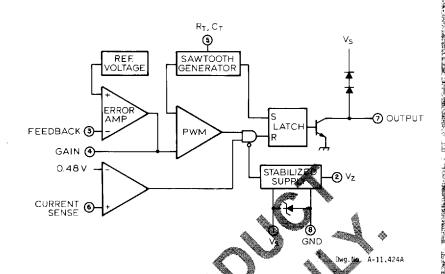
a Penn Central unit


ULN-8161M (NE5561N) SWITCHED-MODE POWER SUPPLY CONTROL CIRCUIT

INTEGRATED CIRCUIT

ENGINEERING BULLETIN

FEATURES

- Stabilized Power Supply
- Current Limiting
- Temperature-Compensated Reference Source
- Sawtooth Generator
- Pulse-Width Modulator
- Double-Pulse Protection
- Applications in:
 - -Switched-Mode Power Supplies
 - —Motor Controller-Inverters
 - -D-C/D-C Converters

FUNCTIONAL PLOCK DIAGRA

ESIGNED FOR USE in low-cost switchedmode power supplies, the Type ULN-8161M neering Bulletin 27466. controller excels in applications requiring only limited housekeeping functions.

The integrated circuit has its own temperaturecompensated reference source, internal Zener reference, sawtooth waveform general, error amplifier, pulse-width modulator, output drive current-sensing, and low-voltage protection.

Type ULN-8161M is supplied in an 8-am dual inline plastic package with a copper lead frame that gives it enhanced power dissipation rated for continuous operation over the temperature range of 0°C to + 0°C. Similar devices are available for operation over extended temperature ranges. Control circuits with extensive protective functions (ULN 8160A, ULN 8160R, and ULS-8160R) are bed in the most recent issue of Sprague Engi-

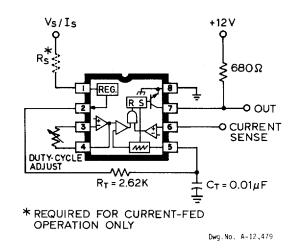
Type ULX-8161M is normally marked with the original-source part number, NE5561N; however, the coague part number should be used in orders and correspondence.

ABSOLUTE MAXIMUM RATINGS at $T_a = +25$ °C

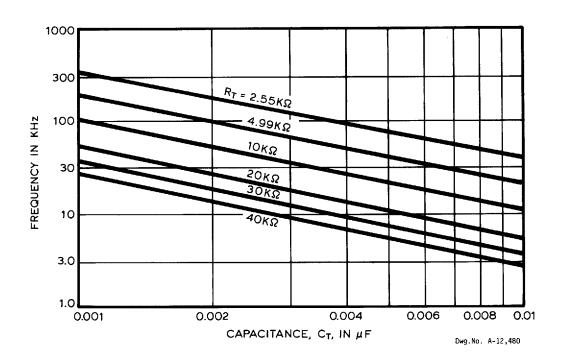
Supply Voltage, V _S (Voltage-Fed)
Supply Current, I _s (Current-Fed) 30 mA
Output Current, I ₀
Output Duty Cycle
Package Power Dissipation, $P_0 \dots 1.5 W^*$
Operating Temperature Range, $T_A \dots 0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range, $T_{\text{\tiny S}}$ $\ldots\ldots 65^{\circ}\text{C}$ to $+$ 150°C
Storage remperature Range, $I_s \dots - 65^{\circ}$ C to $+ 150^{\circ}$ C

^{*}Derate at the rate of 12.5 mW/°C above $T_A = +25$ °C.

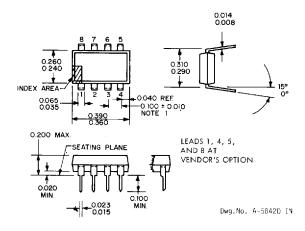
ELECTRICAL CHARACTERISTICS at $T_A = +25$ °C, $V_S = 12$ V (unless otherwise noted)


	Test		Limits			
Characteristic	Pin	Test Conditions	Min.	Тур.	Max.	Units
Supply Clamp Voltage	1	I _s = 10 mA, Current-fed	19	_	24	٧
		I _s = 30 mA, Current-fed	20		30	٧
Internal Reference, V _{REF}		Over operating temperature range	3.55		3.98	٧
		$T_A = +25^{\circ}C$	3.57	3.76	3.96	٧
Temperature Coefficient of V _{REF}	_			±100		ppm/°C
Zener Reference, V _z	2	$I_2 = -7.0 \text{ mA}$	7.8	8.4	9.0	٧
Temperature Coefficient of V _z	2			±150		ppm/°C
Oscillator Frequency Range	5	Over operating temperature range	50		100k	Hz
Initial Oscillator Accuracy	5		_	5.0		%
Duty-Cycle Range	5	$f_0 = 20 \text{ kHz}$	0		98	%
Input Current	6	$V_6 = 250$ mV, Over operating temperature range	_		– 20	μΑ
	6	$V_6 = 250 \text{ mV}, T_A = +25^{\circ}\text{C}$		-2.0	-10	μΑ
Inhibit Delay	6	Single pulse, 20% overdrive at $I_0 = 20 \text{ mA}$		700	800	ns
Trip Level	6	Current limit	400	520	600	mV
Error-Amplifier Gain	3-4	Open loop		60		dB
Error-Amplifier Feedback Resistance	4		10			kΩ
Small-Signal Bandwidth	3-4			3.0		MHz
Output-Voltage Swing	4	Positive limit	6.2			٧
	4	Negative limit			0.6	٧
Output Current	7	Over operating temperature range	20	.		mA
Output-Saturation Voltage	7	$I_c = 20 \text{ mA}$	_		0.5	٧
Supply Current	1	$I_z = 0$, Over operating temp. range, Voltage-fed	_		15	mA
	1	$I_z = 0$, $T_A = +25$ °C, Voltage-fed	_	_	9.0	mA

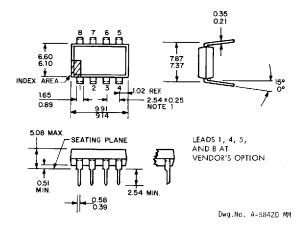
ORDERING INFORMATION


Original Source * Part Number	Sprague Part Number	Operating Temperature Range	Package
NE5561N	ULN-8161M	0°C to +70°C	Plastic

^{*} These devices are manufactured in accordance with a cross-license with Signetics Corp. (a subsidiary of U.S. Philips Corp.).


TEST CIRCUIT

TYPICAL OSCILLATOR FREQUENCY AS A FUNCTION OF TIMING CAPACITANCE



DIMENSIONS IN INCHES

DIMENSIONS IN MILLIMETRES

Based on $1''=25.4~\mathrm{mm}$

NOTES:

- 1. Lead spacing tolerance is non-cumulative.
- 2. Exact body and lead configuration at vendor's option within limits shown.
- 3. Lead gauge plane is 0.030" (0.76 mm) max. below seating plane.

In the construction of the components described, the full intent of the specification will be met. The Sprague Electric Company, however, reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products. Components made under military approvals will be in accordance with the approval requirements.

The information included herein is believed to be accurate and reliable. However, the Sprague Electric Company assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

2084