

TSM500P02DCQ

20V Dual P-Channel MOSFET

TDFN2x2

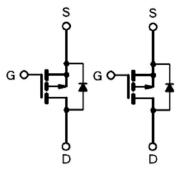
Pin Definition:

- 1. Source 1 6. Drain 1 2. Gate 1
 - 5. Gate 2
- 3. Drain 2 4. Source 2

Key Parameter Performance

Parameter		Value	Unit
V_{DS}		-20	V
R _{DS(on)} (max)	$V_{GS} = -4.5V$	50	
	$V_{GS} = -2.5V$	65	m
	$V_{GS} = -1.8V$	85	
Q_g		9.6	nC

Features


- Halogen-free
- Suited for 1.8V drive applications
- Low profile package

Ordering Information

Part No.	Package	Packing
TSM500P02DCQ RFG	TDFN2x2	3kpcs / 7+Reel

Note: %+denotes for Halogen- and Antimony-free as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds

Block Diagram

Dual P-Channel MOSFET

Absolute Maximum Ratings (T_C = 25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V_{DS}	-20	V
Gate-Source Voltage	V_{GS}	±10	V
Continuous Drain Current	I _D	-4.7	А
Pulsed Drain Current (Note 1)	I _{DM}	-18.8	А
Maximum Power Dissipation @ T _C = 25°C	P _D	1	W
Operating Junction Temperature	TJ	+150	°C
Operating Junction and Storage Temperature Range	T _J , T _{STG}	- 55 to +150	°C

Thermal Performance

Parameter	Symbol	Limit	Unit
Thermal Resistance Junction to Ambient	R JA	80	°C/W

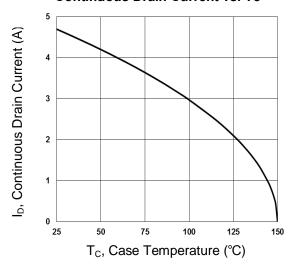
TSM500P02DCQ

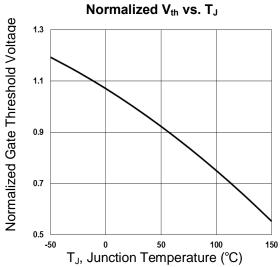
Electrical Specifications (T_C = 25°C unless otherwise noted)

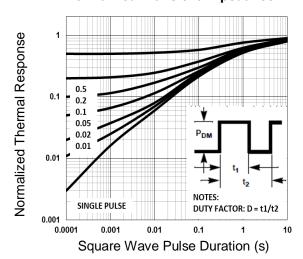
Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = -250\mu A$	BV _{DSS}	-20			V
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	$V_{GS(TH)}$	-0.3	-0.6	-0.8	V
Gate-Source Leakage Current	$V_{GS} = \pm 10V, V_{DS} = 0V$	I _{GSS}			±100	nA
Drain-Source Leakage Current	V _{DS} = -20V, V _{GS} = 0V	I _{DSS}			-1	μA
	$V_{GS} = -4.5V$, $I_{D} = -3A$			42	50	m
Drain-Source On-State Resistance	$V_{GS} = -2.5V, I_{D} = -2A$	R _{DS(on)}		57	65	
	$V_{GS} = -1.8V, I_{D} = -1A$		-	75	85	
Forward Transconductance (Note 2)	$V_{DS} = -10V, I_{D} = -3A$	g fs		7		S
Dynamic						
Total Gate Charge (Note 2,3)		Qg		9.6	13	
Gate-Source Charge (Note 2,3)	$V_{DS} = -10V, I_{D} = -3A,$	Q _{gs}		1.6	2	nC
Gate-Drain Charge (Note 2,3)	$V_{GS} = -4.5V$	Q_{gd}		2	4	
Input Capacitance		C _{iss}		850	1230	
Output Capacitance	$V_{DS} = -10V$, $V_{GS} = 0V$, f = 1MHz	C _{oss}		70	100	pF
Reverse Transfer Capacitance		C _{rss}		55	80	
Switching						
Turn-On Delay Time (Note 2,3)		t _{d(on)}		6	11	
Turn-On Rise Time (Note 2,3)	$V_{DD} = -10V, I_{D} = -1A,$	t _r		21.6	41	
Turn-Off Delay Time (Note 2,3)	$V_{GS} = -4.5V, R_G = 25$	t _{d(off)}		51	97	ns
Turn-Off Fall Time (Note 2,3)		t _f		13.8	26	
Drain-Source Diode Characteristic	s and Maximum Ratings					
Continuous Source Current	$V_G = V_D = 0V$, Force Current	Is			-4.7	Α
Pulsed Source Current		I _{SM}			-18.8	Α
Diode Forward Voltage	$V_{GS} = 0V, I_{S} = -1A,$ $T_{J} = 25^{\circ}C$	V_{SD}			-1	V

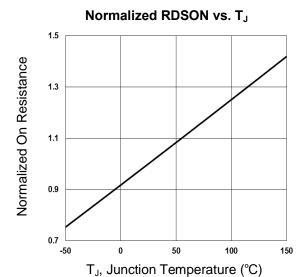
Note:

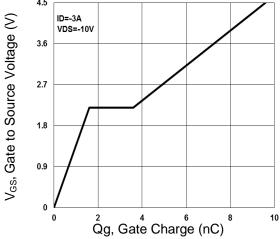
- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2. Pulse test: PW m300µs, duty cycle m2%.
- 3. Essentially independent of operating temperature.



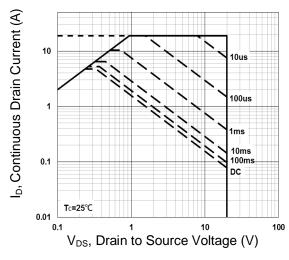

TSM500P02DCQ 20V Dual P-Channel MOSFET


Electrical Characteristics Curves

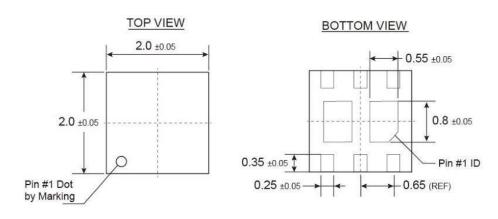

Continuous Drain Current vs. Tc

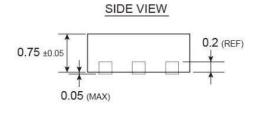


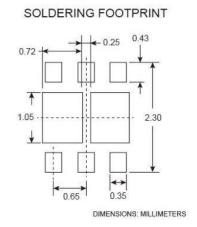
Normalized Transient Impedance



Maximum Safe Operation Area






TSM500P02DCQ

20V Dual P-Channel MOSFET

TDFN2x2 Mechanical Drawing

Marking Diagram

Y = Year Code

M = Month Code for Halogen Free Product (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)

L = Lot Code

TSM500P02DCQ 20V Dual P-Channel MOSFET

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSCs terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.