

Class-AB Speaker Amplifiers

2W + 2W Stereo Speaker / Headphone Amplifier

No.10077EAT05

Description

BH7881EFV

The BH7881EFV is a low voltage, low noise, high output speaker/headphone amplifier IC, in which a Bi-CMOS process is used. An on-chip speaker amplifier circuit that is capable of 2W+2W output can be used as a headphone amplifier by switching the operating mode. This makes it possible to configure an audio system using few external devices. With a built-in, low saturation regulator with programmable output voltage and output current, clear tone quality is obtained even when directly connected to a digital power supply. A peripheral analog circuit can also be regulator driven. Furthermore, the BH7881EFV provides speaker output and VREG output short-circuit detection functions, a thermal shutdown function with

Features

- 1) Built-in low saturation type regulator (Digital power supply driver, voltage and current variable, short circuit detection)
- 2) Bass boost mode, gain switching functions

hysteresis, and a speaker protection function.

- 3) Speaker MUTE function (Headphone mode)
- 4) Built-in line amplifier output (gain adjustment, LPF setting) active/suspend function (TTL input control pin)
- 5) Hysteretic thermal shutdown function (Set for approximately 150°C /90°C)
- 6) IC protection function (SP pin VCC/GND short circuit detection)
- 7) Speaker protection function (Output voltage amplitude control)

Applications

Notebook computers, LCD TVs, etc.

● Absolute maximum ratings (Ta=25°C)

Parameter	Ratings	Unit
Supply voltage	+6.0	V
Power dissipation	1100 *1	mW
Storage temperature	-55~+125	°C
Operating temperature	-10~+70	°C

^{*1} Reduced by 11 mW/°C at 25°C or higher, when mounting on a 70mmX70mmX1.6mm PCB board).

●Operating Conditions (Ta=25°C)

Parameter	Ratings	Unit
Supply voltage	+3.3~+5.5	V

^{*} This IC is not designed to be radiation-resistant.

Downloaded from: http://www.datasheetcatalog.com/

● Electrical characteristics (Unless otherwise noted, VCC=3.3V,Ta=25°C,f=1kHz,R=4Ω,400Hz~30kHzBPF)

Parameter		Limits		Unit	Conditions
	Min.	Тур.	Max.	Offic	Conditions
■1CHIP					
Circuit current (ACTIVE)	-	18	30	mA	No signal
Circuit current(SUSPEND)	-	0	10	μΑ	No signal
■SP AMP			1		
Voltage gain1	8.5	11.0	13.5	dB	SE,Vin=-18dBV
Voltage gain 2	14.5	17.0	19.5	dB	BTL,Vin=-18dBV
Distortion	-	0.04	1.0	%	BTL,Vin=-18dBV
Maximum output level	1.5	4.5	-	dBV	BTL,DSTN=1%
Output noise level	-	-90	-80	dBV	SE,DIN-Audio
Cross talk	-	-85	-75	dBV	SE,DIN-Audio
Output level on mute	-	-110	-80	dBV	BTL,Vin=-18dBV
■HP AMP					1
Voltage gain	3.0	5.5	8.0	dB	SE,Vin=-18dBV,R _L =32Ω
Distortion	-	0.02	1.0	%	SE,Vin=-18dBV,R _L =32Ω
Maximum output level	-1.6	1.4	-	dBV	SE,DSTN=1% ,R _L =10kΩ
Output noise level	-	-95	-80	dBV	SE,DIN-Audio ,R _L =32Ω
Cross talk	-	-90	-80	dBV	SE,DIN-Audio ,R _L =32Ω
Output level on mute	-	-105	-80	dBV	SE,Vin=-18dBV,R _L =32Ω
■BIAS			1		
Output voltage	1.40	1.65	1.90	V	No signal
■Regulator					
Output voltage	2.7	3.0	-	V	No signal
PSRR	-	-80	-	dBV	V _{IN} =0.28Vpp,1kHz
■CONTROL PIN			•	•	
ACTV/SPND CTRL 2PIN co	ntrol pin		T		I
SUSPEND mode	VCC/3+0.8	-	VCC	V	SP/HP® SUSPEND
ACTIVE mode	0	-	0.8	V	SP/HP® ACTIVE
SP/HP CTRL 12PIN control p	in				1
SP&HP mode	VCC/3+0.8		VCC	V	SP/HP ON
HP(SP MUTE) mode	0	-	0.8	V	SP OFF(SP MUTE),HP ON
BASSBOOST CTRL 11PIN co	ontrol pin				
Bass-Boost mode	VCC/3+0.8	-	VCC	V	SP/HP gain UP
Non-Boost mode	0	_	0.8	V	SP/HP gain NORMAL

Downloaded from: http://www.datasheetcatalog.com/

Block diagram

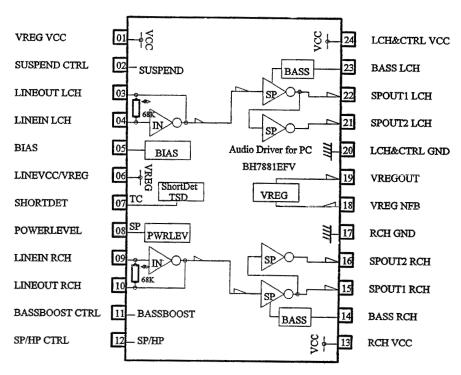


Fig.1

Control pin descriptions

1. ACTIVE/SUSPEND:2PIN

Control input	Mode	Function	
H SUSPEND		Suspended state (Except REG)	
L	ACTIVE	Active state	

When suspended, the regulator (REG) is in an active state and the SP/HP/LINE amplifier is in a suspended state. Originally, signals from input resistance and feedback resistance leaked into the speaker output even when suspended, because of the series connection of an inverting amplifier. However, since the signals are cut off on their way in this IC, signal leaks do not occur in speaker output. (Signals due to feedback resistance are output in LINE amplifier output.)

2. POWER LEVEL:8PIN

Control input	Mode	Function
Н	Limiter H	3Vf peak limiter ON (Output approx. 1.25 W)
OPEN	Limiter L	2Vf peak limiter ON(Output approx .0.70W)
L	Limiter OFF	limiter OFF

^{*}VCC=5V,RL=4ohm,VIN=-8dBV

Since a limiter uses diode characteristics, it has temperature characteristics. On the high temperature side, amplitude tends to decrease, which is a characteristic that protects the IC. Since setting in speaker mode is assumed, it is ineffective (limiter OFF) in headphone mode. Moreover, precautions must be taken when input is so great, that output becomes a square wave, since this could cause local oscillation.

3. BASSBOOST ON/OFF:11PIN

Control input	Mode	Function		
Н	ON	BASSBOOST:ON		
L	OFF	BASSBOOST:OFF		

The capacitor that constitutes BASSBOOST is eliminated, and also functions as a gain switch.

4. SP/HP:12PIN

Control input	Mode	Function
Н	SP+HP	SP:ON, HP:ON
L	HP	SP:OFF,HP:ON

By using the headphone mode in a speaker MUTE mode, it is possible to completely cut off the pop noise when switching when VCC ON or OFF, or to ACTV or SPND. For control sequence and other information, see the following pages.

^{*}Not all control pins have pull up or pull internal resistors. Therefore add pull up or pull down resistors, accordingly (PIN8 is an exception.)

Description of operations

1. LINE Amplifier

1) The voltage gain of the LINE amplifier is calculated by the following equations:

 $GAIN = 20 \times LOG(68k/R4 + 1k)) [dB]$

 $GAIN = 20 \times LOG(68k/R9 + 1k)) [dB]$

R4 and R9 are resistances connected to PIN4 and PIN9

2) In order to make it operable with mixing input, the LINE amplifier can be realized by connecting multiple resistors to PIN4 and PIN9. Since the input pin is also the feedback of an inverting differential amplifier, each individual signal is simply added.

3) To configure LPF and remove unnecessary frequency components, the LINE amplifier can be realized by connecting capacitors between PIN3 and PIN4, and between PIN9 and PIN10. The LPF cut-off frequency at that time is calculated by the following equation:

$$fc = 1/(2 \times \pi \times C \times 68k)$$
 [Hz]

2. SP Amplifier (HP Amplifier)

- 1) The voltage gain of the SP amplifier for Non-Boost is about 12 [dB] (SE: Single end).
- 2) The voltage gain of the SP amplifier for Bass-Boost is calculated by the following equations:

 $GAIN = 20 \times LOG((40k+R22-23)/10k)$ [dB] Where R22-23 is the resistance connected between PIN22 and PIN23. $GAIN = 20 \times LOG((40k+R14-15)/10k)$ [dB] Where R14-15 is the resistance connected between PIN14 and PIN15.

3) The cut-off frequency for Bass-Boost is calculated by the following equations:

 $fc = 1/(2 \times \pi \times C22-23 \times R22-23)$ [Hz]

Where RC22-23 is connected between PIN22 and PIN23.

 $fc = 1/(2 \times \pi \times C14-15 \times R14-15)$ [Hz]

Where RC14-15 is connected between PIN14 and PIN15.

4) Apply power to RCHVCC (PIN13), for MONO only.

3. Regulator

1) The REG output voltage is calculated by the following equation, and numeric values are shown below:

 $V = 1.15 [V] \times (1+R(VLEV)/R(VREF)) [V]$

(-· // [·]				
REG setting voltage	3.0	3.3	3.6	4.0	4.6	V
Supply voltage(VCC)	3.3	3.6	4.0	5.0	5.0	V
R(VLEV)	30k	30k	30k	30k	30k	Ω
R(VREF)	18k	16k	14k	12k	10k	Ω

Use 1% resistors to eliminate errors in actual output voltages.

- 2) The REG maximum output current is determined by the external Tr capability (hFE) of the IC. If more current is necessary, select one ICMAX with large hFE. Drive output current to the base is about 5 mA.
- 3) When using the regulator, connect REG output to PIN6. The LINE amplifier, BIAS, and other sections essential to tone quality, are driven by the REG voltage. Clear sound output is obtained even if a digital power supply is the VCC.
- 4) When using the regulator for an application, other than this IC, and driving the IC by VCC only, apply VCC at PIN6.
- 5) When not using the regulator, it is set to OFF mode by connecting PIN 19 to OPEN and PIN18 to OPEN. Apply VCC at PIN6
- 6) Do not set a VCC applied voltage that is smaller than the set voltage of the regulator. Since the REG output transistor operates in a saturation region, an abnormal circuit current occurs.
- 7) For the REG output transistor, Rohm transistors 2SA1900 and 2SA933 are recommended.

4. Short circuit detection

1) Overview of SP amplifier VCC/GND short circuit detection.

If the output pin of the SP amplifier is short circuited to VCC or GND, the detection function operates to suspend the output stage of the SP amplifier.

If the SP output pin is short circuited to REG output, the detection function does not operate. It is configured so that it resets automatically if the short circuit is canceled. Moreover, although a short circuit is detected from the DC voltage of the output pin, and there is a short delay distinguishing it from maximum output amplitude, malfunction may occur due to factors such as power supply voltage and load. In this case, connect "PIN7" to GND. The short circuit function is set to the OFF mode.

2) SP amplifier VCC/GND short circuit detection cautions

When the output pin of the SP amplifier is short circuited with VCC or GND, excessive current flows in the IC and stress is applied to the chip. Accordingly, if it is shorted a number of times, the IC gradually deteriorates and is finally destroyed. The short circuit detection function does not guarantee operation after numerous shorts.

3) Regulator short circuit detection

If the output pin of the regulator is short circuited to GND, the detection function operates to suspend the output stage of the regulator. If the output pin of the regulator is short circuited to VCC, an abnormal current does not occur in any circuit. After the short circuit, the regulator resets automatically, due to the pull-up resistance (for example, 2.2 k Ω) connected to PIN1, as shown in the full option example of the sample application circuit.

(Example: $3.9 \text{ k}\Omega$ is the resistance load for lowering the output impedance of the regulator when it is no load.)

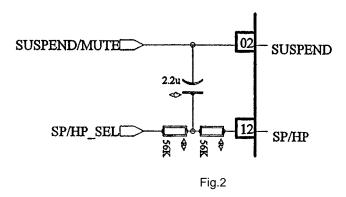
5. Pop noise

 The following table shows the sequence for eliminating the pop noise that occurs from turning the power supply ON or OFF, or turning control pins ON or OFF.

Order	VCC	ACT/SPND	SP/HP	Conditions	
1	OFF	SUSPEND	HP	Power Supply ON	
2	ON	SUSPEND	HP	Turning on in the suspend	
3	ON	ACTIVE	HP	SP MUTE~countermeasure	
4	ON	ACTIVE	SP+HP	MUTE cancellation~operation	
5	ON	ACTIVE	SP+HP	Operation	
6	ON	ACTIVE	HP	SP MUTE~counter measure	
7	ON	SUSPEND	HP	Turning off in the suspend	
8	OFF	SUSPEND	HP	Power Supply OFF	

- 2) In speaker MUTE state, pop noise does not occur even when starting or changing modes. It is recommended to use speaker MUTE (headphone) mode during conditions where pop noise can occur.
- 3) Any changes of the components values in the sample application circuit can the effect the pop noise cut-off function.

6. Bypass and bias capacitor

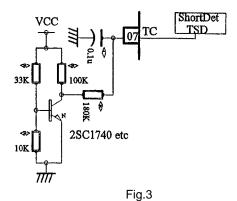

- 1) Although this IC is designed so that bypass capacitors are not needed, when bypass capacitors are in fact necessary, place them close to the VCC~GND pins.
- 2) Similarly, place a bias capacitor close to the GND pin.

7. Capacitive load drive

- 1) Do not connect a capacitive load to the SP amplifier, HP amplifier, or IC pin. There is a possibility of oscillation.
- 2) Adding RC to the HP amplifier output, as in the sample application circuit, makes the output noise, voltage, and distortion sensitive to oscillation.

8. Pop noise at start/end when switching ACTV/SPND

Pop noise can be suppressed by mode transition due to software as in "Pop noise" above, or by hardware as shown below. This is realized (in SP mode) by forcibly setting HP mode temporarily, using the CR differential circuit.



9. Power package

- 1) In order to expand the power dissipation of the package, make the GND pattern, directly below the IC, as wide as possible and solder the GND pattern to the back of the IC.
- 2) Power dissipation of the package varies greatly depending on factors such as the number of layers, area, film thickness, and material quality of the board used.

10. Other

Beween voltages of VCC=1.4~1.6 V, momentary oscillation sometimes is observed at the SPOUT pin. Nevertheless, this occurrence is not reproduced on a momentary rise or fall of VCC. When slowly raising VCC pay attention to transient voltage. In order to avoid such occurrences, a sample circuit is illustrated below:

Technical Note

Application circuit

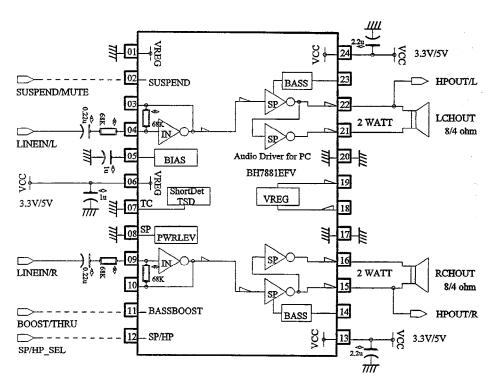


Fig.4 Minimum external components example

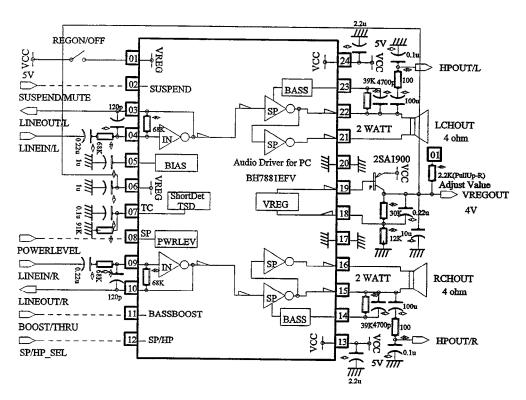


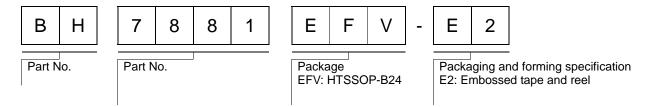
Fig.5 Maximum external components example

BH7881EFV Technical Note

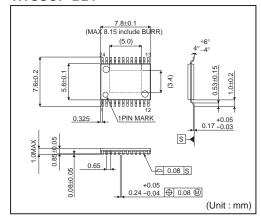
Operation Notes

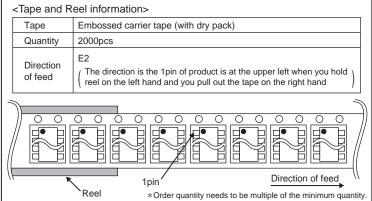
- 1. Numbers and data in entries are representative design values and are not guaranteed values of the items.
- Although ROHM is confident that the example application circuit reflects the best possible recommendations, be sure to verify circuit characteristics for your particular application. Modification of constants for other externally connected circuits may cause variations in both static and transient characteristics for external components as well as this Rohm IC. Allow for sufficient margins when determining circuit constants.
- 3. Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings, such as the applied voltage or operating temperature range (Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when using the IC at times where the absolute maximum ratings may be exceeded.


4. GND potential

Ensure a minimum GND pin potential in all operating conditions. Make sure that no pins are at a voltage below the GND at any time, regardless of whether it is a transient signal or not.


- 5. Thermal design
 - Perform thermal design, in which there are adequate margins, by taking into account the permissible dissipation (Pd) in actual states of use.
- Short circuit between terminals and erroneous mounting
 Pay attention to the assembly direction of the ICs. Wrong mounting direction or shorts between terminals, GND, or other
 components on the circuits, can damage the IC.
- 7. Operation in strong electromagnetic field
 Using the ICs in a strong electromagnetic field can cause operation malfunction.


Technical Note

Ordering part number

HTSSOP-B24

Notice

Precaution on using ROHM Products

Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JÁP	AN	USA	EU	CHINA
CLAS	SSⅢ	CI VCCIII	CLASS II b	CL ACCIII
CLAS	SSIV	CLASSⅢ	CLASSⅢ	CLASSⅢ

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Notice - GE © 2014 ROHM Co., Ltd. All rights reserved.

Precautions Regarding Application Examples and External Circuits

- 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - [c] the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
- 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

Notice - GE © 2014 ROHM Co., Ltd. All rights reserved.

General Precaution

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Notice – WE © 2014 ROHM Co., Ltd. All rights reserved.