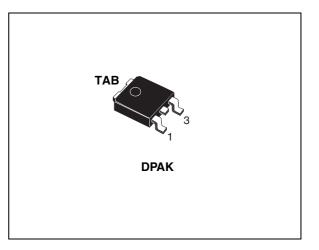


STGD3HF60WD

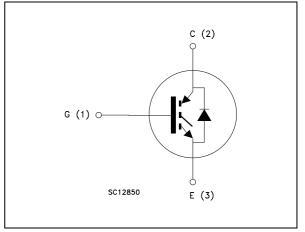
3 A, 600 V ultra fast IGBT

Preliminary data

Features


- Minimal tail current
- Low conduction and switching losses
- Ultra fast soft recovery antiparallel diode

Applications


- High frequency inverters
- Motor drives

Description

The "HF" family is based on a new advanced planar technology concept to yield an IGBT with more stable switching performance (E_{off}) versus temperature, as well as lower conduction losses. The STGD3HF60WD is tailored to cost effective solution for motor drive.

Figure 1. Internal schematic diagram

www.DataSheet4U.com

Table 1. Device summary

Order codes	Marking	Package	Packaging
STGD3HF60WDT4	GD3HF60WD	DPAK	Tape and reel

Doc ID 16582 Rev 1

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

STGD3HF60WD

1 Electrical ratings

Table 2. Absolute maximum rating

Symbol	Parameter	Value	Unit
V _{CES}	S Collector-emitter voltage ($V_{GE} = 0$)		V
I _C ⁽¹⁾	Continuous collector current at $T_C = 25 \ ^{\circ}C$	TBD	Α
I _C ⁽¹⁾	Continuous collector current at T _C = 100 °C	TBD	Α
$I_{CL}^{(2)}$	I _{CL} ⁽²⁾ Turn-off latching current		Α
$I_{CP}^{(3)}$	I _{CP} ⁽³⁾ Pulsed collector current		Α
V _{GE}	V _{GE} Gate-emitter voltage		V
١ _F	Diode RMS forward current at $T_C = 25 \text{ °C}$	10	Α
I _{FSM}	I _{FSM} Surge non repetitive forward current t _p =10ms sinusoidal		А
P_{TOT} Total dissipation at T _C = 25 °C		TBD	W
Тj	Operating junction temperature	– 55 to 150	°C

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

2. Vclamp = 80%,(V_{CES}), Tj =150°C, R_G = 10 Ω, V_{GE} = 15 V

3. Pulse width limited by maximum junction temperature and turn-off within RBSOA

Table 5. Thermal data	Table 3	3. '	Thermal	data
-----------------------	---------	------	---------	------

Symbol	Parameter	Value	Unit
P	Thermal resistance junction-case IGBT	TBD	°C/W
R _{thj-case}	Thermal resistance junction-case diode	TBD	°C/W
R _{thj-amb} Thermal resistance junction-ambient		100	°C/W

2 Electrical characteristics

(T_j=25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	600			v
V _{CE(sat)}	E(sat) Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 0.5 A, T _j =125°C V_{GE} = 15 V, I _C = 1.5 A V_{GE} = 15 V, I _C = 1.5 A, T _j =125°C		1.3 2.3 1.8		V
V _{GE(th)}	Gate threshold voltage	V _{CE} = V _{GE} , I _C = 250 μA	3.75		5.75	V
I _{CES}	Collector cut-off current (V _{GE} = 0)	$V_{CE} = 600 V$ $V_{CE} = 600 V$, T _j = 125 °C			250 1	μA mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ±20 V			±100	nA
9 _{fs}	Forward transconductance	V _{CE} = 15 V _, I _C = 1.5 A		TBD		S

Table 4. Static electrical characteristics

 Table 5.
 Dynamic electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0	-	TBD TBD TBD	-	pF pF pF
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	$V_{CE} = 390 \text{ V}, I_{C} = 1.5 \text{ A},$ $V_{GE} = 15 \text{ V}$ (see Figure 3)	-	TBD TBD TBD	-	nC nC nC

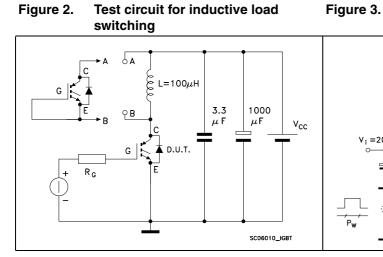
Table 0.						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	V_{CC} = 390 V, I _C = 1.5 A R _G = 10 Ω , V _{GE} = 15 V (see Figure 4)	-	TBD TBD TBD	-	ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V}, I_C = 1.5 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_j = 125 \text{ °C} (see Figure 4)$	-	TBD TBD TBD	-	ns ns A/µs
$t_r(V_{off}) \ t_d(_{off}) \ t_f$	Off voltage rise time Turn-off delay time Current fall time	V_{CC} = 390 V, I _C = 1.5 A, R _{GE} = 10 Ω , V _{GE} = 15 V (see Figure 4)	-	TBD TBD TBD	-	ns ns ns
$t_r(V_{off}) \ t_d(_{off}) \ t_f$	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 390 \text{ V}, I_{C} = 1.5 \text{ A},$ $R_{GE} = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_{j} = 125 \text{ °C} (see Figure 4)$	-	TBD TBD TBD	-	ns ns ns

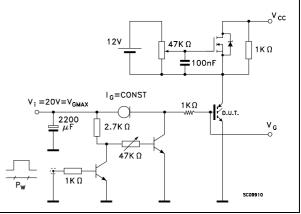
Table 6. Switching on/off (inductive load)

Table 7. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390 \text{ V}, I_C = 1.5 \text{ A}$ $R_G = 10 \Omega \text{ V}_{GE} = 15 \text{ V}$ (see Figure 4)	-	12 30 42	-	μJ μJ μJ
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390 \text{ V}, I_C = 1.5 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_j = 125 \text{ °C} (see Figure 4)$	-	20 40 60	-	μJ μJ μJ

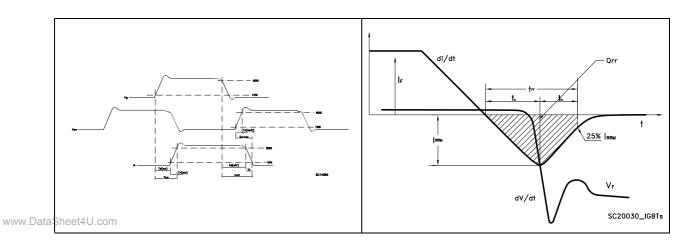
Eon is the turn-on losses when a typical diode is used in the test circuit in (see Figure 5). If the IGBT is
offered in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs and diode
are at the same temperature (25°C and 125°C)


2. Turn-off losses include also the tail of the collector current


Table 8. Collector-emitter diode

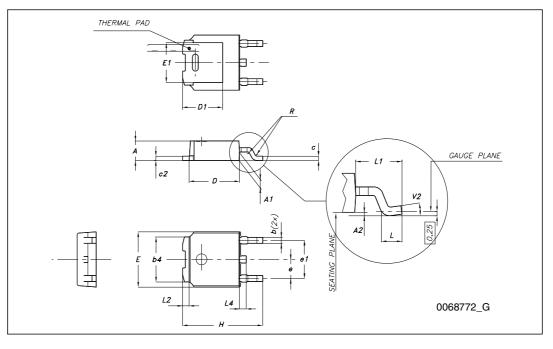
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _F	Forward on-voltage	I _F = 1.5 A I _F = 1.5 A, Tj=125 °C	-	1.4 1.15	1.8	V
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_F = 1.5 \text{ A}, V_R = 40 \text{ V},$ di/dt = 100 A/µs (see Figure 5)	-	TBD TBD TBD		ns nC A
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_F = 1.5 \text{ A}, V_R = 40 \text{ V},$ $T_j = 125 \text{ °C}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ <i>(see Figure 5)</i>	-	TBD TBD TBD		ns nC A

3 Test circuits



Gate charge test circuit

Figure 4. Switching waveform

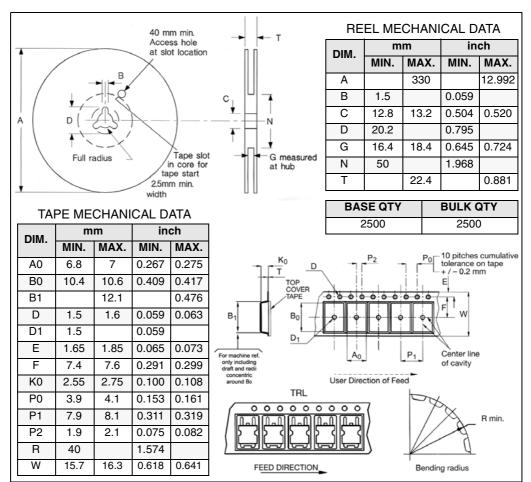

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

TO-252 (DPAK) mechanical data				
DIM.		mm.		
	min.	typ	max.	
A	2.20		2.40	
A1	0.90		1.10	
A2	0.03		0.23	
b	0.64		0.90	
b4	5.20		5.40	
с	0.45		0.60	
c2	0.48		0.60	
D	6.00		6.20	
D1		5.10		
E	6.40		6.60	
E1		4.70		
е		2.28		
e1	4.40		4.60	
н	9.35		10.10	
L	1			
L1		2.80		
L2		0.80		
L4	0.60		1	
R		0.20		
V2	0 ^o		8 °	

www.DataSheet4U.com

Doc ID 16582 Rev 1


STGD3HF60WD

5 Packaging mechanical data

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

6 Revision history

Table 9.Document revision history

Date	Revision	Changes
29-Oct-2009	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

www.DataSheet4U.com

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 16582 Rev 1

