Single Supply, Programmable 8-Bit D/A Converters

GENERAL DESCRIPTION

The ML2340 and ML2350 are CMOS voltage output, 8-bit D/A converters with an internal voltage reference and a $\mu \mathrm{P}$ interface. These devices are designed to be powered by a single supply, although they can be powered from dual power supplies. The output voltage swings above zero scale $\left(V_{Z S}\right)$ in the unipolar mode or around zero scale $\left(V_{Z S}\right)$ in the bipolar mode, both with programmable gain. $V_{\text {ZS }}$ can be set to any voltage from AGND to 2.25 V below V_{CC}. The digital and analog grounds, DGND and AGND, are totally independent of each other. DGND can be set to any voltage from AGND to 4.5 V below V_{CC} for easy interfacing to standard TTL and CMOS logic families.
The high level of integration and versatility of the ML2340 and ML2350 makes them ideal for a wide range of applications in hard disk drives, automotive, telecom, and a variety of general purpose industrial uses. One specific intended application is controlling a hard disk voice coil.
The internal reference of the ML2340 provides a 2.25 V or 4.50 V output for use with A/D converters that use a single $5 \mathrm{~V} \pm 10 \%$ power supply, while the ML2350 provide a 2.50 V or 5.00 V reference output.

FEATURES

- Programmable output voltage gain settings of 2,1 , $1 / 2,1 / 4$ provide 8 -, $9-$, 10 -, or 11 -bit effective resolution around zero
- AGND to V_{CC} output voltage swing

■ Bipolar or unipolar output voltage
■ 4.5 V to 13.2 V single supply or $\pm 2.25 \mathrm{~V}$ to $\pm 6.5 \mathrm{~V}$ dual-supply operation
■ Transparent latch allows microprocessor interface with 30ns setup time

- Data flow-through mode
- Voltage reference output

ML2340 \qquad 2.25 V or 4.50 V

ML2350 2.50 V or 5.00 V

- Nonlinearity \qquad .$\pm^{1 / 4}$ LSB or $\pm^{1 / 2}$ LSB
■ Output voltage settling time over temperature and supply voltage tolerance

Within 1 V of V_{CC} and AGND \qquad $2.5 \mu \mathrm{~s}$ max
Within 100 mV of V_{CC} and AGND $5 \mu \mathrm{~s}$ max

- TTL and CMOS compatible digital inputs

■ Low supply current (5V supply) $5 m A \max$

- 18-pin DIP or surface mount SOIC

BLOCK DIAGRAM

[^0]

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	V_{CC}	Positive supply.
2 V	OUT	Voltage output of the D/A converter. $\mathrm{V}_{\text {OUT }}$ is referenced to V_{ZS}.
3 V	ZS	Zero Scale Voltage. $\mathrm{V}_{\text {OUt }}$ is referenced to $\mathrm{V}_{\mathrm{ZS}} . \mathrm{V}_{\mathrm{ZS}}$ is normally tied to AGND in the unipolar mode or to mid-supply in the bipolar mode. When the device is operated from a single power supply, V_{ZS} has a maximum current requirement of $-300 \mu \mathrm{~A}$ in the bipolar mode.
4	AGND	Analog ground.
5	DGND	Digital ground. This is the ground reference level for all digital inputs. The range is AGND - DGND - $\mathrm{V}_{\mathrm{CC}}-$ 4.5 V . DGND is normally tied to system ground.
6	DB0	Data input - Bit 0 (LSB).
7	DB1	Data input - Bit 1.

PIN	NAME	FUNCTION
8	DB2	Data input - Bit 2.
9	DB3	Data input - Bit 3.
10	DB4	Data input - Bit 4.
11	DB5	Data input - Bit 5.
12	DB6	Data input - Bit 6.
13	DB7	Data input - Bit 7 (MSB).
14	XFER	Transfer enable input. The data is transferred into the transparent latch at the high level of XFER.
15	GAIN 0	Digital gain setting input 0 .
16	GAIN 1	Digital gain setting input 1.
17	$V_{\text {REF OUT }}$	Voltage reference output. $V_{\text {REF OUT }}$ is referenced to $A G N D . V_{\text {REF OUT }}$ is set to 2.5 V and 5.0 V in a low-voltage and high-voltage operation, respectively for the ML2350; 2.25 V and 4.5 V for the ML2340.
18	$\mathrm{V}_{\text {REF IN }}$	Voltage reference input. $V_{\text {REF IN }}$ is referenced to AGND.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Voltage V_{CC} with Respect to AGND 14.2V	
Logic Inputs -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	
Input Current per Pin $\pm 25 \mathrm{~mA}$	
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Board Mount) $\ldots 875 \mathrm{~mW}$	
Lead Temperature (Soldering 10 sec.$)$	
Dual-In-Line Package (Molded)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (Ceramic)	$300^{\circ} \mathrm{C}$
Molded Small Outline IC Package	
Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Supply Voltage, V_{CC}
\qquad $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $13.2 \mathrm{~V}_{\mathrm{DC}}$ Temperature Range
ML2350BIJ
\qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ML2340BCP, ML2340CCP
ML2350BCP, ML2350CCP
ML2340BCS, ML2340CCS
ML2350BCS, ML2350CCS
\qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating temperature range, $\mathrm{V}_{\mathrm{CC}}-\mathrm{AGND}=5 \mathrm{~V} \pm 10 \%$ and $12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {REF }}$ IN for ML2340 $=2.25 \mathrm{~V}$ and 4.50 V , for ML2350 $\mathrm{V}_{\text {REF }} \mathrm{IN}=2.50 \mathrm{~V}$ and $5.00 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}$ load is $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{REF}}$ load is $R_{L}=1 \mathrm{k} \Omega$ and $C_{L}=100 \mathrm{pF}$ and input control signals with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}-20 \mathrm{~ns}$. (Note 1)

PARAMETER	NOTES	CONDITIONS	ML2340XCX, ML2350XCX			ML2350XIX			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	

Converter and Programmable Gain Amplifier

Converter Resolution		8			8			Bits
Integral Linearity Error ML2340BXX, ML2350BXX ML2340CXX, ML2350CXX	GAIN $=2,1,1 / 2$, or $1 / 4$			$\begin{aligned} & \pm 1 / 4 \\ & \pm^{1 / 2} \end{aligned}$			$\begin{aligned} & \pm^{1 / 4} \\ & \pm^{1 / 2} \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Differential Linearity Error ML2340BXX, ML2350BXX ML2340CXX, ML2350CXX	GAIN $=2,1,1 / 2$, or $1 / 4$			$\begin{aligned} & \pm^{1 / 4} \\ & \pm^{1 / 2} \end{aligned}$			$\begin{aligned} & \pm^{1 / 4} \\ & \pm^{1 / 2} \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Mode Select Unipolar Output Bipolar Output	$\mathrm{V}_{\text {ZS }}$ with respect to AGND	$\begin{gathered} 0 \\ 1.50 \end{gathered}$		$\left\lvert\, \begin{gathered} 1.0 \\ \mathrm{~V}_{\mathrm{CC}}-2.25 \end{gathered}\right.$	$\begin{gathered} 0 \\ 1.50 \end{gathered}$		$\left\lvert\, \begin{gathered} 1.0 \\ \mathrm{~V}_{\mathrm{CC}}-2.25 \end{gathered}\right.$	$\begin{aligned} & V \\ & V \end{aligned}$
Offset Error Unipolar Mode	Figure 1 $\begin{aligned} & \text { GAIN }=1 / 4,1 / 2,1 \\ & \text { GAIN }=2 \end{aligned}$			$\begin{aligned} & \pm 10 \\ & \pm 20 \end{aligned}$			$\begin{aligned} & \pm 12 \\ & \pm 24 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Bipolar Mode	Figure 1 $\text { GAIN }=1 / 4,1 / 2,1,2$			$\begin{aligned} & \pm 10 \text { plus } \\ & \pm 2^{1 / 2} \text { LSB } \end{aligned}$			$\begin{array}{\|c\|} \pm 10 \text { plus } \\ \pm 2^{1 / 2} \\ \text { LSB } \end{array}$	mV
Gain Error Unipolar Mode	Figure 1 $\text { GAIN }=1 / 4,1 / 2,1,2$		± 0.5	± 2		± 0.5	± 2.5	\%FS
Bipolar Mode	GAIN $=1 / 4,1 / 2,1,2$		± 0.5	± 2		± 0.5	± 2.5	\%FS

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	NOTES	CONDITIONS	ML2340XCX, ML2350XCX			ML2350XIX			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Reference									
$V_{\text {REF }}$ out Voltage ML2340BXX		$\left\|\begin{array}{lr} \mathrm{V}_{\mathrm{CC}}-7.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{array}\right\|$	$\begin{aligned} & 2.23 \\ & 2.22 \end{aligned}$	2.25	$\begin{aligned} & 2.27 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 2.23 \\ & 2.18 \end{aligned}$	2.25	$\begin{aligned} & 2.27 \\ & 2.32 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
		$\begin{array}{\|lr} \hline \mathrm{V}_{\mathrm{CC}} \cdot 8.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{array}$	$\begin{aligned} & 4.48 \\ & 4.46 \end{aligned}$	4.50	$\begin{aligned} & 4.52 \\ & 4.54 \end{aligned}$	$\begin{aligned} & 4.48 \\ & 4.43 \end{aligned}$	4.50	$\begin{aligned} & 4.52 \\ & 4.57 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
ML2340CXX		$\left\|\begin{array}{lr} \mathrm{V}_{\mathrm{CC}}-7.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{array}\right\|$	$\begin{aligned} & 2.22 \\ & 2.20 \end{aligned}$	2.25	$\begin{aligned} & 2.29 \\ & 2.30 \end{aligned}$	$\begin{aligned} & 2.22 \\ & 2.18 \end{aligned}$	2.25	$\begin{aligned} & 2.28 \\ & 2.32 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{array}{\|lr} \hline \mathrm{V}_{\mathrm{CC}} \bullet 8.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{array}$	$\begin{aligned} & 4.45 \\ & 4.40 \end{aligned}$	4.50	$\begin{aligned} & 4.55 \\ & 4.60 \end{aligned}$	$\begin{aligned} & 4.45 \\ & 4.35 \end{aligned}$	4.50	$\begin{aligned} & 4.55 \\ & 4.65 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
ML2350BXX		$\begin{array}{\|lr} \hline \mathrm{V}_{\mathrm{CC}}-7.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{array}$	$\begin{aligned} & 2.48 \\ & 2.47 \end{aligned}$	2.50	$\begin{aligned} & 2.52 \\ & 2.53 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 2.43 \end{aligned}$	2.50	$\begin{aligned} & 2.52 \\ & 2.57 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
		$\left\|\begin{array}{lr} \mathrm{V}_{\mathrm{CC}} \cdot 8.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{array}\right\|$	$\begin{aligned} & 4.98 \\ & 4.96 \end{aligned}$	5.00	$\begin{aligned} & 5.02 \\ & 5.04 \end{aligned}$	$\begin{aligned} & 4.98 \\ & 4.90 \end{aligned}$	5.00	$\begin{aligned} & \hline 5.02 \\ & 5.10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
ML2350CXX		$\left\|\begin{array}{lr} \mathrm{V}_{\mathrm{CC}}-7.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{array}\right\|$	$\begin{aligned} & \hline 2.45 \\ & 2.44 \end{aligned}$	2.50	$\begin{aligned} & \hline 2.55 \\ & 2.58 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 2.42 \end{aligned}$	2.50	$\begin{aligned} & 2.55 \\ & 2.59 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{array}{\|lr} \mathrm{V}_{\mathrm{CC}} \bullet 8.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{array}$	$\begin{aligned} & 4.95 \\ & 4.90 \end{aligned}$	5.00	$\begin{aligned} & \hline 5.05 \\ & 5.10 \end{aligned}$	$\begin{aligned} & 4.95 \\ & 4.85 \end{aligned}$	5.00	$\begin{aligned} & \hline 5.05 \\ & 5.15 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Temperature Coefficient $V_{\text {REF OUT }}$				50			50		ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {REF }}$ Output Current			0.75		5	0.75		5	mA
$V_{\text {REF OUT }}$ Power Supply Rejection Ratio		$\begin{array}{\|l} 100 \mathrm{mV} \\ \text { P_P }, 1 \mathrm{kHz} \\ \text { Sinewave on } \mathrm{V}_{\mathrm{CC}} \end{array}$	-40	-60		-40	-60		dB

$V_{\text {REF IN }}$ and $V_{\text {ZS }}$

$V_{\text {REF IN }}$ Input Range		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-8.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \cdot 8.75 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { AGND+2 } \\ \text { AGND+2 } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}}-1.75 \\ \mathrm{AGND}+7 \end{array}$	$\begin{array}{\|l\|l} \hline \text { AGND+2 } \\ \text { AGND+2 } \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.75 \\ & \text { AGND+7 } \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$\mathrm{V}_{\text {REF IN }}$ DC Input Resistance			10		10		M y
V_{ZS} Voltage Range	2	$\mathrm{V}_{\text {CC }}-7.0 \mathrm{~V}$	AGND	$\mathrm{V}_{\mathrm{CC}}-2.25$	AGND	$\mathrm{V}_{\mathrm{CC}}-2.25$	V

Analog Output

$\mathrm{V}_{\text {Out }}$ Output Swing Unipolar Mode	2	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	$\begin{gathered} \text { AGND+ } \\ 0.01 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-0.5$	$\begin{gathered} \text { AGND+ } \\ 0.01 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-0.5$	V
Bipolar Mode		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\begin{gathered} \text { AGND+ } \\ 1.0 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-1.0$	$\begin{gathered} \text { AGND+ } \\ 1.0 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-1.0$	V
		$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	$\begin{gathered} \text { AGND+ } \\ 0.1 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-0.1$	$\begin{gathered} \text { AGND+ } \\ 0.1 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-0.1$	V
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\begin{gathered} \hline \text { AGND + } \\ 1.0 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-1.0$	$\begin{gathered} \text { AGND + } \\ 1.0 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-1.0$	V
$\mathrm{V}_{\text {Out }}$ Output Current		AGND $+1 \mathrm{~V}<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$	-10		+10	-10		+10	mA
Power Supply Rejection Ratio		100 mV P-P, 1 kHz sinewave on V_{CC}		-60			-60		dB

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	NOTES	CONDITIONS	ML2340XCX, ML2350XCX			ML2350XIX			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	

Digital and DC

$V_{\text {IN }(0)}$ Logical " 0 " Input Voltage					0.8			0.8	V
$\mathrm{V}_{\mathrm{IN}(1)}$ Logical " 1 " Input Voltage			2.0			2.0			V
$\mathrm{I}_{\mathrm{IN}(0)}$ Logical " 0 " Input Current		$\mathrm{V}_{\text {IN }}=$ DGND	-1			-1			$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{IN}(1) \text { Logical } " 1 "}$ Input Current		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$			1			1	$\mu \mathrm{A}$
Supply Current, Bipolar Mode $\mathrm{I}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}$ Current $\mathrm{I}_{\mathrm{AGND}}$, Analog Ground Current $I_{\mathrm{VZS}}, \mathrm{V}_{\mathrm{ZS}}$ Current		$V_{C C}=5 \mathrm{~V} \pm 10 \%$		-90	$\begin{gathered} 5.3 \\ -5.0 \\ -300 \end{gathered}$		-90	$\begin{gathered} 5.3 \\ -5.0 \\ -300 \end{gathered}$	mA mA $\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}$ Current $\mathrm{I}_{\text {AGND, }}$ Analog Ground Current $\mathrm{I}_{\mathrm{VZS}}, \mathrm{V}_{\mathrm{ZS}}$ Current		$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V} \pm 10 \%$		-90	$\begin{gathered} 9.3 \\ \\ -9.0 \\ -300 \end{gathered}$		-90	$\begin{gathered} 9.3 \\ \\ -9.0 \\ -300 \end{gathered}$	mA mA $\mu \mathrm{A}$
Supply Current, Unipolar Mode $\mathrm{I}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}$ Current $\mathrm{I}_{\mathrm{AGND}}$, Analog Ground Current $I_{V Z S}, V_{Z s}$ Current	3	$V_{C C}=5 \mathrm{~V} \pm 10 \%$			$\begin{gathered} 6.0 \\ -4.3 \\ -1.7 \end{gathered}$			$\begin{gathered} 6.0 \\ -4.3 \\ -1.7 \end{gathered}$	mA mA mA
$I_{C C}, V_{C C}$ Current $l_{\text {AGND, }}$ Analog Ground Current $\mathrm{I}_{\mathrm{VZS}}, \mathrm{V}_{\mathrm{ZS}}$ Current	3	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V} \pm 10 \%$			$\begin{aligned} & 11.0 \\ & -7.3 \\ & -3.7 \end{aligned}$			$\begin{array}{r} 11.0 \\ \\ -7.3 \\ -3.7 \end{array}$	mA mA mA

AC Performance

Settling Time ${ }^{\text {ts }} 1$	Figure 2, Output Step of AGND +1 V to $\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		1.2	2.5		1.2	3.0	$\mu \mathrm{s}$
ts2	Output Step of AGND +100 mV to $\mathrm{V}_{\mathrm{CC}}-100 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		2.5	5		2.5	6	$\mu \mathrm{s}$
ts3	Output Step of ± 1 LSB			1			1	$\mu \mathrm{s}$
t_{54}, Gain Change	Change of Any Gain Setting		1.1	2.5		1.1		$\mu \mathrm{s}$
$\mathrm{t}_{\text {XFER, }}$, XFER Pulse Width	Figure 3	60			60			ns
t ${ }_{\text {DBS }}$, DB0-DB7 Setup Time	Figure 3	40			45			ns
$\begin{aligned} & \text { tDBH, DB0-DB7 } \\ & \text { Hold Time } \end{aligned}$	Figure 3	0			0			ns
$t_{\text {RESET }}$, Power-On Reset Time				16			16	$\mu \mathrm{s}$

Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 2: Supply current and analog ground current are specified with the digital inputs stable and no load on $\mathrm{V}_{\text {OUt }}$.
Note 3: In unipolar operation with V_{ZS} and AGND tied together, digital codes that represent an analog value of less than 100 mV from AGND should be avoided.

Figure 1. Gain and Offset Error

Figure 2. Settling Time

Figure 3. Single Buffered Mode

1.0 FUNCTIONAL DESCRIPTION

1.1 D/A CONVERTER

The D/A converter is implemented using an array of equal current sources that are decoded semi-linearly for the four most significant bits to improve differential linearity and to reduce output glitch around major carries. See Figure 4.
The input voltage reference of the D/A converter is the difference between $\mathrm{V}_{\text {REF IN }}$ and AGND. This difference voltage is converted to a reference current using an internal resistor to set up the appropriate current level in
the D/A converter. The D/A converter output current is then converted to a voltage output by an output buffer and a resistive network. The matching among the on-chip resistors preserves the gain accuracy between these conversions.
The D/A converter can be used in a multiplying mode by modulating the reference input within the specified $V_{\text {REF IN }}$ range.

Figure 4. D/A Converter Implementation

1.2 SINGLE-SUPPLY vs. DUAL-SUPPLY OPERATION

ML2340 and ML2350 can be powered from a single supply ranging from 4.5 V to 13.2 V or dual supplies ranging from $\pm 2.25 \mathrm{~V}$ to $\pm 6.6 \mathrm{~V}$.

The internal digital and analog circuitry is powered between V_{CC} and AGND. The range of DGND is AGND - DGND - $\mathrm{V}_{\mathrm{CC}}-4.5 \mathrm{~V}$ with the logic thresholds set between 0.8 V and 2.0 V above DGND (standard TTL logic level). The range of V_{ZS} is $\mathrm{AGND}-\mathrm{V}_{\mathrm{ZS}}-\left(\mathrm{V}_{\mathrm{CC}}-\right.$ 2.25 V).

1.3 UNIPOLAR AND BIPOLAR OUTPUT VOLTAGE SWING

ML2340 and ML2350 can operate in either unipolar or bipolar output voltage mode. Unipolar/bipolar mode selection is determined by comparing the zero scale voltage $\left(\mathrm{V}_{\mathrm{ZS}}\right)$ of these devices to a precise internal reference that is referred to $A G N D . V_{Z s}$ is ideally the voltage that will be produced at the DAC voltage output when the digital input data is set to all " 0 's" Unipolar mode is selected when $V_{Z S}$ is lower than 1.00 volt, and bipolar mode is selected when V_{ZS} is greater than 1.50 volts.

1.3.1 Unipolar Output Mode

In the unipolar mode, $\mathrm{V}_{\text {OUT }}$ swings above $\mathrm{V}_{\text {Zs }}$. Ideally the 00000000 code results in an output voltage of V_{ZS}, and the 11111111 code results in an output bltage of $\mathrm{V}_{\mathrm{FS}} \times 255 / 256$, where V_{FS} is the full-scale voltage determined by $\mathrm{V}_{\text {REF IN }}$ and the gain setting.

1.3.2 Bipolar Output Mode

In the bipolar mode, $\mathrm{V}_{\text {OUT }}$ swings around V_{Zs}. The input data is in 2's complement binary format. Ideally, the 00000000 code results in an output voltage of V_{ZS}; the 10000000 code results in an output voltage of $\left(\mathrm{V}_{\mathrm{ZS}}-\mathrm{V}_{\mathrm{FS}}\right)$; and the 01111111 results in an output øltage of $\left(\mathrm{V}_{\mathrm{ZS}}+\right.$ $\mathrm{V}_{\mathrm{FS}} 127 / 128$), where V_{FS} is the full scale output voltage determined by $\mathrm{V}_{\text {REF IN }}$ and the gain setting.

1.4 OUTPUT BUFFER AND GAIN SETTING

The output buffer converts the D/A output current to a voltage output using a resistive network with proper gain setting determined by the GAIN 0 and GAIN 1 inputs. There are four possible gain settings for unipolar output voltage mode and bipolar output voltage mode as listed below:

Unipolar Output Voltage Mode

GAIN 1	GAIN 0	GAIN	Voltage Output Swing Relative to $V_{\text {ZS }}$
0	0	$1 / 4$	$V_{\text {REF IN }} \infty{ }^{1 / 4}$
0	1	$1 / 2$	$V_{\text {REF IN }} \infty 1 / 2$
1	0	1	$V_{\text {REF IN }} \infty 1$
1	1	2	$V_{\text {REF IN }} \infty 2$

Bipolar Output Voltage Mode

GAIN 1	GAIN 0	GAIN	Voltage Outputp-P
0	0	$1 / 4$	$V_{\text {REF IN } \infty^{1 / 8}}$
0	1	$1 / 2$	$V_{\text {REF IN } \infty^{1 / 4}}$
1	0	1	$V_{\text {REF IN } \infty^{1 / 2}}$
1	1	2	$V_{\text {REF IN }} \infty 1$

The output buffer can source or sink as much as 10 mA of current with an output voltage of at least 1 V from either V_{CC} or AGND. As the output voltage approaches V_{CC} or AGND the current sourcing/sinking capability of the output buffer is reduced. The output buffer can still swing down to within 10 mV of AGND and up to within 40 mV of V_{CC} with a $100 \mathrm{k} \Omega$ load at $\mathrm{V}_{\mathrm{OUT}}$ to AGND in the unipolar operation. In the bipolar operation, the output buffer swing is limited to about 100 mV from either rails.

1.5 VOLTAGE REFERENCE

A bandgap voltage reference is incorporated on the ML2340 and ML2350. Two reference voltages can be produced by each device. An internal comparator monitors the power supply voltage to determine the selection of the reference voltage. A reference voltage of 2.25 volts on the ML2340 and 2.50 volts on the ML2350 is selected when the supply voltage is less than approximately 7.50 volts. Otherwise, a reference voltage of 4.50 volts and 5.00 volts is selected.To prevent the comparator from oscillating between the two selections, avoid operation with a power supply between 70 and 8.0 volts.

The bandgap reference is trimmed for zero Temperature Coefficient (TC) at $35^{\circ} \mathrm{C}$ to minimize output voltage drift over the specified operating temperature range.
The internal reference is buffered for use by the DAC and external circuits. The reference buffer will source more than 5 mA of current and sink more than 1 mA of current. With $\mathrm{V}_{\text {REF IN }}$ connected to $\mathrm{V}_{\text {REF }}$ out, the following output voltage ranges of the DAC are obtained:

ML2340

Gain Setting	$\begin{gathered} V_{\text {REF }}=2.25 \mathrm{~V} \text { with } \\ V_{C C}-7.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\text {REF }}=4.5 \mathrm{~V} \text { with } \\ \mathrm{V}_{\mathrm{CC}} \cdot 8.0 \mathrm{~V} \end{gathered}$	
	Unipolar	Bipolar	Unipolar	Bipolar
$1 / 4$	0 to 0.562 V	$\begin{aligned} & -0.281 \mathrm{~V} \text { to } \\ & +0.281 \mathrm{~V} \end{aligned}$	0 to 1.125 V	$\begin{aligned} & -0.562 \mathrm{~V} \text { to } \\ & +0.562 \mathrm{~V} \end{aligned}$
1/2	0 to 1.125 V	$\begin{aligned} & -0.562 \mathrm{~V} \text { to } \\ & +0.562 \mathrm{~V} \end{aligned}$	0 to 2.250 V	$\begin{gathered} -1.125 \mathrm{~V} \text { to } \\ +1.125 \mathrm{~V} \end{gathered}$
1	0 to 2.250 V	$\begin{gathered} -1.125 \mathrm{~V} \text { to } \\ +1.125 \mathrm{~V} \end{gathered}$	0 to 4.500 V	$\begin{aligned} & -2.250 \mathrm{~V} \text { to } \\ & +2.250 \mathrm{~V} \end{aligned}$
2	0 to 4.500 V	$\begin{aligned} & -2.250 \mathrm{~V} \text { to } \\ & +2.250 \mathrm{~V} \end{aligned}$	0 to 9.000 V	$\begin{aligned} & -4.500 \mathrm{~V} \text { to } \\ & +4.500 \mathrm{~V} \end{aligned}$

ML2350

Gain Setting	$\begin{gathered} \mathrm{V}_{\text {REF }}=2.50 \mathrm{~V} \text { with } \\ \mathrm{V}_{\mathrm{CC}}-7.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\text {REF }}=5.0 \mathrm{~V} \text { with } \\ \mathrm{V}_{\mathrm{CC}} \cdot 8.0 \mathrm{~V} \end{gathered}$	
	Unipolar	Bipolar	Unipolar	Bipolar
1/4	0 to 0.625 V	$\begin{gathered} -0.3125 \mathrm{~V} \text { to } \\ +0.3125 \mathrm{~V} \end{gathered}$	0 to 1.25 V	$\begin{aligned} & -0.625 \mathrm{~V} \text { to } \\ & +0.625 \mathrm{~V} \end{aligned}$
1/2	0 to 1.250 V	$\begin{gathered} -0.6250 \mathrm{~V} \text { to } \\ +0.6250 \mathrm{~V} \end{gathered}$	0 to 2.50 V	$\begin{gathered} -1.250 \mathrm{~V} \text { to } \\ +1.250 \mathrm{~V} \end{gathered}$
1	0 to 2.500 V	$\begin{array}{c\|} \hline-1.2500 \mathrm{~V} \text { to } \\ +1.2500 \mathrm{~V} \end{array}$	0 to 5.00 V	$\begin{aligned} & -2.500 \mathrm{~V} \text { to } \\ & +2.500 \mathrm{~V} \end{aligned}$
2	0 to 5.000 V	$\begin{gathered} -2.5000 \mathrm{~V} \text { to } \\ +2.5000 \mathrm{~V} \end{gathered}$	0 to 10.00 V	$\begin{aligned} & -5.000 \mathrm{~V} \text { to } \\ & +5.000 \mathrm{~V} \end{aligned}$

An external reference can alternatively be used on $V_{\text {REF IN }}$ to set the desired full scale voltage. The linearity of the D/A converter depends on the reference used, however. To insure integral linearity at an 8-bit level, a reference voltage of no less than 2 V and no more than $7 \mathrm{~V}(2.75 \mathrm{~V}$ for operation with a low-voltage power supply) should be used.

1.6 DIGITAL INTERFACE

The digital interface of the ML2340 and ML2350 consist of a transfer input (XFER) and eight data inputs, DB0 through DB7. The digital interface operates in one of the two modes:

1.6.1 Single-Buffered Mode

Digital input data on DB0-DB7 is passed through an 8-bit transparent input latch on the rising edge of XFER.
Because the outputs of the latch are connected directly to the inputs of the internal DAC, changes on the digital data while the XFER input is still active will cause an immediate change in the DAC output voltage. To hold the input data on the latch, the XFER input needs deactivated while the data is still stable.

1.6.2 Flow-Through Mode

In the flow-through mode, the input latch is bypassed. When XFER is set to logic " 1 ", a change of data inputs, DB0-DB7, results in an immediate update of the output voltage.

1.7 POWER-ON-RESET

The ML2340 and ML2350 have an internal power-onreset circuit to initialize the device when power is first applied to the device. The power-on-reset interval of typically $8 \mu \mathrm{~s}$ begins when the supply voltage, V_{CC} reaches approximately 2.0 V . During the power-on-reset interval, the transparent latch is reset to all " 0 ' s ".

2.0 TYPICAL APPLICATIONS

Figure 5. Using 4.50V Reference of D / A for Reference of A / D Using Single $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}} \pm 10 \%$

Figure 6. TMS320 Interface

Figure 7. Single 5V Supply Unipolar $V_{\text {OUT }}$

TYPICAL APPLICATIONS (Continued)

Figure 8. Single 12V Supply, Bipolar V ${ }_{\text {OUT }}$ with 11-Bits Resolution Around 4.5V

Figure 9. Hard Disc Drive Servo Coil Driver Providing 13-Bit Effective Resolution

PHYSICAL DIMENSIONS inches (millimeters)

Package: S18
18-Pin SOIC

ORDERING INFORMATION

PART NUMBER	INTEGRAL \& DIFFERENTIAL NON-LINEARITY	TEMPERATURE RANGE	PACKAGE
$\mathrm{V}_{\text {REF OUT }}=2.25 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			
ML2340CCP/5 (OBS) ML2340CCS/5 (OBS)	$\pm 1 / 2$ LSB	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Molded DIP (P18) Molded SOIC (S18)
$\mathrm{V}_{\text {REF OUT }}=2.50 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			
ML2350CCP/5 (OBS) ML2350CCS/5 (EOL) ML2350CIS/5 (EOL)	$\pm 1 / 2$ LSB	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Molded DIP (P18) Molded SOIC (S18) Molded SOIC (S18)
$\mathrm{V}_{\text {REF OUT }}=4.50 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$			
ML2340CCP/12 (OBS) ML2340CCS/12 (OBS)	$\pm 1 / 2$ LSB	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Molded DIP (P18) Molded SOIC (S18)
$\mathrm{V}_{\text {REF OUT }}=5.00 \mathrm{~V}$ with $\mathrm{V}_{\text {CC }}=12 \mathrm{~V}$			
ML2350CCP/12 (OBS) ML2350CCS/12 (OBS) ML2350CIS/12 (OBS)	$\pm 1 / 2$ LSB	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	Molded DIP (P18) Molded SOIC (S18) Molded SOIC (S18)

[^0]: * This Part Is Obsolete
 ** This Part Is End Of Life As Of August 1, 2000

