RoHS



SMJL-2C24W4P3 - Acrich3 24W

Integrated AC LED Solution

Acrich3 – 24W

SMJL-2C24W4P3





### **Product Brief**

#### Description

- The Acrich series of products are designed to be driven directly off of AC line voltage, therefore they do not need the standard converter essential for conventional general lighting products.
- The converter or driver found in most general lighting products can limit the overall life of the product, but with the Acrich series of products the life of the product can more closely be estimated from the LED itself. This will also allow for a much smaller form factor from an overall fixture design allowing for higher creativity in the fixture.
- The modules have a high power factor which can contribute to a higher energy savings in the end application.

#### **Features and Benefits**

- Connects directly to AC line voltage
- DOB Type (Driver On Board)
- P.com (Power Compensation)
- High Power Factor
- Low THD
- Long Life Time
- Simple BOM
- Miniaturization
- Lead Free Product
- RoHS Compliant

#### **Key Applications**

- High Bay
- Troffer

| Part No.      |           |       | Color   |             | CRI  |
|---------------|-----------|-------|---------|-------------|------|
| Part NO.      | Vin [Vac] | P [W] | Color   | CCT [K]     | Min. |
|               |           |       | Cool    | 4700 – 7000 |      |
| SMJL-2C24W4P3 | 120       | 24    | Neutral | 3700 – 4700 | 80   |
|               |           |       | Warm    | 2600 – 3700 |      |

### Table 1. Product Selection



SEOUL

SMJL-2C24W4P3 - Acrich3 24W

# **Table of Contents**

| Inde | x                                   |    |
|------|-------------------------------------|----|
| •    | Product Brief                       | 1  |
| •    | Table of Contents                   | 2  |
| •    | Performance Characteristics         | 3  |
| •    | Thermal Resistance                  | 5  |
| •    | Characteristic Graph                | 6  |
| •    | Color Bin Structure                 | 10 |
| •    | Mechanical Dimensions               | 19 |
| •    | Marking Information                 | 20 |
| •    | Packing Information                 | 21 |
| •    | Label Information                   | 22 |
| •    | Handling of Silicone Resin for LEDs | 23 |
| •    | Precaution for Use                  | 24 |
| •    | Company Information                 | 26 |

### **Performance Characteristics**

SEOUL

#### Table 2. Electro Optical Characteristics, $T_a = 25^{\circ}C$

| Devenueror                 | C. makes I        |      | Value     |      | 11-24 | Monte                                                                            |
|----------------------------|-------------------|------|-----------|------|-------|----------------------------------------------------------------------------------|
| Parameter                  | Symbol            | Min. | Тур.      | Max. | Unit  | Mark                                                                             |
| Luminous Flux [1]          | Φ <sub>v</sub>    | 2450 | 2700      | -    | lm    | Cool<br>Neutral                                                                  |
|                            |                   | 2350 | 2600      | -    | -     | Cool<br>Neutral<br>Warm<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>H<br>2C<br>24 |
|                            |                   | 6000 | 6500      | 7000 |       | Α                                                                                |
|                            |                   | 5300 | 5600      | 6000 | -     | В                                                                                |
|                            |                   | 4700 | 5000      | 5300 |       | С                                                                                |
| Correlated Color           | ССТ               | 4200 | 4500      | 4700 | · K   | D                                                                                |
| Temperature <sup>[2]</sup> | CCT               | 3700 | 4000      | 4200 | · ĸ   | E                                                                                |
|                            |                   | 3200 | 3500      | 3700 |       | F<br>G                                                                           |
|                            |                   | 2900 | 3000      | 3200 |       |                                                                                  |
|                            |                   | 2600 | 2700      | 2900 |       | н                                                                                |
| CRI                        | Ra                | 80   | -         | -    | -     |                                                                                  |
| Input Voltage [3]          | V <sub>in</sub>   |      | 120       |      | Vac   | 2C                                                                               |
| Power Consumption          | Р                 | 21.2 | 23.6      | 26   | W     | 24                                                                               |
| Operating Frequency        | f                 |      | 50 / 60   |      | Hz    |                                                                                  |
| Power Factor               | PF                |      | Over 0.97 |      | -     |                                                                                  |
| Viewing Angle              | 2O <sub>1/2</sub> |      | 120       |      | deg.  |                                                                                  |
| Tolerance of Surge [4]     | Vs                | 500  | -         | -    | V     |                                                                                  |
| Transient Protection [5]   | Vs                | 2500 | -         | -    | V     |                                                                                  |

#### Notes :

- (1)  $\Phi_V$  is the total luminous flux output measured with an integrated sphere.
- (2) Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram.
- (3) Operating Voltage doesn't indicate the maximum voltage which customers use but means tolerable voltage according to each country's voltage variation rate. It is recommended that the solder pad temperature should be below 70 °C.
- (4) Surge withstand in accordance with IEC61000-4-5.(Line to Line)
- (5) Ringwave withstand in accordance with ANSI/IEEE C62.41.2-2002 Category A operation.

SMJL-2C24W4P3 - Acrich3 24W

### **Performance Characteristics**

SEOUL

### Table 3. Absolute Maximum Ratings, $T_a = 25^{\circ}C$

| Parameter             | Symbol           | Unit | Value       |
|-----------------------|------------------|------|-------------|
| Maximum Input Voltage | V <sub>in</sub>  | Vac  | 144         |
| Power Consumption     | Р                | W    | 29          |
| Operating Temperature | T <sub>opr</sub> | ٥C   | -30 ~ 85    |
| Storage Temperature   | T <sub>stg</sub> | ٥C   | -40 ~ 100   |
| ESD Sensitivity       | -                | -    | ±4,000V HBM |



### **Thermal Resistance**

| Part       | Package<br>Power Dissipation [W] | Maximum<br>Junction Temperature [℃] | Rθ <sub>j-s</sub> [℃/W] |
|------------|----------------------------------|-------------------------------------|-------------------------|
| MJT5630-7C | SAW8KG0B Max 0.58                | 125                                 | 27                      |

The MJT5630-7C has a thermal resistance of 27  $^\circ\!C/W$  from junction of the LED to the

LED lead.

The maximum junction temperature of the MJT5630 is 125  $^\circ\!\!\!\mathbb{C}$  , therefore the maximum lead

temperature  $\rm T_{s\_max}$  is

 $T_{s\_max} = T_{j\_max} - (R\theta_{j-s} * P_d)$ 

= 125℃ - (27℃/W \* 0.58W) = 109.34℃

Although this is the maximum lead temperature, it is recommended to keep the lead temperature under 70  $^{\circ}$ C.

SMJL-2C24W4P3 - Acrich3 24W

### **Characteristic Graph**

SEOUL



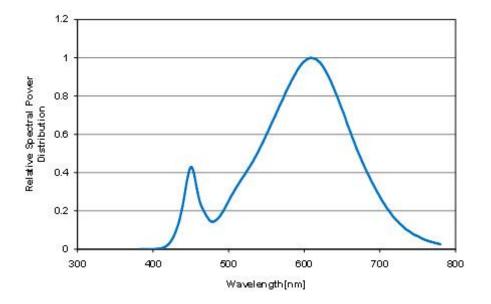
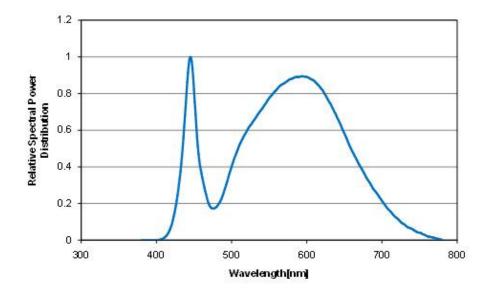
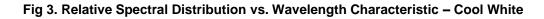
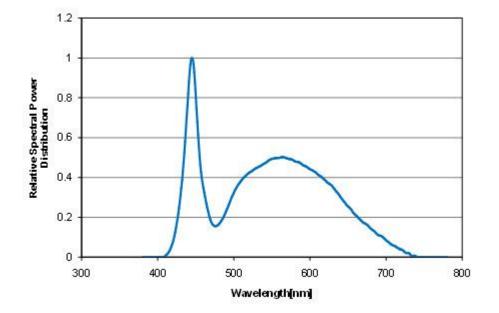






Fig 2. Relative Spectral Distribution vs. Wavelength Characteristic - Neutral White



## **Characteristic Graph**





SMJL-2C24W4P3 - Acrich3 24W

# **Characteristic Graph**

SEOUL

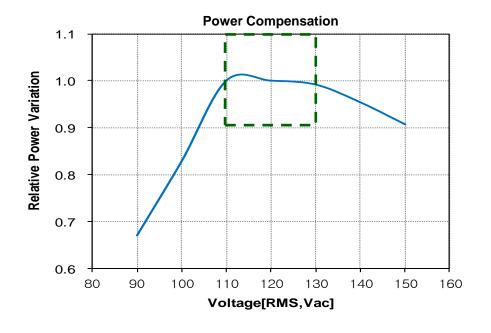
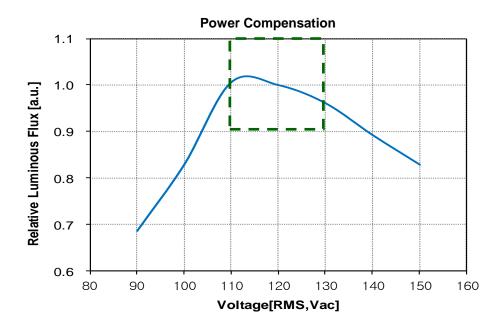
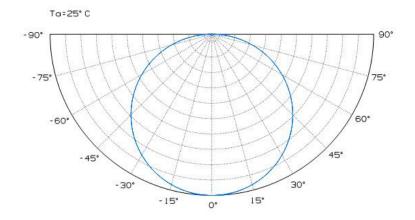



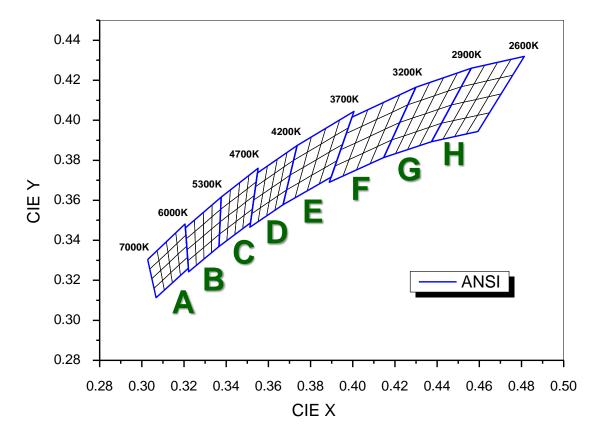

Fig 4. Relative Power Variation vs. Voltage at  $\rm T_a$  =25  $^\circ\!C$  , 120V


Fig 5. Relative Luminous Flux vs. Voltage at  $T_a = 25$  °C, 120V



# **Characteristic Graph**

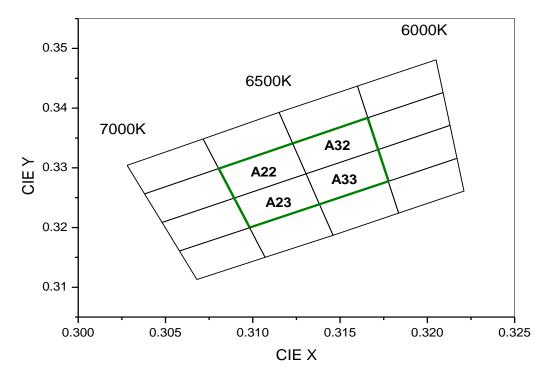
SEOUL


### Fig 6. Radiant Pattern, $T_a = 25 ^{\circ}C$





### **Color Bin Structure**

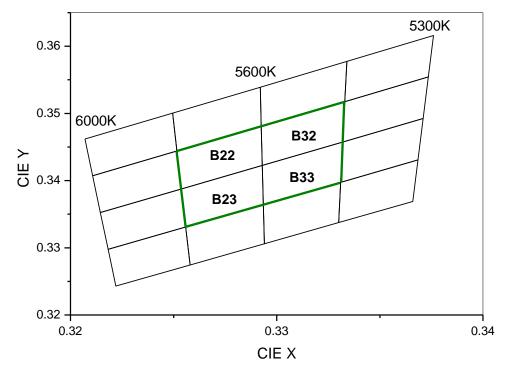

SEOUL





### **Color Bin Structure**

SEOUL

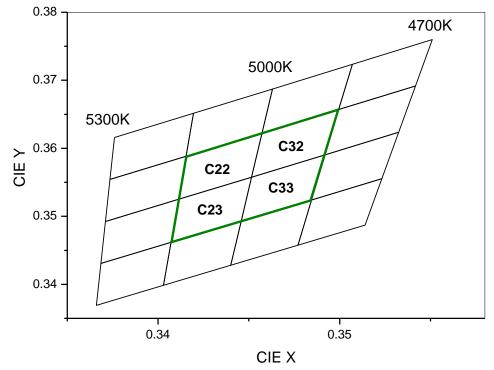



| A2     | 22     | A      | 23     | A      | 33     | A      | 32     |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CIE X  | CIE Y  |
| 0.3080 | 0.3299 | 0.3089 | 0.3249 | 0.3131 | 0.3290 | 0.3123 | 0.3342 |
| 0.3089 | 0.3249 | 0.3098 | 0.3200 | 0.3138 | 0.3239 | 0.3131 | 0.3290 |
| 0.3131 | 0.3290 | 0.3138 | 0.3239 | 0.3178 | 0.3277 | 0.3172 | 0.3331 |
| 0.3123 | 0.3342 | 0.3131 | 0.3290 | 0.3172 | 0.3331 | 0.3166 | 0.3384 |



## **Color Bin Structure**

SEOUL

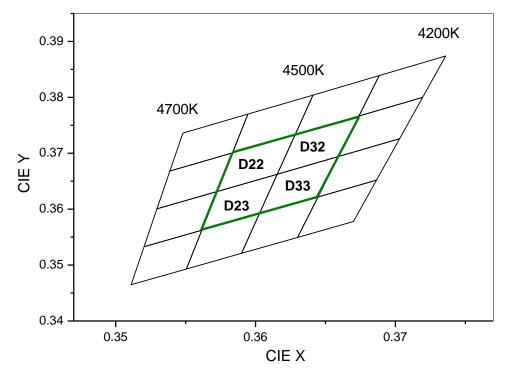



| B2     | 22     | Bź     | 23     | B      | 33     | В      | 32     |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CIE X  | CIE Y  |
| 0.3252 | 0.3444 | 0.3254 | 0.3388 | 0.3293 | 0.3423 | 0.3293 | 0.3481 |
| 0.3254 | 0.3388 | 0.3256 | 0.3331 | 0.3294 | 0.3364 | 0.3293 | 0.3423 |
| 0.3293 | 0.3423 | 0.3294 | 0.3364 | 0.3331 | 0.3398 | 0.3332 | 0.3458 |
| 0.3293 | 0.3481 | 0.3293 | 0.3423 | 0.3332 | 0.3458 | 0.3333 | 0.3518 |



## **Color Bin Structure**

SEOUL

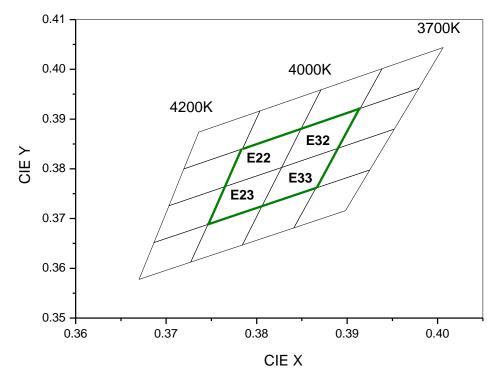



| C2     | 22     | C      | 23     | C      | 33     | С      | 32     |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CIE X  | CIE Y  |
| 0.3415 | 0.3588 | 0.3411 | 0.3525 | 0.3452 | 0.3558 | 0.3457 | 0.3622 |
| 0.3411 | 0.3525 | 0.3407 | 0.3462 | 0.3446 | 0.3493 | 0.3452 | 0.3558 |
| 0.3452 | 0.3558 | 0.3446 | 0.3493 | 0.3485 | 0.3524 | 0.3492 | 0.3591 |
| 0.3457 | 0.3622 | 0.3452 | 0.3558 | 0.3492 | 0.3591 | 0.3500 | 0.3657 |



### **Color Bin Structure**

SEOUL




| D2     | 22     | D      | 23     | D      | 33     | D      | 32     |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CIE X  | CIE Y  |
| 0.3584 | 0.3701 | 0.3573 | 0.3632 | 0.3616 | 0.3663 | 0.3628 | 0.3733 |
| 0.3573 | 0.3632 | 0.3562 | 0.3562 | 0.3603 | 0.3592 | 0.3616 | 0.3663 |
| 0.3616 | 0.3663 | 0.3603 | 0.3592 | 0.3645 | 0.3622 | 0.3659 | 0.3694 |
| 0.3628 | 0.3733 | 0.3616 | 0.3663 | 0.3659 | 0.3694 | 0.3674 | 0.3767 |



## **Color Bin Structure**

SEOUL




| E2     | 22     | E:     | 23     | E      | 33     | E      | 32     |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CIE X  | CIE Y  |
| 0.3784 | 0.3841 | 0.3765 | 0.3765 | 0.3828 | 0.3803 | 0.3849 | 0.3881 |
| 0.3765 | 0.3765 | 0.3746 | 0.3689 | 0.3806 | 0.3725 | 0.3828 | 0.3803 |
| 0.3828 | 0.3803 | 0.3806 | 0.3725 | 0.3865 | 0.3762 | 0.3890 | 0.3842 |
| 0.3849 | 0.3881 | 0.3828 | 0.3803 | 0.3890 | 0.3842 | 0.3914 | 0.3922 |

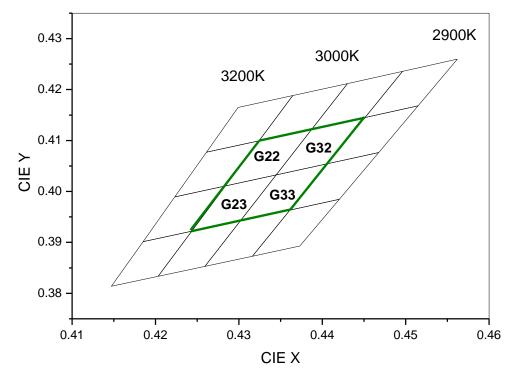


### **Color Bin Structure**

SEOUL

### **CIE Chromaticity Diagram**

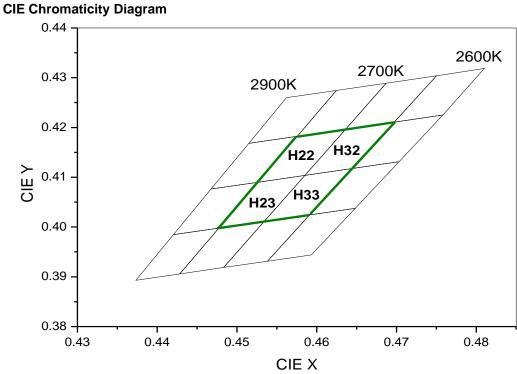



| F2     | 2      | F2     | 23     | F      | 33     | F      | 32     |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CIE X  | CIE Y  |
| 0.4042 | 0.3969 | 0.4012 | 0.3886 | 0.4082 | 0.3920 | 0.4114 | 0.4005 |
| 0.4012 | 0.3886 | 0.3983 | 0.3803 | 0.4049 | 0.3836 | 0.4082 | 0.3920 |
| 0.4082 | 0.3920 | 0.4049 | 0.3836 | 0.4117 | 0.3869 | 0.4152 | 0.3955 |
| 0.4114 | 0.4005 | 0.4082 | 0.3920 | 0.4152 | 0.3955 | 0.4187 | 0.4041 |

Rev1.1, Sep 10, 2015

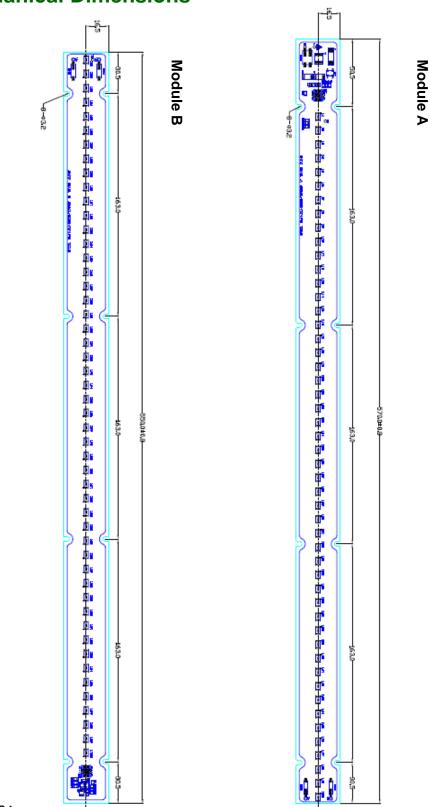


## **Color Bin Structure**


SEOUL



| Gź     | 22     | G      | 23     | G      | 33     | G      | 32     |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CIE X  | CIE Y  |
| 0.4324 | 0.4100 | 0.4284 | 0.4011 | 0.4345 | 0.4033 | 0.4387 | 0.4122 |
| 0.4284 | 0.4011 | 0.4243 | 0.3922 | 0.4302 | 0.3943 | 0.4345 | 0.4033 |
| 0.4345 | 0.4033 | 0.4302 | 0.3943 | 0.4361 | 0.3964 | 0.4406 | 0.4055 |
| 0.4387 | 0.4122 | 0.4345 | 0.4033 | 0.4406 | 0.4055 | 0.4451 | 0.4145 |




### **Color Bin Structure**



| H2     | 22     | H:     | 23     | H      | 33     | н      | 32     |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CIE X  | CIE Y  |
| 0.4575 | 0.4182 | 0.4526 | 0.4090 | 0.4585 | 0.4104 | 0.4636 | 0.4197 |
| 0.4526 | 0.4090 | 0.4477 | 0.3998 | 0.4534 | 0.4012 | 0.4585 | 0.4104 |
| 0.4585 | 0.4104 | 0.4534 | 0.4012 | 0.4591 | 0.4025 | 0.4644 | 0.4118 |
| 0.4636 | 0.4197 | 0.4585 | 0.4104 | 0.4644 | 0.4118 | 0.4697 | 0.4211 |

SEOUL



# **Mechanical Dimensions**

SEOUL



[1] All dimensions are in millimeters. (Tolerance unless noted :  $\pm$  0.2)

[2] Scale : none

SMJL-2C24W4P3 - Acrich3 24W

# **Marking Information**

SEOUL

| A : SMT Marking<br>B : CCT Marking |     |                                           | Module B          |                                        |
|------------------------------------|-----|-------------------------------------------|-------------------|----------------------------------------|
| Α:                                 | ex) | <u>131207</u><br>1<br><u>Z4G22</u><br>2 3 | (1)<br>(2)<br>(3) | SMT Date (<br>LED PKG. L<br>LED PKG. ( |
| В:                                 | ex) | <u>6500K</u><br>1                         | 1                 | CCT Markin                             |



- (YYMMDD, 6 Digits)
- Luminous Intensity Bin (2 Digits)
- Color Bin (3 Digits)
  - ng (5 Digits)

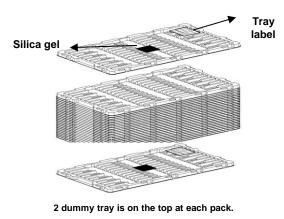
| LED Rank | CCT Marking |
|----------|-------------|
| AXX      | 6500K       |
| BXX      | 5600K       |
| CXX      | 5000K       |
| DXX      | 4500K       |
| EXX      | 4000K       |
| FXX      | 3500K       |
| GXX      | 3000K       |
| HXX      | 2700K       |

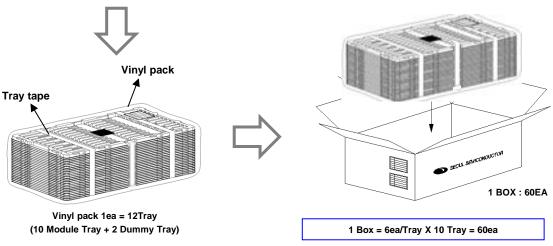
Rev1.1, Sep 10, 2015

SEOUL

SMJL-2C24W4P3 - Acrich3 24W

# **Packing Information**


1) Tray Specification




- -Tray size : 630(W) x 320(L) x 15(H)mm(0.7T)
- Module Quantity per Tray : 1 Tray = 6ea Module

### 2) Packing Process

- Box size : 650(W) x 330(L) x 165(H)mm
- 2 dummy tray is on the top and bottom at each pack.
- Taping at 3 points(Left, Center, Right), and attach label at the top of the tray packing.
- Insert packing tray into vinyl pack, and add silica gel in the packing.
- Put sealing pack into box, and fill into absolved materials in empty space of the Box.
- After checking contents of Label on Box, attach the right position of Box.
- (LED Rank label + TOTAL Quantity label)





### **Label Information**

SEOUL

| Model No. | SMJL-2C24W4P3-A <sup>(1)</sup> |
|-----------|--------------------------------|
| ССТ       | XXXXK <sup>(2)</sup>           |
| Туре      | A-Type <sup>(3)</sup>          |
| Quantity  | <b>60</b>                      |
| Lot No.   |                                |
| SEOUL     | SEOUL SEMICONDUCTOR CO., LTD.  |

#### Notes

- (1) The model number designation is explained as follow SMJL : Seoul Semiconductor internal code
  2 : Input Voltage (2 = 120V)
  C : P.com (Power Compensation)
  24W : About Power Consumption
  4 : IC Version (Acrich3.0)
  P3 : MJT PKG (SAW8KG0B)
  -A : Module Type (-A / -B)
  (2) Herement the OCT Medicine Constraints of the second s
- (2) It represents the CCT Marking. See Page 23.
- (3) It represents Module Type(A-Type or B-Type).

| TOTAL Quantity               |
|------------------------------|
| SEOUL SEMICONDUCTOR CO.,LTD. |



SEOUL

SMJL-2C24W4P3 - Acrich3 24W

### Handling of Silicone Resin for LEDs





- (1) Acrich series is encapsulated with silicone resin for high optical efficiency.
- (2) Please do not touch the silicone resin area with sharp objects such as pincette(tweezers).
- (3) Finger prints on silicone resin area may affect the performance.
- (4) Please store LEDs in covered containers to prevent dust accumulation as this may affect performance.
- (5) Excessive force more than 3000gf to the silicone lens can result in fatal or permanent damage with LEDs.
- (6) Please do not cover the silicone resin area with any other resins such as epoxy, urethane, etc.



### **Precaution for Use**

SEOUL

- (1) Please review the Acrich Application Note for proper protective circuitry usage.
- (2) Please note, Acrich products run off of high voltage, therefore caution should be taken when working near Acrich products.
- (3) Make sure proper discharge prior to starting work.
- (4) DO NOT touch any of the circuit board, components or terminals with body or metal while circuit is active.
- (5) Please do not add or change wires while Acrich circuit is active.
- (6) Long time exposure to sunlight or UV can cause the lens to discolor.
- (7) Please do not use adhesives to attach the LED that outgas organic vapor.
- (8) Please do not use together with the materials containing Sulfur.
- (9) Please do not assemble in conditions of high moisture and/or oxidizing gas such as Cl, H<sub>2</sub>S, NH<sub>3</sub>, SO<sub>2</sub>, NO<sub>x</sub>, etc.
- (10) Please do not make any modification on module.
- (11) Please be cautious when soldering to board so as not to create a short between different trace patterns.
- (12) Do not impact or place pressure on this product because even a small amount of pressure can damage the product. The product should also not be placed in high temperatures, high humidity or direct sunlight since the device is sensitive to these conditions.
- (13) When storing devices for a long period of time before usage, please following these guidelines:
   \* The devices should be stored in the anti-static bag that it was shipped in from Seoul-Semiconductor with opening.
  - \* If the anti-static bag has been opened, re-seal preventing air and moisture from being present in the bag.
- (14) LEDs and IC are sensitive to Electro-Static Discharge (ESD) and Electrical Over Stress (EOS). The Acrich product should also not be installed in end equipment without ESD protection. Below is a list of suggestions that Seoul Semiconductor purposes to minimize these effects.
- a. ESD (Electro Static Discharge)

Electrostatic discharge (ESD) is the defined as the release of static electricity when two objects come into contact. While most ESD events are considered harmless, it can be an expensive problem in many industrial environments during production and storage. The damage from ESD to an LEDs may cause the product to demonstrate unusual characteristics such as:



### SEOUL

### **Precaution for Use**

- Increase in reverse leakage current lowered turn-on voltage
- Abnormal emissions from the LED at low current

The following recommendations are suggested to help minimize the potential for an ESD event. One or more recommended work area suggestions:

- Ionizing fan setup
- ESD table/shelf mat made of conductive materials
- ESD safe storage containers

One or more personnel suggestion options:

- Antistatic wrist-strap
- Antistatic material shoes
- Antistatic clothes

Environmental controls:

- Humidity control (ESD gets worse in a dry environment)

#### b. EOS (Electrical Over Stress)

Electrical Over-Stress (EOS) is defined as damage that may occur when an electronic device is subjected to a current or voltage that is beyond the maximum specification limits of the device. The effects from an EOS event can be noticed through product performance like:

- Changes to the performance of the LED package (If the damage is around the bond pad area and since the package is completely encapsulated
- the package may turn on but flicker show severe performance degradation.)
- Changes to the light output of the luminaire from component failure
- Components on the board not operating at determined drive power

Failure of performance from entire fixture due to changes in circuit voltage and current across total circuit causing trickle down failures. It is impossible to predict the failure mode of every LED exposed to electrical overstress as the failure modes have been investigated to vary, but there are some common signs that will indicate an EOS event has occurred:

- Damaged may be noticed to the bond wires (appearing similar to a blown fuse)
- Damage to the bond pads located on the emission surface of the LED package (shadowing can be noticed around the bond pads while viewing through a microscope)
- Anomalies noticed in the encapsulation and phosphor around the bond wires
- This damage usually appears due to the thermal stress produced during the EOS event
- c. To help minimize the damage from an EOS event Seoul Semiconductor recommends utilizing:
  - A surge protection circuit
  - An appropriately rated over voltage protection device
  - A current limiting device



### **Company Information**

#### Published by

Seoul Semiconductor © 2013 All Rights Reserved.

#### **Company Information**

Seoul Semiconductor (SeoulSemicon.com) manufacturers and packages a wide selection of light emitting diodes (LEDs) for the automotive, general illumination/lighting, appliance, signage and back lighting markets. The company is the world's fifth largest LED supplier, holding more than 10,000 patents globally, while offering a wide range of LED technology and production capacity in areas such as "nPola", deep UV LEDs, "Acrich", the world's first commercially produced AC LED, and "Acrich MJT - Multi-Junction Technology" a proprietary family of high-voltage LEDs. The company's broad product portfolio includes a wide array of package and device choices such as Acrich, high-brightness LEDs, mid-power LEDs, side-view LEDs, through-hole type LED lamps, custom displays, and sensors. The company is vertically integrated from epitaxial growth and chip manufacture in it's fully owned subsidiary, Seoul Viosys, through packaged LEDs and LED modules in three Seoul Semiconductor manufacturing facilities. Seoul Viosys also manufactures a wide range of unique deep-UV wavelength devices.

#### Legal Disclaimer

Information in this document is provided in connection with Seoul Semiconductor products. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Seoul Semiconductor hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. The appearance and specifications of the product can be changed to improve the quality and/or performance without notice.