## 10-Channel, Serial-Input Latched Display Driver

## Features

- High output voltage 80 V
- High speed $5 \mathrm{MHz} @ 5.0 \mathrm{~V}_{\mathrm{DD}}$
- Low power $\mathrm{I}_{\mathrm{BB}} \leq 0.1 \mathrm{~mA}$ (all high)
- Active pull down $100 \mu \mathrm{~A}$ min @ $25^{\circ} \mathrm{C}$
- Output source current $25 \mathrm{~mA} @ 60 \mathrm{~V} \mathrm{~V}_{\text {B }}$
- Each device drives 10 lines
- High-speed serially-shifted data input
- 5.0V CMOS-compatible inputs
- Latches on all driver outputs
- Pin-compatible replacement for UCN5810A and TL4810A, TL4810B


## Applications

- High speed dot matrix print head driver
- VFD (vacuum fluorescent display) driver


## General Description

The HV6810 is a monolithic integrated circuit designed to drive a dot matrix or segmented vacuum fluorescent display (VFD). These devices feature a serial data output to cascade additional devices for large displays.

A 10-bit data word is serially loaded into the shift register on the positive-going transition of the clock. Parallel data is transferred to the output buffers through a 10-bit D-type latch while the latch enable input is high, and is latched when the latch enable is low. When the blanking input is high, all of the outputs are low.

Outputs are structures formed by double-diffused MOS (DMOS) transistors with output voltage ratings of 80 V and 25 mA source-current capability. All inputs are compatible with CMOS levels.

## Functional Block Diagram



Logic Diagram (positive logic)

Ordering Information

| Part Number | Package Options | Packing |
| :--- | :--- | :--- |
| HV6810PJ-G | 20-Lead PLCC* | 48/Tube |
| HV6810PJ-G M910 | 20-Lead PLCC* | 1000/Reel |
| HV6810WG-G | 20-Lead SOW | 1000/Reel |

-G denotes a lead (Pb)-free / RoHS compliant package

* Obsolescence notice issued for the product in the 20-Lead PLCC package.


## Absolute Maximum Ratings ${ }^{1}$

| Parameter | Value |
| :---: | :---: |
| Logic supply voltage, $\mathrm{V}_{\mathrm{DD}}{ }^{2}$ | 7.5 V |
| Driver supply voltage, $\mathrm{V}_{\text {BB }}{ }^{2}$ | 90 V |
| Output voltage ${ }^{2}$ | 90 V |
| Input voltage ${ }^{2}$ | -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |
| Continuous total power dissipation at $25^{\circ} \mathrm{C}$ free-air temperature: ${ }^{3}$ <br> 20-Lead PLCC ${ }^{3}$ <br> 20-Lead SOW ${ }^{3}$ | 1500 mW 1500 mW |
| Operating temperature range | $-45^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$ |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. All voltages are referenced to GND.

## Notes:

1. Over operating free-air temperature
2. All voltages are referenced to $V_{s s}$
3. For operation above $25^{\circ} \mathrm{C}$ ambient derate linearly to $85^{\circ} \mathrm{C}$ at $15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

## Typical Thermal Resistance

| Package | $\boldsymbol{\theta}_{\boldsymbol{j} a}$ |
| :--- | :--- |
| 20-Lead PLCC | $66^{\circ} \mathrm{C} / \mathrm{W}$ |
| 20-Lead SOW | $66^{\circ} \mathrm{C} / \mathrm{W}$ |

## Pin Configuration



20-Lead PLCC (top view)


20-Lead SOW (top view)

## Product Marking



YY = Year Sealed
WW = Week Sealed
L = Lot Number
A = Assembler ID
C = Country of Origin* ___ = "Green" Packaging
*May be part of top marking

Package may or may not include the following marks: Si (4i)
20-Lead PLCC


Package may or may not include the following marks: Si
20-Lead SOW

Recommended Operating Conditions

| Sym | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :--- |
| $\mathrm{V}_{\mathrm{DD}}$ | Supply voltage | 4.5 | - | 5.5 | V | --- |
| $\mathrm{V}_{\mathrm{BB}}$ | High supply voltage | 20 | - | 80 | V | --- |
| $\mathrm{V}_{\mathrm{SS}}$ | Supply voltage | - | 0 | - | V | --- |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage (for $\left.\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}\right)$ | 3.5 | - | 5.3 | V | --- |
| $\mathrm{V}_{\mathrm{IL}}$ | Low-level input voltage | -0.3 | - | 0.8 | V | --- |
| $\mathrm{I}_{\mathrm{OH}}$ | Continuous high-level Q output current | 25 | - | - | mA | --- |
| $\mathrm{f}_{\mathrm{CLK}}$ | Clock frequency | - | - | 5.0 | MHz | --- |
| $\mathrm{T}_{\mathrm{A}}$ | Operating ambient temperature | -40 | - | +85 | ${ }^{\circ} \mathrm{C}$ | --- |

## DC Electrical Characteristics

$\left(V_{D D}=5.0 \mathrm{~V}, V_{B B}=60 \mathrm{~V}, V_{S S}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

| Sym | Parameter |  | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | High level output voltage | Q outputs | 57.5 | 58 | - | V | $\mathrm{I}_{\mathrm{O}}=+25 \mathrm{~mA}$ |
|  |  | Serial output | 4.0 | 4.5 | - |  | $\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=+100 \mu \mathrm{~A}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Low level output voltage | Q outputs | - | 0.15 | 1.0 | V | $\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}, \\ & \text { blanking input at } \mathrm{V}_{\mathrm{DD}} \end{aligned}$ |
|  |  | Serial output | - | 0.05 | 0.1 |  | $\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$ |
| $\mathrm{I}_{\mathrm{OL}}$ | Low level Q output current (pull-down current) |  | 60 | 80 | - | $\mu \mathrm{A}$ | $\mathrm{T}_{\mathrm{A}}=\mathrm{Max}, \mathrm{V}_{\mathrm{OL}}=+0.7 \mathrm{~V}$ |
| $\mathrm{I}_{\text {O(OFF) }}$ | Off-state output current |  | - | -1.0 | -15 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, blanking input at $\mathrm{V}_{\mathrm{DD}}$ |
| $\mathrm{I}_{\mathrm{H}}$ | High level input current |  | - |  | 1.0 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ |
| $I_{\text {D }}$ | Supply current from $\mathrm{V}_{\mathrm{DD}}$ (standby) |  | - | 10 | 50 | $\mu \mathrm{A}$ | All inputs at 0 V , one Q output high |
|  |  |  | - | 10 | 50 |  | All inputs at 0 V , all Q outputs low |
| $I_{B B}$ | Supply current from $\mathrm{V}_{\mathrm{BB}}$ |  | - | 0.05 | 0.1 | mA | All outputs low, all Q outputs open |
|  |  |  | - | 0.05 | 0.1 |  | All outputs high, all Q outputs open |

* All typical values are at $T_{A}=25^{\circ} \mathrm{C}$ except for $I_{\mathrm{OL}}$ and $I_{\mathrm{O}(\mathrm{OFF})}$.


## AC Electrical Characteristics

(Timing requirements over recommended operating conditions)

| Sym | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :--- | :---: | :---: | :---: | :---: | :--- |
| $\mathrm{t}_{\mathrm{W}(\mathrm{CKH})}$ | Pulse duration, clock high | 100 | - | - | ns | --- |
| $\mathrm{t}_{\mathrm{W}(\mathrm{LEH})}$ | Pulse duration, latch enable high | 100 | - | - | ns | --- |
| $\mathrm{t}_{\mathrm{SU}(\mathrm{D})}$ | Setup time, data before clock | 50 | - | - | ns | --- |
| $\mathrm{t}_{\mathrm{H}(\mathrm{D})}$ | Hold time, data after clock | 50 | - | - | ns | --- |
| $\mathrm{t}_{\mathrm{CKH}-\mathrm{LEH}}$ | Delay time, clock to latch enable high | 50 | - | - | ns | --- |
| $\mathrm{t}_{\mathrm{PD}}{ }^{*}$ | Propagation delay time, latch enable to output | - | 300 | - | ns | --- |

* Switching characteristics, $V_{B B}=60 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$


## Power-up sequence should be the following:

1. Connect ground $\mathrm{V}_{\mathrm{ss}}$
2. Apply $V_{D D}$
3. Set all inputs (Data, CLK, Enable, etc.) to a known state
4. Apply $V_{B B}$

The $\mathrm{V}_{\mathrm{BB}}$ should not drop below $\mathrm{V}_{\mathrm{DD}}$ or float during operation.
Power-down sequence should be the reverse of the above.

## Switching Waveforms



## Timing Diagram



## Input and Output Equivalent Circuits



Input Equivalent Circuit


Logic Data Output


High Voltage Output

Function Table

| Serial Data Input | Clock Input | Shift Register Contents <br> $I_{1} I_{2} I_{3} \ldots I_{\mathrm{N}-1} I_{N}$ | Serial Data Output | LE Strobe Input | Latch Contents $I_{1} I_{2} I_{3} \ldots I_{N-1} I_{N}$ | Blanking Input | Output Contents $I_{1} I_{2} I_{3} \ldots I_{N-1} I_{N}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | $\uparrow$ | $H R_{1} R_{2} \ldots \mathrm{R}_{\mathrm{N}-2} \mathrm{R}_{\mathrm{N}-1}$ | $\mathrm{R}_{\mathrm{N}-1}$ | --- | --- | --- | --- |
| L | $\uparrow$ | $L R_{1} R_{2} \ldots \mathrm{R}_{\mathrm{N}-2} \mathrm{R}_{\mathrm{N}-1}$ | $\mathrm{R}_{\mathrm{N}-1}$ |  |  |  |  |
| X | 7 | $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3} \ldots \mathrm{R}_{\mathrm{N}-1} \mathrm{R}_{\mathrm{N}}$ | $\mathrm{R}_{\mathrm{N}}$ |  |  |  |  |
| --- | --- | $\mathrm{X} \times \mathrm{X} \ldots \mathrm{X}$ X | X | L | $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3} \ldots \mathrm{R}_{\mathrm{N}-1} \mathrm{R}_{\mathrm{N}}$ |  |  |
|  |  | $P_{1} P_{2} P_{3} \ldots P_{N-1} P_{N}$ | $\mathrm{P}_{\mathrm{N}}$ | H | $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \ldots \mathrm{P}_{\mathrm{N}-1} \mathrm{P}_{\mathrm{N}}$ | L | $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \ldots \mathrm{P}_{\mathrm{N}-1} \mathrm{P}_{\mathrm{N}}$ |
|  |  | --- | --- | --- | $\mathrm{X} \times \mathrm{X} \ldots \mathrm{X} \times$ | H | LLL ... L L |

## Notes:

$L=$ Low logic level, $H=$ High logic level, $X=$ Don't care, $P=$ Present state, $R=$ Previous state
$\mathcal{F}=$ Low to high transition
= High to low transition

## Pin Description

## 20-Lead PLCC (PJ)

| Pin \# | Function | Description |
| :---: | :---: | :--- |
| 1 | Q8 |  |
| 2 | Q7 |  |
| 3 | Q6 |  |
| 4 | CLOCK | Input data is shifted into the data shift register on the positive edge of the clock. |
| 5 | N/C | No connection. |
| 6 | VSS | Usually V $_{\text {ss }}=0$ V, ground connection. |
| 7 | VDD | Low voltage power supply. |
| 8 | LE (STROBE) | When LE is high, the shift register output is latched to Q output. When LE stays high, <br> the latches are in transparent mode. |
| 9 | Q5 |  |
| 10 | Q4 |  |
| 11 | Q3 | High voltage output. |
| 12 | Q2 |  |
| 13 | Q1 |  |
| 14 | BLANKING | When blanking is high, all Q's are forced to a low state, regardless of data in each <br> channel. |
| 15 | DATA IN | Input data for the input shift register. |
| 16 | N/C | No connection. |
| 17 | VBB | High voltage power supply. |
| 18 | SERIAL DATA OUT | Output data from the shift register. |
| 19 | Q10 | High voltage output. |
| 20 | Q9 |  |

## Pin Description

## 20-Lead SOW (WG)

| Pin \# | Function | Description |
| :---: | :---: | :---: |
| 1 | Q8 | High voltage output. |
| 2 | Q7 |  |
| 3 | Q6 |  |
| 4 | CLOCK | Input data are shifted into the data shift register on the positive edge of the clock. |
| 5 | VSS | Usually $\mathrm{V}_{\text {ss }}=0 \mathrm{~V}$, ground connection. |
| 6 | N/C | No connection. |
| 7 | VDD | Low voltage power supply. |
| 8 | LE (STROBE) | When LE is high, the shift register output is latched to Q output. When LE stays high, the latches are in transparent mode. |
| 9 | Q5 | High voltage output. |
| 10 | Q4 |  |
| 11 | Q3 |  |
| 12 | Q2 |  |
| 13 | Q1 |  |
| 14 | BLANKING | When blanking is high, all Q's are forced to a low state, regardless of data in each channel. |
| 15 | DATA IN | Input data for the input shift register. |
| 16 | VBB | High voltage power supply. |
| 17 | SERIAL DATA OUT | Output data from the shift register. |
| 18 | N/C | No connection. |
| 19 | Q10 | High voltage output. |
| 20 | Q9 |  |

## 20-Lead PLCC Package Outline (PJ)

## .353x.353in body, .180in height (max), .050in pitch



Horizontal Side View


Vertical Side View


View B

## Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
2. Actual shape of this feature may vary.

| Symbol |  | A | A1 | A2 | b | b1 | D | D1 | E | E1 | e | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dimension (inches) | MIN | . 165 | . 090 | . 062 | . 013 | . 026 | . 385 | . 350 | . 385 | . 350 | $\begin{aligned} & .050 \\ & \text { BSC } \end{aligned}$ | . 025 |
|  | NOM | . 172 | . 105 | - | - | - | . 390 | . 353 | . 390 | . 353 |  | . 035 |
|  | MAX | . 180 | . 120 | . 083 | . 021 | . 032 | . 395 | . 356 | . 395 | . 356 |  | . 045 |

JEDEC Registration MS-018, Variation AA, Issue A, June, 1993.
Drawings not to scale.
Supertex Doc. \#: DSPD-20PLCCPJ, Version C031111

## 20-Lead SOW (Wide Body) Package Outline (WG)

## $12.80 \times 7.50 \mathrm{~mm}$ body, 2.65 mm height (max), 1.27 mm pitch



## Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

| Symbol |  | A | A1 | A2 | b | D | E | E1 | e | h | L | L1 | L2 | $\theta$ | 01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Dimension } \\ & (\mathrm{mm}) \end{aligned}$ | MIN | 2.15* | 0.10 | 2.05 | 0.31 | 12.60* | 9.97* | 7.40* | $\begin{aligned} & 1.27 \\ & \text { BSC } \end{aligned}$ | 0.25 | 0.40 | $\begin{aligned} & 1.40 \\ & \text { REF } \end{aligned}$ | $\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$ | $0^{\circ}$ | $5^{\circ}$ |
|  | NOM | - | - | - | - | 12.80 | 10.30 | 7.50 |  | - | - |  |  | - | - |
|  | MAX | 2.65 | 0.30 | 2.55* | 0.51 | 13.00* | 10.63* | 7.60* |  | 0.75 | 1.27 |  |  | $8^{\circ}$ | $15^{\circ}$ |

JEDEC Registration MS-013, Variation AC, Issue E, Sep. 2005.

* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.
Supertex Doc. \#: DSPD-20SOWWG, Version D041309.
(The package drawings in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]:    Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

