Ratings and Safety Standards

Items	Specifications		
Rating (max.): Power switch	AC Switch: 1A/16A 250V~ DC Switch: 20mA 12V DC		
Rating (max.): Encoder	O.1A 12V DC		
Contact resistance (Encoder) (Initial / After operating life)	1Ω max.		
Operating life (Load : as ratings)	Push-on switch		AC Switch: 10,000 cycles
:---			
DC Switch: 10,000 cycles			

Product Line

| Type | Circuit
 arrangement | Travel (mm) | Operating force
 (N) | Number
 of detent | Rotational
 torque | Mounting
 method | Minimum order unit (pcs.) | Product No. | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rotary | - | Push-on switch: 1.85 mm
 Encoder: 360° rotation | Push-on switch:
 $4 \pm 1 \mathrm{~N}$ | 12 | Encoder:
 $2.65 \pm 0.8 \mathrm{~N} \cdot \mathrm{~cm}$ | Snap-in | 336 | 336 | SDDE1C0101 |

Packing Specifications
Tray

Number of packages (pcs.)		Export package measurements (mm)
1 case /Japan	1 case /export packing	
336	336	$411 \times 311 \times 217$

Dimensions
Unit:mm

Output Wave

Type			Rocker	Slide					
Series			SDDJF1A	SDKP	SDKZ	SDDE			
Photo									
Rating			$\begin{aligned} & 8 A / 128 A \text { 250V~ } \\ & 10 \text { (6) / 250~ } \end{aligned}$	5RA 250V AC	$\begin{gathered} \text { PS: } 16 \text { (6) A } 250 \mathrm{~V} \text { AC } \\ 14 \text { (6) A } 250 \mathrm{~V} \text { AC } \end{gathered}$	AC Switch：1A／16A 250V～ DC Switch： 20 mA 12 V DC			
			DC：0．1A 12V DC		Encoders：0．1A 12V DC				
Operating life				10，000cycles	100cycles	10，000cycles（Power）	AC Switch：10，000 cycles DC Switch：10，000 cycles		
			30，000cycles（Encoder）						
			10A 250V AC	Without load	16A 250V AC（Power） 0．1A 12V DC（Encoder）	Encoder 30，000 cycles			
Travel（mm）			4.6	6	Endless	Push Switches： 1.85 mm Encoders： 360°（360 Rotation）			
Features			－	－	With Encoders circuit	AC Switch，DC Switch， With Encoder			
Operating temperature range			$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Automotive use			\bigcirc	－	－	－			
Life cycle（availability）			53	$5 \sqrt{2}$	53	x^{2}			
Electrical performance	Contact resistance		$100 \mathrm{~m} \Omega$ max．		$100 \mathrm{~m} \Omega \mathrm{max}$ ．（Power）	AC Switch： $100 \mathrm{~m} \mathrm{\Omega}$ max． DC Switch： $500 \mathrm{~m} \Omega$ max． Encoder： 1Ω max．			
			1Ω max．（Encoder）						
	Insulation resistance				500M min ．500V DC		$500 \mathrm{M} \min _{\text {(Power) }}^{500 V} \text { DC }$	AC Switch：100Mn min．500V DC DC Switch：100M2 min．100V DC Encoder：100M Ω min． 100 V DC	
			100M Ω min．100V DC （Encoder）						
	Voltage proof		2，000V AC for 1minute		2，000V AC for 1minute （Power）	AC Switch：2，000V AC for 1 minute DC Switch 100V AC for 1 minute			
			100 AC （Encoder） 1 minute	Encoder：100V AC for 1 minute					
Mechanical performance	Terminal strength				50 N for 1minute	1ON for 1minute	20N（Power）	AC Switch： 5 N for 1 minute DC Switch： 5 N for 30 s Encoder： 5 N for 1 minute	
			5N（Encoder）						
	Actuator strength	Operating direction	25N	50 N	Encoder：100V	100N			
		$\begin{array}{\|l\|} \hline \text { Perpendicular } \\ \text { direction } \end{array}$	25N	50 N	30 N	$\begin{gathered} 30 \mathrm{~N} \\ \text { (Retract direction) } \end{gathered}$			
Environmental performance	Cold		－200\％96h		－40 ${ }^{\circ} \mathrm{C} 240 \mathrm{~h}$				
	Dry heat		$85^{\circ} \mathrm{C} 96 \mathrm{~h}$		$85^{\circ} \mathrm{C} 240 \mathrm{~h}$				
	Damp heat		400， 90 to 95\％RH 96h		$40^{\circ} \mathrm{C}, 90$ to 95\％RH 240h				
Page			170	171	172	175			

Power Switches Soldering Conditions 176
Power Switches Cautions 176
Power Switches Safety Standard 176

Note

O Indicates applicability to some products in the series．

Reference for Hand Soldering

Series	Soldering temperature	Soldering time
SDDJE, SDDJF, SDKP, SDDJF1A, SDKZ, SDDE	$350 \pm 10^{\circ} \mathrm{C}$	$3+1 / 0 \mathrm{~s}$
SDKR	$300 \pm 10^{\circ} \mathrm{C}$	$3 \pm 0.5 \mathrm{~s}$

Reference for Dip Soldering
(For PC board terminal types and SDDJF right-angle terminal types)

Series	Dip soldering	
	Soldering temperature	Duration of immersion
SDKR, SDDJE, SDDJF, SDKP, SDKZ, SDDE	$260 \pm 5^{\circ} \mathrm{C}$	$10 \pm 1 \mathrm{~s}$

Power Switches Cautions

1. The primary power supply switching is subject to the safety regulations, and the provisions differ by each destination. Consult with us for non-standard use cases.
2. An unstable contact may occur if the switch current is lower than 0.5 A . For this case, consult with us.
3. These power switches were produced for alternating current. For direct current, consult with us.
4. Appling load to terminals during soldering under certain conditions may cause deformation and electrical property degradation.
5. Avoid use of water-soluble soldering flux, since it may corrode the switches.
6. When soldering twice, wait until the first soldered portion cools to normal temperature. Continuous heating will deform the external portions, loosen or dislodge terminals, or may deteriorate their electrical characteristics.
7. Before soldering switches with locking mechanism, release the locks. If they are soldered without releasing the locks, the soldering heat may deform the locking mechanism.
8. Be sure to release the locks before removing the knobs. Otherwise, the locking mechanism may be broken.
9. Be sure to use the switch with forced travel positioned as close to the total travel as possible.
10. Tighten the mounting screws by applying the specified torque. Tightening with a larger torque than the specified will result in malfunction or breakage of screws.
11. Corrosive gas if generated by peripheral parts of a set, malfunction such as imperfect contact may occur. Thorough investigation shall be required beforehand.
12. Storage

Store the products as delivered at normal temperature and humidity, out of direct sunlight and away from corrosive gases. Use them as soon as possible and no later than six months after delivery. Once the seal is broken, use them as soon as possible.

Power Switches Safety Standards

1. Safety Standards Outline

Safety standards are established by a country or an organization representing it to protect general users from electrical shock and fire hazards. It establishes standards for electrical devices and components. For electrical equipment manufacturers, utilizing switches that have been safety-approved ensures the safety of the switch. The use of a safety-approved switch also simplifies at least one part of the process of obtaining certification by safety testing.

2. Major Safety Standards

(1) Electrical Appliance and Material Safety Law

The conventional [Electrical Appliance and Material Control Law] has changed to [Electrical Appliance and Material Safety Law] and has been enforced since April 1, 2001. Electrical appliances are categorized into special electric appliances and parts (formerly Class A) and Electrical appliances other than the special electric appliances (formerly Class B). Special electric appliances are required to receive goodness of fit test at a certified test agency and to store the certificate. Also, penal provisions have been reinforced.
(2) UL (Underwriters Laboratories Inc.) 島

Underwriters Laboratories Inc. (UL) is the American safety approving organization. Its purpose is to ensure consumer safety and protect them from fire hazards. State law requires that equipment to be exported to the United States utilize UL approved power switches or power switches meeting UL standards and capable of passing UL tests.

