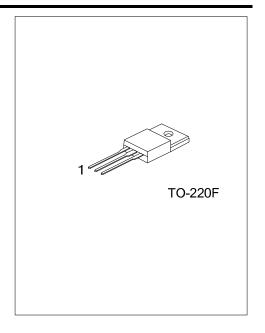
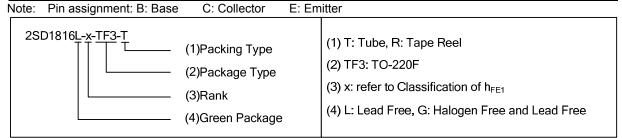


UTC UNISONIC TECHNOLOGIES CO., LTD

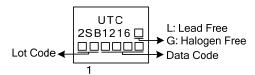

2SB1216

NPN PLANAR TRANSISTOR

HIGH CURRENT SWITCHIG **APPLICATIONS**


FEATURES

- * Low collector-to-emitter saturation voltage
- * Good linearity of hFE
- * Small and slim package facilitating compactness of sets.
- * High f_T
- * Fast switching speed
- * Complement the 2SD1816



ORDERING INFORMATION

Ordering	Dookogo	Pin Assignment			Dooking		
Lead Free	Halogen Free	Package	1	2	3	Packing	
2SB1216L-x-TF3-T	2SB1216G-x-TF3-T	TO-220F	В	С	Е	Tube	

MARKING

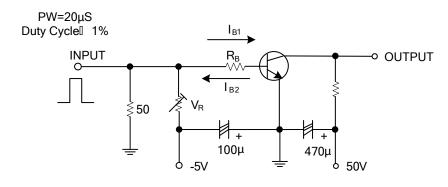
www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Collector-Base Voltage		V_{CBO}	-120	V
Collector-Emitter Voltage		V_{CEO}	-100	V
Emitter-Base Voltage		V_{EBO}	-6	V
Collector Current	DC	- I _C	-4	Α
	PULSE(Note 1)		-8	Α
Collector Power Dissipation		P_D	2	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-40 ~ +150	°C

Note: 1.Duty=1/2, Pw=20ms

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)


PARAMETER	SYMBOL	SYMBOL TEST CONDITIONS		TYP	MAX	UNIT
Collector Base Breakdown Voltage	BV_CBO	$I_{C} = 10 \mu A, I_{E} = 0$	-120			٧
Collector Emitter Breakdown Voltage	BV_CEO	I _C =1mA, R _B =∞	-100			٧
Emitter Base Breakdown Voltage	BV_{EBO}	$I_E = 10 \mu A, I_C = 0$	-6			V
Base-Emitter Saturation Voltage	$V_{BE(SAT)}$	$I_C = 2A$, $I_B = 0.2A$		-0.9	-1.2	٧
Collector-Emitter Saturation Voltage	$V_{CE(SAT)}$	$I_C = 2A$, $I_B = 0.2A$		-200	-500	mV
Collector Cut-Off Current	I _{CBO}	$V_{CB} = 100 \text{ V}, I_{E} = 0$			-1	μΑ
Emitter Cut-Off Current	I _{EBO}	$V_{EB} = 4V$, $I_C=0$			-1	μΑ
DC Current Transfer Ratio	h _{FE1}	$V_{CE} = 5V, I_{C} = 0.5A$	70		400	
	h _{FE2}	V_{CE} =5V, I_C = 3A	40			
Transition Frequency	f_{T}	$V_{CE} = 10V, I_{C} = 0.5A$		130		MHz
Output Capacitance	C_ob	$V_{CB} = 10V$, $I_E = 0A$, $f = 1MHz$		65		pF
Turn-on Time	ton	See test circuit		100		ns
Storage Time	t _{stg}	See test circuit		800		ns
Fall Time	t _F	See test circuit		50		ns

CLASSIFICATION of h_{FE1}

RANK	Q	R	S	Т
RANGE	70 -140	100 - 200	140 - 280	200 - 400

^{2.} Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ TEST CIRCUIT

 $I_{C}\text{=}10,\ I_{B1}\text{=}-10,\ I_{B2}\text{=}2A$ Unit (resistance: Ω , capacitance: F)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.