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Application note

How to configure the SPEAr600 general purpose timers (GPTs)

Introduction
This application note provides information about how to configure the general purpose 
timers (GPTs) integrated in the SPEAr600 embedded MPU family. 

General purpose timers (GPTs) play an important role in any system as they provide a 
means of calculating time for controlling the execution of various operations. In case of an 
operating system, they are used for the system tick generation, usually every 10 ms; in other 
applications they can be used to get a finer granularity for controlling the timing of events.

The purpose of this application note is to explain how to read the free running timer counter 
and configure the clock source of the various GPTs that are integrated in the SPEAr600 
architecture. 
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1 General purpose timers (GPTs) in SPEAr600

In the SPEAr600 architecture, there are five different GPT blocks located in the various 
subsystems. Each timer block consists of two independent channels, each one with a 16-bit 
counter register.

Table 1. GPTs in SPEAr600

Each timer has a READ_Clk, input which is the APB clock (PCLK), and a CNT_Clk, which 
can be selected by the user from a list of clock sources. 

● READ_Clk (PCLK): When SPEAr600 is in normal mode, it takes the input from PLL1 
divided by a programmable prescaler, whose reset values impose the ratio 1:2:4 to the 
core_clk, HCLK and PCLK clocks. When SPEAr600 is in slow mode, it takes directly 
the input from the OSCI signal.

● CNT_Clk: The clock source can be selected as either a fixed 48 MHz or the PLL1 itself 
divided by a programmable prescaler, which is defined in the PRSC1_CLK_CFG 
register (0xFCA8_0044) for GPT1/GPT2/GPT3, PRSC2_CLK_CFG register 
(0xFCA8_0048) for GPT4 and PRSC3_CLK_CFG register (0xFCA8_004C) for GPT5. 
The CNT_Clk may then be further divided by a GPT internal 4-bit prescaler able to 
divide up to 256 times (‘/256’).

Figure 1. GPT clock sources

The following table describes the clock selectors (Clock_Sel) for each GPT.

Subsystem Base address

GPT1 ARM1 0xF000_0000

GPT2 ARM2 0xF000_0000 

GPT3 Basic 0xFC80_0000 

GPT4 Application 1 0xD800_0000

GPT5 Application 2 0xD808_0000

GPT Ch1 GPT Ch2 

Read_CLK 
(PCLK) 

CNT_Clk 
PLL3 (48MHz) 

PRSCx_CLK_CFG 

PLL1 (332MHz)/ 
OSCI (24MHz) 

HCLK/PCLK 
prescaler 

MUX
PLL1 (332MHz) 

Clock_Sel

int_prsc 



General purpose timers (GPTs) in SPEAr600 AN3202

4/11 Doc ID 17399 Rev 1

          

The SPEAr600 GPTs always generate precise alarm interrupts, for example in the case of a 
system tick for a RTOS. Nevertheless, as you can see in Section 2: Reading a free-running 
timer counter, GPTs can return unpredictable read values when they are running and the 
input clock is asynchronous (or not in phase).

Table 2. GPTx clock source selector 

Register Address Value

GPT1 PRPH_CLK_CFG [08] 0xFCA8_0028 (bit8)
0: PLL3 48 MHz
1: PLL1 (PRSC1_CLK_CFG)

GPT2 PRPH_CLK_CFG[09] 0xFCA8_0028 (bit9)
0: PLL3 48 MHz

1: PLL1 (PRSC1_CLK_CFG)

GPT3 PRPH_CLK_CFG[10] 0xFCA8_0028 (bit10)
0: PLL3 48 MHz

1: PLL1 (PRSC1_CLK_CFG)

GPT4 PRPH_CLK_CFG[11] 0xFCA8_0028 (bit11)
0: PLL3 48 MHz
1: PLL1 (PRSC2_CLK_CFG)

GPT5 PRPH_CLK_CFG[12] 0xFCA8_0028 (bit12)
0: PLL3 48 MHz
1: PLL1 (PRSC3_CLK_CFG)
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2 Reading a free-running timer counter

When the GPT interrupt is enabled, the interrupts generated at each timer wrap-around 
condition are always triggered at the right frequency, however reading the timer counter 
when the timer itself is active and free-running may present some difficulties which are 
described below. 

In a simplified scenario, a hardware timer block can be seen just as a simple counter 
register with two input clocks:CNT_Clk for incrementing/decrementing the counter and 
READ_Clk for synchronizing the READ accesses of the bus the timer is connected to.

Figure 2. Simplified timer

The two clocks can be either synchronous, coming from the same source PCLK, or 
completely asynchronous, for example coming from two different sources.

When the two clocks involved in the scenario are asynchronous, then the value retrieved by 
the CPU in a read counter operation is unpredictable, and might be completely different from 
the real value in the register.

The situation is due to the fact that the READ_Clk is sampling the counter bits while they are 
in a transitioning, unstable phase.

Figure 3. Sampling a counter bit in an unstable state

The above scenario may take place during any kind of transition (0->1 or 1->0) and for any 
bit in the register. 

If one of the bits impacted has a large weight (significant position) in the counter, then the 
difference between the value returned in the read transaction and the real value of the 
counter can be very large.
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Let’s take as an example a counting down 16-bit counter transitioning from the value 
1000_0000_0000_0000 (0x8000) to 0111_1111_1111_1111 (0x7FFF). Since the transition 
time of the 16 bits can be slightly different between each other, then the 16-bit counter value 
could be read by the CPU randomly as 0x0000 or 0xFFFF leading to a big difference from 
its real value.

A similar scenario may also occur in case the two clocks are synchronous, but not in phase. 
In this case, in fact, the READ_Clk may sample the bit during its unstable state period.

So, the two clocks must be synchronous and in phase.
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3 Scenario with slow CNT_Clk and fast READ_Clk

In certain cases, for example when the timer is used by an operating system to generate the 
system tick, the CNT_Clk (after prescaling) is usually much slower than READ_Clk. For 
example, let’s suppose you need to generate a tick every 10 ms; the GPT with a clock 
source of 48 MHz might be programmed using a ‘/32’ internal prescaler and a counter equal 
to 15000.

This results in a great number (around 60) READ_Clk ‘sampling cycles’ for every single 
CNT_Clk cycle. Or, in other words, CNT_Clk is about 60 times slower than READ_Clk.

Figure 4. CNT_Clk at low frequency

Let’s see what happens if the CPU does three consecutive read operations instead of a 
single one. Since the bit instability lasts much less than the CNT_Clk time period, we can 
say that, out of 3 READ_Clk edges, only one will ever fall into the bit instability window. The 
other two are stable.

Moreover, since CNT_Clk is about 60 times slower than READ_Clk, the two stable read 
operations return counter values that differ by 1 in the worst case, which is when there is a 
CNT_Clk rising edge between the first and third read operations. Of course, interrupts 
should be disabled during the reads.

So, reading three times the counter and discharging the unstable value (if any) is a valid 
workaround that can be used for all GPTs of SPEAr600 in similar scenarios. In particular, 
this method might be used for GPT1, GPT2 and GPT3.

In general, this workaround is valid when the minimum period of CNT_Clk is greater than 3 
times the read_cycle_time. The read_cycle_time depends on the CPU frequency, and also 
on the way the reads are implemented, so they should be carefully evaluated.
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t0: Bit_N is sampled in an unstable 
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to happen every 3 READ_Clk cycles. 
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4 How to configure CNT_Clk and READ_Clk to be 
synchronous

This method, which is very simple to implement, is nevertheless guaranteed to work for 
GPT4 and GPT5 only.

The most common configuration is when SPEAr600 is in normal mode with system clocks 
fed by PLL1. In case the system is set in this mode, you can just select PLL1 as CNT_Clk to 
guarantee the synchronicity between CNT_Clk and READ_Clk.

To set the input clock source of GPTx to PLL1 you need to use PRPH_CLK_CFG register 
(0xFCA8_0028). There are five different bits, one for each GPT block.

● For GPT4: PRPH_CLK_CFG [11] = 1

● For GPT5: PRPH_CLK_CFG [12] = 1

In case SPEAr600 enters the slow mode, for example to save power after detecting a period 
of inactivity, the HCLK/PCLK system clocks are directly fed from the OSCI at 30 MHz. In this 
mode READ_Clk (OSCI) and CNT_Clk (PLL1) become asynchronous again.
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5 Summary

A general purpose timer can be seen as a simple counter with two clocks in input: 
READ_Clk (for the slave interface) and CNT_Clk (for incrementing/decrementing the 
counter).

The CNT_Clk for the GPT in SPEAr600 can be selected between a fixed 48 MHz source 
and PLL1, which is also the source clock for the rest of the system. The READ_Clk is 
derived from PLL1 in normal mode (PCLK) and from the 30 MHz OSCI in slow mode.

Having a fixed clock source different from the system clock has the advantage of eliminating 
the need for reconfiguring the GPT registers if the system clock frequency is slowed down. 
However, it introduces the possibility of obtaining an unpredictable result when reading the 
timer value, due to the non-synchronous operation of the two clocks.

In case CNT_Clk is much slower than READ_Clk, three consecutives read of the counter (3-
reads workaround) guarantees to have at least two stable values with a maximum difference 
of 1.

The following table summarizes the suggested solutions for this issue:

          

Table 3. Summary of the solutions

Subsystem Solution in normal mode Solution in slow mode

GPT1 ARM1 3-reads workaround 3-reads workaround

GPT2 ARM2 3-reads workaround 3-reads workaround

GPT3 Basic 3-reads workaround 3-reads workaround

GPT4 Application1 
Keep READ_Clk and 
CNT_Clk synchronous

3-reads workaround

GPT5 Application2 
Keep READ_Clk and 
CNT_Clk synchronous

3-reads workaround
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6 Revision history

          

Table 4. Document revision history 

Date Revision Changes

03-May-2010 1 Initial release.
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