TSC 9b # EGF1A THRU EGF1M 1.0 AMP. Surface Mount Glass Passivated Junction High Efficient Rectifiers Voltage Range 50 to 1000 Volts Current 1.0 Ampere ## **Features** - Ideal for surface mount automotive applications - Glass passivated cavity-free junction - Capable of meeting environmental standard of MIL-S-19500 - Plastic material used carries Underwriters Laboratory Classification 94V-O - Compete device submersible temperature of 265°C for 10 sec in solder bath. #### **Mechanical Data** - Case: Molded plastic - ♦ Terminals: Solder plated - ♦ Polarity: Indicated by cathode band - ♦ Packaging: 12mm tape per EIA STD RS-481 - ♦ Weight: 0.120 gram ### SMA/DO-214AC Dimensions in inches and (millimeters) # **Maximum Ratings and Electrical Characteristics** Rating at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20% | Type Number | Symbol | EGF
1A | EGF
1B | EGF
1C | EGF
1D | EGF
1G | EGF
1J | EGF
1K | EGF
1M | Units | |--|-------------------------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|----------| | Maximum Recurrent Peak Reverse Voltage | V _{RRM} | 50 | 100 | 150 | 200 | 400 | 600 | 800 | 1000 | V | | Maximum RMS Voltage | V_{RMS} | 35 | 70 | 105 | 140 | 280 | 420 | 560 | 700 | V | | Maximum DC Blocking Voltage | V_{DC} | 50 | 100 | 150 | 200 | 400 | 600 | 800 | 1000 | V | | Maximum Average Forward Rectified Current @T _L =125°C | I _(AV) | 1.0 | | | | | | | | Α | | Peak Forward Surge Current, 8.3 ms
Single Half Sine-wave Superimposed on
Rated Load (JEDEC method) | I _{FSM} | 30 | | | | | | | Α | | | Maximum Instantaneous Forward Voltage @ 1.0A | V _F | 1.0 1.3 1.7 | | | | | V | | | | | Maximum DC Reverse Current @ $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage @ $T_A = 125^{\circ}C$ | I _R | 5
100 | | | | | | | | uA
uA | | Maximum Reverse Recovery Time (Note 1) | Trr | 50 75 | | | | | | nS | | | | Typical Junction Capacitance (Note 2) | Cj | 15 | | | | | | | pF | | | Typical Thermal Resistance (Note 3) | $R heta_{JA} \ R heta_{JL}$ | 85.0
30.0 | | | | | | | °C/W | | | Operating Temperature Range | TJ | -65 to +175 | | | | | | | ${\mathbb C}$ | | | Storage Temperature Range | T _{STG} | -65 to +175 | | | | | | | ပ္ | | - Notes: 1. Reverse Recovery Test Conditions: I_E=0.5A, I_R=1.0A, I_{RR}=0.25A - 2. Measured at 1 MHz and Applied V_R=4.0 Volts - 3. Thermal Resistance from Junction to Ambient and from Junction to Lead P.C.B. Mounted on 0.2 x 0.2" (5.0 x 5.0mm) Copper Pad Areas.