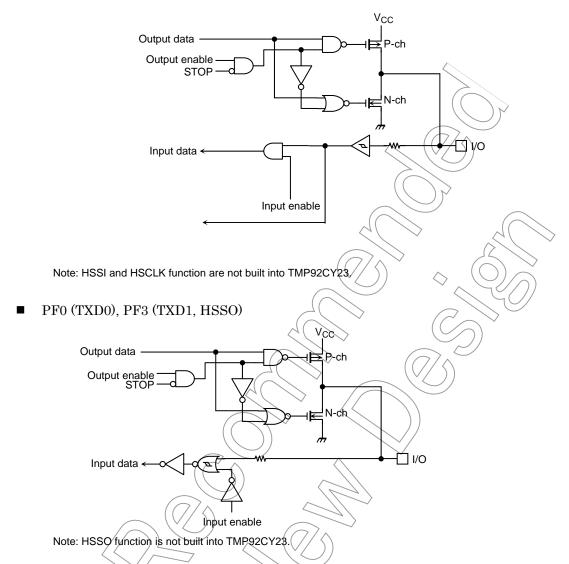
The input protection resistance ranges from several tens of ohms to several hundreds of ohms.


P0 (D0 to D7), P1 (D8 to D15), P4 (A0 to A7), P5 (A8 to A15), P6 (A16 to A23)

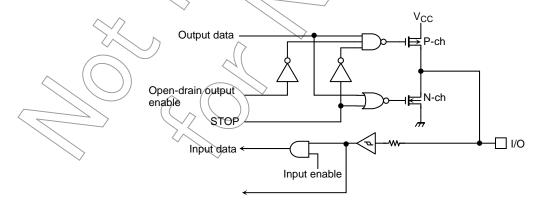


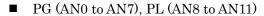

■ P70 (RD), P71 (SRWR), P72 (SRLLB), P73 (SRLUB)

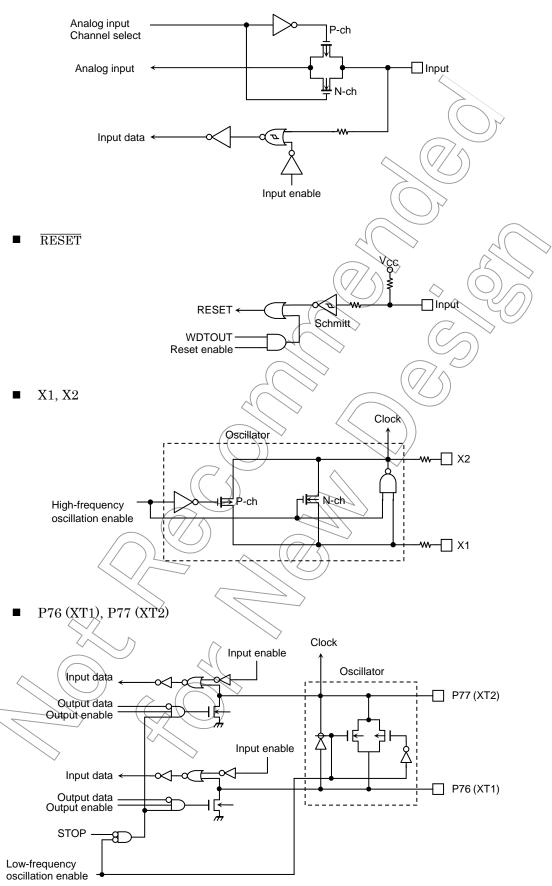



■ P74 (INT0), PC1 to PC3 (INT1 to INT3)

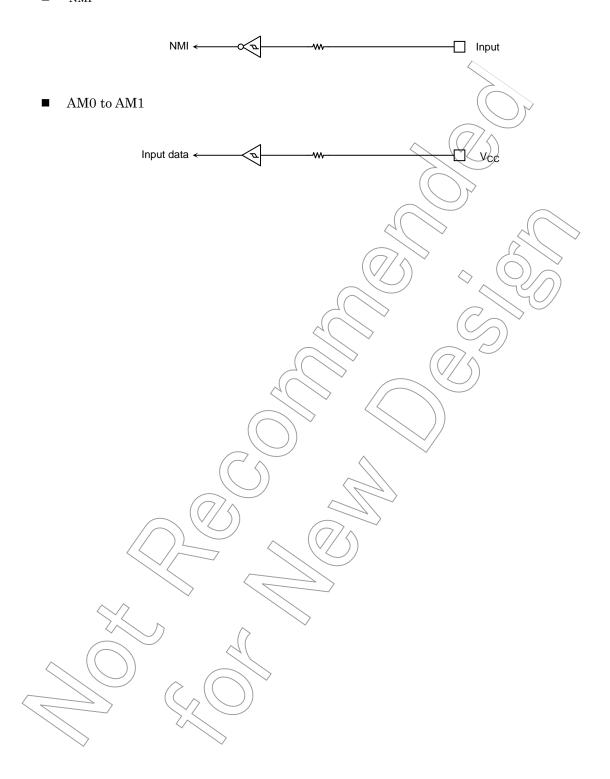



■ PC0 (TA0IN)





■ PD4 (TB1OUT1,SCLK2, CTS2), PF1 (RXD0), PF2 (SCLK0, CTS0, CLK), PF4 (RXD1, HSSI), PF5 (SCLK1, CTS1, HSCLK), PN0 (SCK0), PN3 (SCK1)




■ PN1 (SDA0,SO0), PN2 (SCL0, Si0), PN4 (SDA1, SO1), PN5 (SCL1, SI1)







■ NMI



## 7. Notes and Restrictions

- (1) Notation
  - a. The notation for built-in/ I/O registers is as follows: Register symbol <Bit symbol> (e.g., TA01RUN <TA0RUN> denotes bit TA0RUN of register TA01RUN).
  - b. Read-modify-write instructions

An instruction in which the CPU reads data from memory and writes the data to the same memory location in one instruction.

Example 1: SET

3, (TA01RUN) ... Set bit 3 of TA01RUN

Example 2:

INC

1, (100H) ... Increment the data at 100H.

• Examples of read-modify-write instructions on the TLCS-900?

**Exchange instruction** 

EX (mem), R

Arithmetic operations

ADD (mem), R/#

ADC

(mem), R/#

SUB (mem), R/#

SBC

(mem), R/#

INC #3, (mem)

DEC #3, (mem)

Logic operations

AND (mem), R/#

OR

(mem), R/#

XOR (mem), R/#

Bit manipulation operations

STCF #3/A, (mem)

RES #3, (mem)

SET #3,

#3, (mem)

CHG #3, (mem)

TSET #3, (mem)

Rotate and shift operations

RLC (mem)

 $RRC \rightarrow (mem)$ 

AL (mem)

RR (mem)

SLA/) (mem)

SRA (mem)

SLL (mem)

SRL (mem)

RLD (mem)

RRD (mem)

c. fc, fs, fFPH, fSYS and one state

The clock frequency input on X1 and 2 is referred to as fOSCH. The clock selected by PLLCR0<FCSEL> is referred to as fc.

The clock selected by SYSCR1<SYSCK> is referred to as fFPH. The clock frequency give by fFPH divided by 2 is referred to as fSYS.

One cycle of fsys is referred to as one state.

#### (2) Points to note

#### a. AM0 and AM1 pins

These pins are connected to the V<sub>CC</sub> or the V<sub>SS</sub> pin. Do not alter the level when the pin is active.

#### b. Reserved address areas

The 16-byte area from FFFFF0H to FFFFFFH is reserved as internal area and cannot be used. When using Toshiba's Flash programming service, prepare your ROM data (Hex file) by leaving these 16 bytes blank or setting them all to "FF" and register it with our ROM data entry system.

Moreover, when using an emulator, since it is used for control of an emulator, 64K bytes with arbitrary 16M byte area of use cannot be performed.

#### c. HALT mode (IDLE1)

When the HALT instruction is executed in IDLE1 mode (in which only the oscillator operates), the internal Special timer for CLOCK operate. When necessary, stop the circuit by setting RTCCR<RTCRUN> to "0", before the HALT instructions is executed.

#### d. Warm-up timer

The warm-up timer operates when STOP mode is released, even if the system is using an external oscillator. As a result, a time equivalent to the warm-up time elapses between input of the release request and output of the system clock.

#### e. Watchdog timer

The watchdog timer starts operation immediately after a reset is released. Disable the watchdog timer when is not to be used.

#### f. AD converter

The string resistor between the VREFH and VREFL pins can be cut by program so as to reduce power consumption. When STOP mode is used, disable the resistor using the program before the HALT instruction is executed.

### g. CPU (Micro DMA)

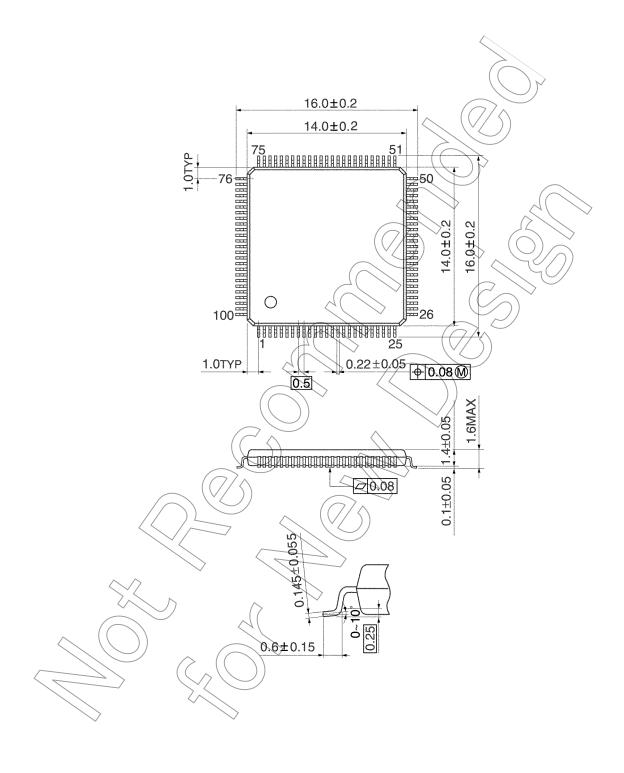
Only the "LDC cr, r" and "LDC r, cr" instructions can be used to access the control registers in the CPU (e.g., the transfer source address register (DMASn).).

#### h. Undefined SFR

The value of an undefined bit in an SFR is undefined when read.

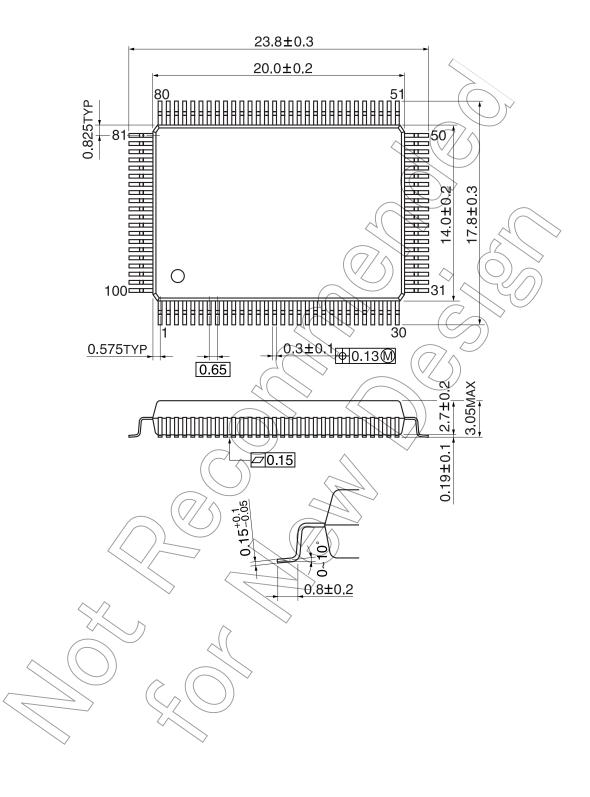
#### i. POP SR instruction

Please execute the POP'SR instruction during DI condition.


#### Interrupt

When you use interruption, be sure to set "1" as the bit 7 of a SIMC register.

# 8. Package Dimensions


Package Name: LQFP100-P-1414-0.50F

Unit: mm



Package Name: QFP100-P-1420-0.65A

Unit: mm



#### **RESTRICTIONS ON PRODUCT USE**

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before creating and producing designs and using, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application that Product (vill be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
  applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
   Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

92CY23-389



