
Radial Leaded > 600R Series

ROHS MO HF* 600R Series

Expertise Applied Answers Delivered

ittelfuse

	Agency A	pprovals				
AGENCY AGENCY FILE NUMBER						
	c FN [°] us	E183209				
	Д тüv	R50120008				

Description

• The 600R Series is designed to protect against power fault events typically found in telecom applications. This series is designed to be used in applications that need to meet the requirements of GR-1089-CORE and UL60950/ EN60950/IEC60950. These resettable devices also help to meet the requirements of ITU K.20, K.21 and K.44.

Features

- 0.15 0.16A hold current range, 60VDC operating voltage
- Binned and sorted narrow resistance ranges available
- RoHS compliant, Lead-Free and Halogen-Free*
- 600VAC interrupt rating
- Fast time-to-trip

Applications

Secondary overcurrent protection for:

- Central Office Equipment (CO)
- Customer Premises Equipment (CE)
- Alarm systems
- Set Top Boxes (STB)
- Voice over IP (VOIP)
- Subscriber Line Interface Circuit (SLIC)

Electrical Characteristics

Part Number	ا _{hold}	ا _{trip}	V _{max}	l _{max}	P _d		ımTime Trip	F	Resistanc	e	Age Appr	ncy ovals
Part Number	(A)	(A)	$V_{int}^{}/V_{op}^{}$	(A)	typ. (W)	Current (A)	Time (Sec.)	R _{min} (Ω)	R _{typ} (Ω)	R _{1max} (Ω)	c 🂫 us	Д тüv
600R150	0.15	0.30	600/60	3	1.00	1	4.0	6	10	17	X	Х
600R150-RA	0.15	0.30	600/60	3	1.00	1	4.0	7	10	20	X	Х
600R150-RB	0.15	0.30	600/60	3	1.00	1	3.0	9	12	22	X	Х
600R160	0.16	0.32	600/60	3	1.00	1	10	4	10	18	X	Х
600R160-RA	0.16	0.32	600/60	3	1.00	1	9.5	4	7	16	Х	Х
600R160-R1	0.16	0.32	600/60	3	1.00	1	9.0	4	8	17	Х	Х

I hold = Hold current: maximum current device will pass without tripping in 23°C still air.

= Trip current: minimum current at which the device will trip in 23°C still air.

 V_{int} = Maximum voltage the device can withstand without damage at rated current (I max)

V_{on}= The device regular operation voltage

I ____ = Maximum fault current device can withstand without damage at rated voltage (V_____)

 P_{d} = Power dissipated from device when in the tripped state at 23°C still air.

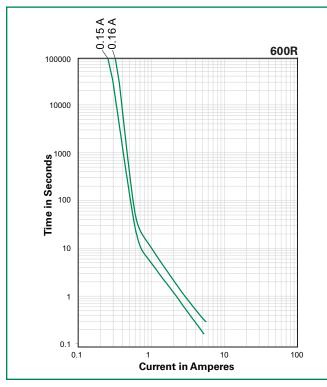
R trop = Typical resistance of device in initial (un-soldered) state.

R _____ = Maximum resistance of device at 20°C measured one hour after tripping.

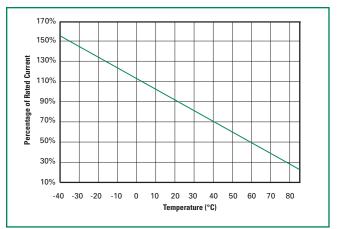
Caution: Operation beyond the specified rating may result in damage and possible arcing and flame.

* Effective February 11, 2010 onward, all 600R PTC products will be manufactured Halogen Free (HF). Existing Non-Halogen Free 600R PTC products may continue to be sold, until supplies are depleted. This change will have no effect on 600R product specifications or performance.

R = Minimum resistance of device in initial (un-soldered) state.


Radial Leaded > 600R Series

Temperature Rerating


	Ambient Operation Temperature										
	-40°C	-20°C	0°C	23°C	40°C	60°C	85°C				
Part Number	Hold Current (A)										
600R150	0.26	0.23	0.19	0.15	0.124	0.062	0.03				
600R160	0.27	0.24	0.20	0.16	0.13	0.07	0.05				

Average Time Current Curves

The average time current curves and Temperature Rerating curve performance is affected by a number or variables, and these curves provided as guidance only. Customer must verify the performance in their application.

Temperature Rerating Curve

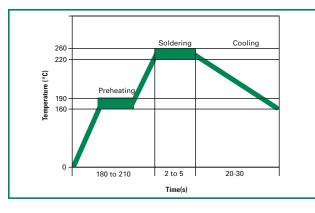
Agency Specification Selection Guide For Telecom and Networking Applications

Part Number	Lightning	Power Cross
600R150 600R160	TIA-968-A – 1.5kV 10/160μs 800V 10/560μs Telcordia GR 1089 – 1.0kV 10/1000μs 2.5kV 2/10μs	UL60950, 3rd Ed – 600Vac, 40A Telcordia GR – 1089 – 600Vac, 60A

Devices should be independently evaluated and tested for use in any specific application

Radial Leaded > 600R Series

Protection Application Guide


Region/Specification	Application	Device Selection
North America Telcordia GR-1089	*Access network equipment Remote terminal Repeaters WAN equipment Cross -connect	600R150 600R160
North America TIA-968-A, UL60950	Customer and IT equipment Analog modems ADSL, XDSL modems Phone sets, PBX systems Internet appliances POS terminals	600R150 600R160
North America Telcordia GR-1089	Central Office POTS/ISDN linecards T1/E1/J1 linecards ADSL/VDSL splitters CSU/DSU	600R150 600R160
North America Telcordia GR-1089 South America/Asia/Europe ITU K.20 and K.21	*Intrabuilding communication systems – LAN, VOIP cards Local loop handsets	600R150 600R160

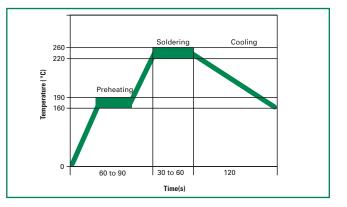
*Resistance binned parts are recommended

Soldering Parameters - Wave Soldering

Condition	Wave Soldering
PeakTemp/ DurationTime	260°C ≦ 5 Sec
≧ 220°C	2 Sec ~ 20 Sec
Preheat 140°C~ 180°C	180 Sec ~ 210 Sec
Storage Condition	0°C~35°C, ≦ 70%RH

- \bullet Recommended soldering methods: heat element oven or $N_{\rm 2}$ environment for lead-free
- Devices are designed to be wave soldered to the bottom side of the board.
- Devices can be cleaned using standard industry methods and solvents.
- This profile can be used for lead-free device
- **Note:** If soldering temperatures exceed the recommended profile, devices may not meet the performance requirements.

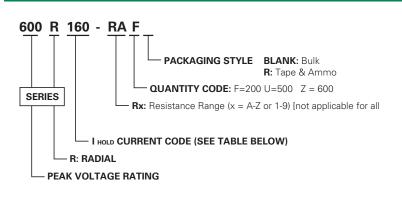
Radial Leaded > 600R Series


Soldering Parameters - Solder Reflow

Condition	Reflow			
PeakTemp/ DurationTime	260°C ≧ 5 Sec			
≧ 220°C	30 Sec ~ 60 Sec			
Preheat 160°C~ 190°C	60 Sec ~ 90 Sec			
Storage Condition	0°C~35°C, ≦ 70%RH			

- Recommended reflow methods: IR, vapor phase oven, hot air oven, N₂ environment for lead-free.
- Devices are not designed to be wave soldered to the bottom side of the board.
- Devices can be cleaned using standard industry methods and solvents.
- **Note:** If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.

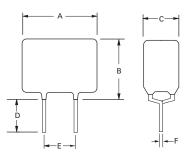
Physical Specifications


Lead Material	Tin-plated Copper
Soldering Characteristics	Solderability per MIL–STD–202, Method 208E
Insulating Material	Cured, flame retardant epoxy polymer meets UL94V-0 requirements.
Device Labeling	Marked with 'LF', voltage, current rating, and date code.

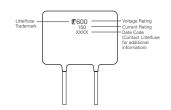
Environmental Specifications

Operating/Storage Temperature	-40°C to +85°C
Maximum Device Surface Temperature in Tripped State	125°C
Passive Aging	85°C/85°C, 1000 hours
Humidity Aging	+85°C, 85% R.H.,1000 hours
Thermal Shock	MIL–STD–202F, Method 107G +125°C to -55°C 10 times
Solvent Resistance	MIL-STD-202, Method 215F

Part Ordering Number System



Radial Leaded > 600R Series


Dimensions

Littelfuse

Expertise Applied | Answers Delivered

Part Marking System

	A		В	1	C	;	D)	E		Physica	al Chara	octeristics
Part Number	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Lead (dia)	Material
	Max.	Max.	Max.	Max.	Max.	Max.	Min.	Min.	Тур.	Тур.	Inches	mm	watena
Device dimensions through February 10, 2010*													
600R150	0.53	13.5	0.50	12.6	0.24	6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R150-RA	0.53	13.5	0.50	12.6	0.24	6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R150-RB	0.53	13.5	0.50	12.6	0.24	6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R160	0.63	16	0.50	12.6	0.24	6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R160-RA	0.63	16	0.50	12.6	0.24	6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R160-R1	0.63	16	0.50	12.6	0.24	6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
Device dimensi	ons after	February	/ 11, 2010	*									
600R150	0.35	9	0.49	12.5	0.18	4.6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R150-RA	0.35	9	0.49	12.5	0.18	4.6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R150-RB	0.35	9	0.49	12.5	0.18	4.6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R160	0.63	16	0.50	12.6	0.24	6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R160-RA	0.63	16	0.50	12.6	0.24	6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu
600R160-R1	0.63	16	0.50	12.6	0.24	6	0.19	4.7	0.20	5.1	0.026	0.65	Sn/Cu

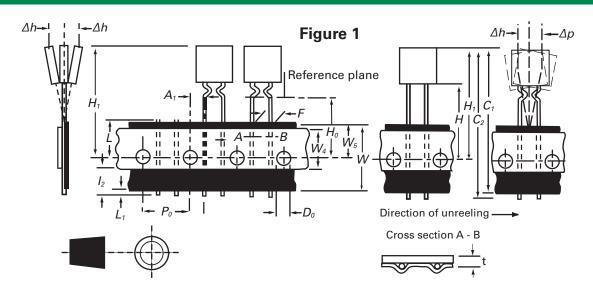
* Littelfuse will be changing the form dimensions of 600R series devices. Effective Febraury 11, 2010, all 600R series devices will be manufactured using the smaller dimensions listed. This change affects dimensions only, and will have no effect on electrical specification, quality or performance.

Packaging

Part Number	Ordering Number	l _{hold} (A)	l _{hold} Code	Packaging Option	Quantity	Quantity & Packaging Codes
600R150	600R150F	0.15	150	Bulk	200	F
0006150	600R150ZR	0.15	150	Tape and Ammo	600	ZR
600R150-RA	600R150-RAF	0.15	150	Bulk	200	F
600h 150-hA	600R150-RAZR	0.15	150	Tape and Ammo	600	ZR
	600R150-RBF	0.15	150	Bulk	200	F
600R150-RB	600R150-RBZR	0.15		Tape and Ammo	600	ZR
600B160	600R160F	0.16	160	Bulk	200	F
0006100	600R160UR	0.16	160	Tape and Ammo	500	UR
C000100 DA	600R160-RAF	0.10	100	Bulk	200	F
600R160-RA	600R160-RAUR	0.16	160	Tape and Ammo	500	UR
C000100 D1	600R160-R1F	0.10	100	Bulk	200	F
600R160-R1	600R160-R1UR	0.16	160	Tape and Ammo	500	UR

POLYFUSE[®] Resettable PTCs

Radial Leaded > 600R Series



Tape and Ammo Specifications

evices taped using EIA468-B/IE286-2 standards. See table below and Figure 1 for details.									
P tersector			Dimen	sions					
Dimension	EIA Mark	IEC Mark	Dim. (mm)	Tol. (mm)					
Carrier tape width	w	w	18	-0.5 / +1.0					
Hold down tape width:	W ₄	w _o	11	min.					
Top distance between tape edges	W ₆	W ₂	3	max.					
Sprocket hole position	W ₅	W ₁	9	-0.5/+0.75					
Sprocket hole diameter*	D _o	D ₀	4	-0.32 / +0.2					
Abscissa to plane(straight lead)	н	н	18.5	-/+ 3.0					
Abscissa to plane(kinked lead)	H _o	H _o	16	-/+ 0.5					
Abscissa to top	H ₁	H ₁	32.2	max.					
Overall width w/o lead protrusion	C ₁		42.5	max.					
Overall width w/ lead protrusion	C ₂		43.2	max.					
Lead protrusion	L,	I ₁	1.0	max.					
Protrusion of cut out	L	L	11	max.					
Protrusion beyond hold-down tape	I ₂	I ₂	Not specified						
Sprocket hole pitch: 600R150 & 600R160	Po	P ₀	25.4	-/+ 0.5					
Device pitch: 600R150 & 600R160			25.4						
Pitch tolerance			20 consecutive.	-/+ 1					
Tape thickness	t	t	0.9	max.					
Tape thickness with splice	t,		2.0	max.					
Splice sprocket hole alignment			0	-/+ 0.3					
Body lateral deviation	Δh	Δh	0	-/+ 1.0					
Body tape plane deviation	Δр	Δр	0	-/+ 1.3					
Ordinate to adjacent component lead*	P ₁	P ₁	3.81	-/+ 0.7					
Lead spacing	F	F	5.08	-/+ 0.8					

*Differs from EIA Specification

Tape and Ammo Diagram

