

LS350 MONOLITHIC DUAL PNP TRANSISTOR

Linear Systems Monolithic Dual PNP Transistor

The LS350 is a monolithic pair of PNP transistors mounted in a single P-DIP package. The monolithic dual chip design reduces parasitics and gives better performance while ensuring extremely tight matching.

The 8 Pin P-DIP provides ease of manufacturing, and the symmetrical pinout prevents improper orientation.

(See Packaging Information).

- Very high gain
- Tight matching
- Low Output Capacitance

FEATURES							
HIGH GAIN	h _{FE} ≥ 100 @ 10μA-1mA						
TIGHT V _{BE} MATCHING	$ V_{BE1} - V_{BE2} = 0.1 \text{mV TYP}.$						
HIGH ft	275MHz TYP. @ 1mA						
ABSOLUTE MAXIMUM RATINGS ¹							
@ 25°C (unless otherwise noted)							
Maximum Temperatures							
Storage Temperature	-65°C to +200°C						
Operating Junction Temperature	-55°C to +150°C						
Maximum Power Dissipation							
Continuous Power Dissipation (One side)	250mW						
Continuous Power Dissipation (Both sides	500mW						
Linear Derating factor (One side)	2.3mW/°C						
Linear Derating factor (Both sides)	4.3mW/°C						
Maximum Currents							
Collector Current	10mA						

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
V _{BE1} – V _{BE2}	Base Emitter Voltage Differential		1	5	mV	$I_C = 10 \mu A, V_{CE} = 5 V$
$\Delta (V_{BE1} - V_{BE2}) / \Delta T$	Base Emitter Voltage Differential		2	20	μV/°C	$I_C = 10 \mu A, V_{CE} = 5 V$
	Change with Temperature					T _A = -55°C to +125°C
I _{B1} - I _{B2}	Base Current Differential				nA	$I_C = 10\mu A$, $V_{CE} = 5V$
Δ (I _{B1} – I _{B2}) /°C	Base Current Differential				nA/°C	$I_C = 10 \mu A, V_{CE} = 5 V$
	Change with Temperature	1				T _A = -55°C to +125°C
h _{FE1} /h _{FE2}	DC Current Gain Differential		10		%	$I_{C} = 10 \mu A$, $V_{CE} = 5 V$

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV _{CBO}	Collector to Base Voltage	25			V	$I_C = 10\mu A$, $I_E = 0$
BV_{CEO}	Collector to Emitter Voltage	25			٧	$I_{C} = 10 \mu A, I_{B} = 0$
BV_EBO	Emitter-Base Breakdown Voltage	6.2			٧	$I_E = 10 \mu A, I_C = 0^2$
BV_{CCO}	Collector to Collector Voltage	30			٧	$I_{C} = 10 \mu A, I_{E} = 0$
		100				$I_{C} = 10 \mu A, V_{CE} = 5 V$
h _{FE}	DC Current Gain	100				$I_C = 100 \mu A, V_{CE} = 5 V$
		100				$I_C = 1mA$, $V_{CE} = 5V$
V _{CE} (SAT)	Collector Saturation Voltage	-		0.5	V	$I_{C} = 1 \text{mA}, I_{B} = 0.1 \text{mA}$
I _{EBO}	Emitter Cutoff Current	1		0.2	nA	$I_{E} = 0, V_{CB} = 3V$
I _{CBO}	Collector Cutoff Current	1		0.2	nA	$I_E = 0$, $V_{CB} = 20V$
C _{OBO}	Output Capacitance	-		2	pF	$I_{E} = 0, V_{CB} = 5V$
C _{C1C2}	Collector to Collector Capacitance			2	pF	$V_{CC} = 0V$
I _{C1C2}	Collector to Collector Leakage Current	1		0.5	nA	$V_{CC} = \pm 45V$
f _T	Current Gain Bandwidth Product	200			MHz	$I_{C} = 1 \text{mA}, V_{CE} = 5 \text{V}$
NF	Narrow Band Noise Figure			3	dB	I_C = 100μA, V_{CE} = 5V, BW=200Hz, R_G = 10K Ω , f = 1KHz

Notes:

- 1. Absolute Maximum ratings are limiting values above which serviceability may be impaired
- 2. The reverse base-to-emitter voltage must never exceed 6.2 volts; the reverse base-to-emitter current must never exceed $10\mu A$.

Available Packages:

LS350 in P-DIP

LS350 available as bare die

Please contact Micross for full package and die dimensions:

Email: chipcomponents@micross.com Web: www.micross.com/distribution.aspx C1 1 8 C2 B1 2 7 B2 E1 3 6 E2 N/C4 5 N/C

P-DIP (Top View)