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AN3324
Application note

Implementing power-on self tests
for SPC56EL60 in locked step

Introduction
SPC56EL60 is a 32-bit system-on-chip (SoC) automotive microcontroller designed for 
safety applications with a focus to minimize software measures within the CPU core 
subsystem.

In order to reach this state, several software measures are required during the MCU power-
on start-up procedure. This application note describes the software measures that user 
must perform after the boot in order to detect and manage latent faults.

This document is valid only under the assumption that the MCU is used in locked step for 
automotive applications with fail-silent or fail-indicate micros.

This application note is based on AN3077 rev. 2 (see B.1: Reference documents).

All the topics covered in this document also refer to RM0032 rev. 5, SPC56EL60L3, 
SPC56EL60L5 datasheet rev. 5 and AN3121 rev. 1 (see B.1: Reference documents in 
Appendix B).

This application note applies to SPC56EL60 devices according to Table 1.

         

Table 1. Device summary

Part number Package

SPC56EL60L3 LQFP100 (3.3 V)

SPC56EL60L5 LQFP144 (3.3 V)

www.st.com

http://www.st.com
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1 Document hierarchy

The Safety Application Guide (SAG) (please refer to AN3077, see B.1: Reference 
documents in Appendix B) is the reference document to use.

This application note is focused to describe the individual software measures.

The SAG describes which measure to apply according to the application and peripheral 
usage.

The hints that are described in this document should be considered as proposals to 
implement the requirements described in SPC56EL60 SAG. Based on their applications 
and the SAG, user can decide to use different implementations.
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2 How to implement power-on self test features

The goal of this application note is to show how users can implement properly the safety 
initialization and the self tests to allow to detect latent fault(a) and to manage them.

2.1 MCU initialization
At power-on, after register initialization (see Section 3.3: Redundancy Control Checker Unit 
(RCCU)) and other basic initializations (MMU configuration, stack initialization, etc.) (see 
Appendix A: CPU core initialization) user software has to verify if MCU is in alarm state or in 
safe mode (coming from a Reset Condition) (see Section B.1: Reference documents in 
Appendix B) and in that case must manage fault causes.

If current mode in Mode Entry module is default run mode (DRUN), software can proceed 
with the default safety MCU initialization with self test features (see Figure 1: Initialization 
flow).

Note: User can verify alarm state by reading Non Critical Fault on FCCU while he can verify safe 
mode by reading Current Mode field (GS register) on Mode Entry module.

a. Latent fault: multiple point fault whose presence is not detected by a safety mechanism nor perceived by the 
driver within the multiple point fault detection interval.



AN3324 How to implement power-on self test features

Doc ID 18311 Rev 2 8/37

Figure 1. Initialization flow
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Figure 2. Safety initialization flow
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2.2 Safety verification and faults checking
At the end of safety initialization, user software has to verify some basic safety requirements 
and verify if there is any fault (see Section 3: Module software requirements for non 
applicative peripherals). Figure 3 shows an example of how to implement the faults check 
flow.
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Figure 3. Faults check flow
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3 Module software requirements for non applicative 
peripherals

This chapter describes the requirements of the software modules that should check the 
system peripherals and the Flash. The checks are required for any application. 

The peripherals treated in this chapter are accounted as non applicable peripherals 
because they are not involved directly in any application Safety Integrity Function (SIF) 
please refer to AN3077 (see B.1: Reference documents in Appendix B). 

3.1 System Status and Configuration Module (SSCM)
Before executing safety functions, user must perform two actions:

1. Configure the SSCM to inhibit unintentional execution of the BAM code. 

Note: This requirement is satisfied by asserting the flag PAE in the ERROR register of the SSCM. 
Each access to the BAM memory area produces a Prefetch or Abort exception. 

2. Verify that the device operates in Lock-Step Mode (LSM). 

Note: Software needs to check this condition by reading the LSM flag in the System Status 
Register (SSCM_STATUS) and verifying that the device is operated in the intended mode of 
operation. 

3.2 Self Test Control Unit (STCU)
After boot, user software must check the STCU to ensure its reliability. The software must 
perform several operations based on the STCU status conditions after the power-on self 
test. Even if no errors are reported, user software should confirm that the expected and 
actual values within the CRC (Cyclic Redundancy Check) and LBIST MISR registers do not 
indicate an error. 
This software confirmation prevents a fault within the STCU itself incorrectly indicating that 
the self test passed.

In the case of no reported errors, user software should confirm that:

1. The internal CRC computation result matches the expected value.

Note: Read the CRCE and CRCR registers to check the coherency with the STCU_ERR[CRCS] 
flag.

2. The signature registers of each of the LBIST results match their corresponding 
expected values.

Note: For each LBIST, read the STCU_LBMISREL/H and STCU_LBIST_NMISRRL/H registers to 
check the coherency with the STCU_LBS bits.

3. Read the registers used for Reported Errors and verify that their values are as 
expected. Refer to the “Integrity SW operations” section in RM0032 (see B.1: 
Reference documents in Appendix B).

Note: Verify that STCU_LBS, STCU_LBE, STCU_MBSL, STCU_MBEL flag registers values are 
as expected. (LBIST and MBIST finished with success).
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This is an additional Safety Layer since the STCU propagates the L/MBIST and internal 
faults using the CF/NCF lines toward FCCU. So reading the above registers helps in 
increasing the STCU auto-test coverage. 

3.3 Redundancy Control Checker Unit (RCCU)
The RCCU unit performs a cycle-by-cycle comparison of the outputs of the modules 
included in the sphere of replication (SoR)(b). 

The RCCU is able to detect any mismatch between the outputs of two replicated modules. 
The error information is forwarded to the Reset Generation Module (RGM) (see Section 3.4: 
Reset Generation Module (MC_RGM)) and to the Fault Collection and Control Unit (FCCU) 
(see Section 3.5: Fault Collection and Control Unit (FCCU)). 

Fault injection for the RCCUs controlled by the FCCU is provided primarily for software 
development and validation purposes.
The RCCU’s are only enabled when SPC56EL60 is in the LSM mode. 

Note: Application software must assert that the LSM mode is activated (see Section 3.1: System 
Status and Configuration Module (SSCM)).

RCCU is automatically managed by the SPC56EL60 device and user cannot disable it. 

3.4 Reset Generation Module (MC_RGM)
User has to configure MC_RGM and FCCU (Fault Collection and Control Unit) (see 
Section 3.5: Fault Collection and Control Unit (FCCU)) to react to critical application faults.

User has to trigger reset sequence when one of the following events happen:

● a CMU1/2 clock freq. too high/low event

● a PLL1 fail event

● a system clock freq. too high/low event

● a oscillator freq. too low event

● a PLL0 fail event

● a core watchdog reset event

Note: RGM_FERD (Functional Event Reset Disable Register) set to zero so that all events trigger 
a reset sequence. User should set to zero RGM_FEAR (Functional Event Alternate Request 
Register) to allow to generate a SAFE mode request on events if the reset is disabled.

3.5 Fault Collection and Control Unit (FCCU)
User has to configure the FCCU so that it reacts to generate a functional reset or so that it 
forces the MCU to switch in fail safe.

It is possible to configure the reaction for each fault source and ensuring the rule described 
above is valid for each individual source.

b. The SoR is the logical part of the device that contains all the modules that are replicated for functional safety 
reasons.
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The only exception to this rule is when the CMU monitors a PLL that is not used or is used 
for non safety critical modules only.

In this case, error masking and limited internal reaction can be tolerated. External reaction 
of the FCCU is always enabled and it can not be disabled.

User has to verify that no Critical Fault (CF) or Non Critical Fault (NCF) are present after the 
boot.

Note: The application has to configure the FCCU to enable all reactions related to faults of 
peripherals used by the application safety function (see Figure 4: FCCU configuration flow).

Figure 4. FCCU configuration flow
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3.6 Clock configuration
The system starts up using the internal RC oscillator clock as clock source. Refer to the 
“IRCOSC 16 MHz Internal RC Oscillator” section in RM0032 (see B.1: Reference 
documents in Appendix B) for detailed informations about the internal oscillator.

User has to configure the FMPLLs to use the clock signal from the external oscillator 
(XOSC) as a clock source before any safety functions are executed. 

Note: SELECT field in the CGM_AC3_SC and CGM_AC4_SC have to be set to 1. See Figure 5: 
SPC56EL60 system clock generation.

All safety-relevant IP modules are clocked with a FMPLL-generated clock signal to reduce 
the impact of glitches stemming from the external quartz crystal and its connection to the 
MCU.

Note: This requirement is fulfilled by appropriately programming the MC_CGM and MC_ME 
modules.

See Figure 6: Clock configuration flow to see what is the correct way to configure Clock and 
FMPLLs.
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Figure 5. SPC56EL60 system clock generation
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Figure 6. Clock configuration flow(c)
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3.7 Clock Monitor Unit (CMU)
The main task of the Clock Monitor Unit (CMU) is to supervise the integrity of various clock 
sources. 

User software has to manage the following conditions:

● Loss of external crystal oscillator clock 

● FMPLL frequency higher than a (programmable) value set as high reference

● FMPLL frequency lower than a (programmable) value set as low reference 

SPC56EL60 includes three CMUs: 

a) CMU_0 to monitor the clock signal of the Sphere of Replication (SoR) and the 
clock from the crystal oscillator

b) CMU_1 to monitor the clock signal used by the Motor Control related peripherals 
(eTimer, FlexPWM, CTU, and ADC)

c) CMU_2 to monitor the clock signal for the protocol engine of the FlexRay module 

Use of the CMU is mandatory: if the related modules are used by the application safety 
function, the user must verify that the CMUs are not disabled and their faults managed by 
the FCCU. 

Note: In general, the following two application-dependent configurations must be executed before 
CMU monitoring can be enabled. 

1 Crystal oscillator clock monitor (only CMU_0): the software must configure the RCDIV field 
of the Control Status register (CMU_0_CSR) with a value related to the external oscillator 
frequency. 

2 Clock signal monitors (CMU_1, CMU_2): the CMU_x_HFREFR and CMU_x_LFREFR 
registers must be configured depending on the SoR, Motor Control, and FlexRay clock 
frequencies. 

To later enable the CMUs, the flag CME in the respective Control Status Register 
(CMU_x_CSR) must be asserted. 

3.8 Frequency-Modulated Phase-Locked Loop (FMPLL)
Application software has to check that the system uses the system FMPLL clock as system 
clock before running any safety element function. 

Note: Application software can verify the current system clock by checking the S_SYSCLK flag of 
the ME_GS register. S_SYSCLK equal to 0x4 indicates that the system FMPLL clock is 
used as system clock.

Each FMPLL provides a loss of lock error indication that is routed to the RGM (see 
Section 3.4: Reset Generation Module (MC_RGM)) and the FCCU (see Section 3.5: Fault 
Collection and Control Unit (FCCU)). 

The application software has to enable the respective fault and configure the FCCU to 
manage it. Since in case of fault the system clock can be driven by the internal RC oscillator 
(see Section 3.9: Internal RC Oscillator (IRCOSC)), the fault of the FMPLL is considered as 
Non-Critical Fault. 

Note: The pll_fail output is not masked (pll_fail_mask flag in the FMPLL_x Control Register (CR) 
deasserted). To enable the RGM input related to FMPLL loss of clock, the registers 
RGM_FERD and RGM_FEAR must be configured. To enable the FCCU fault path some 
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registers have to be configure (NCF_CFG0, NCFS_CFG0, NCF_TOE0, etc.). Loss of lock 
signals from FMPLL_0 and FMPLL_1 provide the FCCU “Non-Critical Fault” inputs 2 and 3. 

Note: The RGM and FCCU configuration includes the reaction in case of FMPLL loss of lock. This 
reaction is application-dependent. 

3.9 Internal RC Oscillator (IRCOSC)
User has to verify the availability and frequency of the internal RC oscillator and for this 
reason the frequency meter of the CMU0 (see Section 3.7: Clock Monitor Unit (CMU)) must 
be exploited.

User has to use this feature to measure the RC oscillator frequency using the external 
oscillator clock as known one and compare it to the expected one (16MHz(d)).

Note: The reference clock is always the XOSC. The measure starts when CMU_CSR[SFM] is set. 
The measurement duration is given by the CMU_MDR register in terms of IRC clock cycles 
with a width of 20 bits. The SFM bit is cleared by the hardware after the frequency 
measurement is done and the count is loaded in the CMU_FDR.
The frequency FRC can be derived from the value loaded in the CMU_FDR register (FRC = 
(FOSC × MD) / n) where n is the value in CMU_FDR register and MD is the value in 
CMU_MDR.

Note: Safety related modules which work on the RC clock are: FCCU and SWT. In case of RC 
clock failure, these modules stop working. 

3.10 Flash memory
To support the detection of dormant faults in the entire memory array and addressing logic, 
user must execute array integrity self check (see Section 3.10.1: Array integrity self check 
procedure).

This BIST is based on functionality built into the Flash control logic. It calculates a MISR 
signature over the array content and thus validates the content of the array as well as the 
decoder logic. The calculated MISR value is dependent on the array content and must be 
validated by application software. 

For self check during boot, user has to do the array integrity check over the entire area 
except over the sectors used for EEPROM (Electrically Erasable Programmable Read Only 
Memory) emulation as only one of the sectors used for EEPROM contains valid data and 
that the data in this sector varies during ECU (Electronic Control Unit) life time.

Note: This BIST must be started by application software; its result must be validated by reading 
the corresponding registers in the Flash Controller after it has been finished. Refer to the 
“Array integrity self check” section in the “Flash memory” chapter of RM0032 (see B.1: 
Reference documents in Appendix B) for detailed informations about this BIST. 

d. The internal RC oscillator nominal frequency is 16 MHz, but a post trim accuracy of ±6% overvoltage and 
temperature must be taken into account.
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3.10.1 Array integrity self check procedure

Array integrity is checked using a pre-defined address sequence (based on UT0[AIS]), and 
this operation is executed on selected blocks. The data to be read is customer specific, thus 
a customer can provide user code into the Flash and the correct MISR value is calculated. 
The customer is free to provide any random or non-random code, and a valid MISR 
signature is calculated. Once the operation is completed, the results of the reads can be 
checked by reading the MISR value, to determine if an incorrect read or ECC (Error 
Correction Code) detection was noted. Array integrity is controlled by the system clock, and it 
is required that the Read Wait States and Address Pipelined control registers in the BIU 
(Bus Interface Unit) be set to match the user defined frequency being used.

Caution: While array integrity is being executed, Flash memory array access through the BIU should 
not be requested.

The array integrity check consists of the following sequence of events:

1. Enable UTest mode.

2. Select the block, or blocks to receive array integrity check by writing ones to the 
appropriate registers in LMS or HBS registers.

Caution: Locked blocks can be tested with array integrity if selected in LMS and HBS. It is not 
possible to do UTest operations on the shadow block.

3. If desired, set the UT0[AIS] bit to 1 for sequential addressing only.

Caution: For normal integrity checks of the Flash memory, sequential addressing is recommended. If 
it is required to more fully check the read path (in a diagnostic mode) completely, it is 
recommended that AIS be left at 0, to use the address sequence that checks the read path 
fully, and examine read transitions. This sequence takes more time.

4. Seed the MISR UM0 through UM4 with desired values.

5. Set the UT0[AIE] bit.

a) If desired, the array integrity operation may be aborted prior to UT0[AID] going 
high. This may be done by clearing the UT0[AIE] bit and then continuing with the 
next step. It should be noted that in the event of an aborted array integrity check 
the MISR registers contains a signature for the portion of the operation that was 
completed prior to the abort, and it is not deterministic. Prior to doing another 
array integrity operation, the UM0, UM1, UM2 and UM3 registers may need to be 
initialized to the desired seed value by doing register writes.

6. Wait until the UT0[AID] bit goes high.

7. Read values in the MISR registers (UM0 through UM4) to ensure correct signature.

8. Write a logic 0 to the UT0[AIE] bit.

If the Flash contents change, the MISRs are different: for this reason user should store 
MISR value (used by self check at boot) in a separate Flash block that is unselected during 
MISR calculation.

Note: This test does have some coverage on unselected sectors like sector_eeprom, since the 
array integrity check always goes through the entire Flash array (but only accumulate MISRs 
for selected sectors). Therefore, the array integrity check signals any ECC error in 
unselected sectors.
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3.11 Temperature sensors
There are two temperature sensors: temperature sensor 0 mapped to ADC_0 channel 15 
and temperature sensor 1 mapped to ADC_1 channel 15.

During power up, user software has to read temperature sensors and verify that the values 
are similar as means of assessing the functionality of the sensors. 

Note: In case of a fault, software must trigger the appropriate reaction. To set a proper threshold 
the customer must consider that the maximum operating junction temperature is 150 °C, for 
details please refer to SPC56EL60 datasheet (see B.1: Reference documents in Appendix 
B) and the temperature sensor accuracy is 10 °C. 
It is mandatory to read the 2 sensors synchronously or with a reduced time interval.

Note: It is important to note that the ADC is part of the temperature measuring safety integrity 
function, and it is therefore required that the BIST of the ADC must be executed once after 
the boot even if the ADC is not in application use. 

3.12 Software Watchdog Timer (SWT)
The SWT has to be enabled and configuration registers have to be hard-locked against 
manipulation. 

The time window settings of the SWT have to be set to a value less than the PST(e) (process 
safety time). Detection latency is smaller than process safety time. 

Before the safety function is executed, the software must verify that the SWT is enabled by 
reading the SWT control register (SWT_CR). 

Note: To enable the SWT and to hard-lock the configuration register, the WEN and HLK flags of 
the SWT control register (SWT_CR) must be asserted. The timeout register (SWT_TO) 
must contain a 32-bit value that represents a timeout less than the process safety time. 

Caution: SWT must be refreshed with a timeline that depends by setted timeout (SWT_TO value). 
For this reason it should be configured properly when MCU execute uninterruptible tasks 
(see Section 3.10.1: Array integrity self check procedure) to avoid application reset.

e. PST is strictly application dependant.
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3.13 Power Management Unit (PMU)
Software has to run core voltage LVD and HVD hardware-assisted self-test after the boot.

The PMU provides (to the user) the software capability to check the run of the BIST 
procedure, generating non-critical faults (NCFs) or critical faults (CF) conditions for the 
FCCU module (see Table 2: Fault assertion conditions).

         

At each power-on, the self-test circuitry is able to detect a failure of one of the two voltage 
detectors and to provide a non critical fault (NCF) to the FCCU (see Section 3.5: Fault 
Collection and Control Unit (FCCU)).

Note: The hardware-assisted self-tests are initiated through the SIL fields in the PMU Control 
Register (PMUCTLR_CTRL). If the self-test passes, a Non-Critical Fault is triggered (see 
Figure 8: PMU power-on self test flow). If the self-test fails, a PMUCTRL_IRQS and Critical 
Fault are asserted.
The BIST execution is controlled by the PMUCTRL_CTRL[SILHT] field (see Figure 7: Built-
in self test flow).

Figure 7. Built-in self test flow

Table 2. Fault assertion conditions

Fault number Signal

NCF[13] LVD BIST ok in test mode

NCF[14] HVD BIST ok in test mode

CF[21]  LVD/HVD BIST failure result in test mode

LVD

(SILHT = 00)
Write SILHT = 01

IDLE MODE

TEST MODE
(SILHT = 01)

HVD
TEST MODE
(SILHT = 10)

Write SILHT = 10

Automatically at the
end of test
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Figure 8. PMU power-on self test flow 

Read NCF (Thru OP10)

Begin

Manage NCF

End

Init hardware assisted 
self-test
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4 Module software requirements for applicative 
peripherals

The ADC, due to its analog part, is the only application peripheral that requires additional 
hardware bist after the boot.

This module is part of the temperature measuring safety integrity function, and it is therefore 
required that the HWBIST functions are executed once after the boot (please refer to 
AN3077, see B.1: Reference documents in Appendix B). 

4.1 Analog to Digital Converter (ADC)
After boot and before starting execution of any safety function, user has to execute ADC 
HWBIST functions to check if the ADC is functioning correctly and to increase the diagnostic 
coverage.

4.1.1 Self test algorithms

Three types of self testing algorithms have been implemented inside ADC analog.

● Supply self test: Algorithm S. 
It includes the conversion of the ADC internal bandgap voltage, ADC supply voltage, 
and ADC reference voltage. It includes a sequence of 3 test conversions (steps). The 
supply test conversions must be an atomic operation (no functional conversions 
interleaved).

● Resistive-Capacitive self test: Algorithm RC. 
It includes a sequence of 19 test conversions (steps) by setting the ADC internal 
resistive digital-to-analog converter (DAC).

● Capacitive self test: Algorithm C. 
It includes a sequence of 17 test conversions (steps) by setting the capacitive elements 
comprising the sampling capacitor/ capacitive DAC.

The ADC implements an additional test channel dedicated for self testing. It also provides 
signals to schedule self testing algorithms using configuration registers, monitors the 
converted data using analog watchdog registers, flags the error to FCCU in case some 
failure occurs in any of the algorithms.

Note: User can execute these tests in CPU Mode (One shot or Scan Mode) and in CTU Mode 
(see Figure 9: ADC self test in CPU mode using one shot sequence).
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Figure 9. ADC self test in CPU mode using one shot sequence

1. In one shot mode, if test channel is enabled, only one step of selected self testing algorithm is executed at 
the end of the chain. The step number and algorithm to be executed is programmed in STCR3 register.
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4.1.2 Analog watchdog

The ADC provides a monitor (watchdog) for the values returned by its analog portion for Self 
Test algorithms. The analog watchdogs are used to determine whether the result of 
conversion for self test algorithms lie in a particular guard area. For this purpose, separate 
Self test analog watchdog registers have been provided for each algorithm. 

Note: After the conversion of each step of an algorithm, a comparison is performed between the 
converted value and the threshold values if Analog watchdog feature is enabled by setting 
STAWxR.AWDE bit. If the converted value does not lie between the upper and lower 
threshold values specified by Analog Watchdog Register of the particular algorithm, 
corresponding error bit STSR1.ERR_x is set and Step Number in which error occurred is 
updated in STSR1.STEP_x (in case of C or RC algorithm). Also, erroneous data is written in 
STSR4.DATAx field. The STSR1.ERR_x bits generates an interrupt if enabled by 
corresponding Mask bit in STCR2 register. The fault indication is also given to FCCU via CF 
and NCF, so that necessary action can be taken.

Note: Before running the hardware self test, the customer must copy the threshold values of the 
analog watchdogs from Test Flash into the watchdog registers (STAWxR). Refer to the 
"Analog-to-Digital Converter (ADC)" section in RM0032 (see B.1: Reference documents in 
Appendix B) for detailed informations about watchdog registers and threshold values.
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5 Summary

The described Power On Self Test procedure allow application software to covers all 
requirements indicated by Safety Application Guide (please refer to AN3077, see B.1: 
Reference documents in Appendix B) as mandatory for power on boot.

User should take care that these check are valid only one time and not cover all safety 
measures that user must implement to have SIL3 applications.

Furthermore, a reference example has been implemented.
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Appendix A CPU core initialization

User, before MCU initialization must initialize CPU core and prepare the right environment 
on what user code is executed.

The booting phase include (see Section A.2: Example of SPC56EL60 boot file for Flash):

● Define reset vector

● Initialize CPU registers (see Section A.1: CPU register initiliazation)

● MMU programming 

● Initialize stack and small data section pointers

A.1 CPU register initiliazation
After SPC56ELx reset, core registers must be initialized to a known value to avoid 
unexpected fault triggered.

SPC56ELx cores (in Lock Step configuration) are linked to a checker that verify their 
alignment: output of Core_0 is compared to output of Core_1 through RCCU (see 
Section 3.3: Redundancy Control Checker Unit (RCCU)): if a difference is found the error is 
forwarded (see Figure 10: SPC56EL60: checking flow) to FCCU (see Section 3.5: Fault 
Collection and Control Unit (FCCU)) and to RGM (see Section 3.4: Reset Generation 
Module (MC_RGM)).

Figure 10. SPC56EL60: checking flow 

Core 0

RGM

RCCU
(Checker)

Core 1

FCCU



AN3324 CPU core initialization

Doc ID 18311 Rev 2 29/37

         

A.2 Example of SPC56EL60 boot file for Flash
In boot file user has to provide a reset vector in order to run the application from Flash 
memory. The standard startup process of SPC56ELX processor consists in execution of the 
special boot code which reads specific addresses in a Flash memory where reset 
configuration half word is stored together with boot reset vector pointing to first valid 
instruction of the code. Refer to “Boot Assist Module (BAM)” section in RM0032 (see B.1: 
Reference documents in Appendix B).

In this boot sequence user must initialize SRAM and copy data section from Flash to SRAM 
(this operation is made only when user runs code from Flash). As it may see in scratch code 
below stated, this copy is split into two steps and between them it is inserted software 
watchdog refresh to avoid device reset.

Table 3. SPC56EL60 registers to initialize

Register ranges

r0 - r31

spr1

spr8-spr9

spr22

spr26 - spr27

spr54

spr58 - spr59

spr61-spr63

spr256

spr272 - spr279

spr284 - spr285

spr318 - spr319

spr340

spr400-spr415

spr512

spr528-spr530

spr562

spr570 - spr571

spr573 - spr575

spr604 - spr605

spr628

spr630

ACC

CR



AN3324 CPU core initialization

Doc ID 18311 Rev 2 30/37

Finally user must set stack and small data area pointers.

;------- Reset Configuration Half Word -------------------------------------   

.if __ghs__

.section .rcw

.else

.section        .rcw,,c

.endif

reset_vector:    
    .LONG 0x015A0000       # SPC56ELX - e200 Core Watchdog OFF, External Boot OFF, 
VLE ON
        
    .LONG _start            # Code starts at _start
;---------------------------------------------------------------------------   

.if __ghs__
; GHS declarations
.section .vletext_init, va
.vle
.global__ghs_board_memory_init

.else
; WindRiver declarations
.section .vletext_init,4,c

.endif

.global_start

.align2
e_add2i.r0,0# Debuggers may object to starting at 0.

_start:

##--------- SET UP MMU (BEGIN)--------------------------------------------
#table 0

e_lis r5, 0x10000000@ha
e_add16i r5, r5, 0x10000000@l

    mtspr mas0,r5            # mtspr MAS0,r5
e_lis r5, 0xC0000500@ha
e_add16i r5, r5, 0xC0000500@l

    mtspr mas1,r5# mtspr MAS1,r5 
e_lis r5, 0x00000028@ha
e_add16i r5, r5, 0x00000028@l

    mtspr mas2,r5            # mtspr MAS2,r5
e_lis r5, 0x0000003F@ha
e_add16i r5, r5, 0x0000003F@l

    mtspr mas3,r5            # mtspr MAS3,r5
    tlbwe                    # Write the entry to the TLB 

#table 1
....
    mtspr mas3,r5            # mtspr MAS3,r5
    tlbwe                    # Write the entry to the TLB 

#table 2
....
    tlbwe                   # Write the entry to the TLB 

#table 3
....
    mtspr mas3,r5            # mtspr MAS3,r5
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    tlbwe                    # Write the entry to the TLB 

#table 4
....
    mtspr mas3,r5            # mtspr MAS3,r5
    tlbwe                    # Write the entry to the TLB 

#table 5
....
    tlbwe                    # Write the entry to the TLB 
    
    se_isync

##--------- SET UP MMU (END)-------------------------------------------- 

##---------  Initialise Registers ---------------------  

e_li r1, 5
....

e_li r31, 5

# reset of selected registers
    mtcrf 0xFF,r31
    mtspr 285,r31 #TBU
    .... mtspr 603,r31
##---------  end Initialise Registers ---------------------  

##------- Initialise SRAM ECC -----------------------------------------------
# Doing this in halves for 128k SRAM to allow for WDOG service at
# the half-way point.

# Base Address of the internal SRAM
    e_lis       r5, _SRAM_BASE_ADDR@h
    e_or2i      r5, _SRAM_BASE_ADDR@l
 
# Store number of 128Byte (32GPRs) segments in Counter
    e_lis       r6, _SRAM_SIZE@h    # Initialize r6 to size of SRAM (Bytes)
    e_or2i      r6, _SRAM_SIZE@l
    
    e_srwi      r6, r6, 0x3         # Divide SRAM size by 8 (half SRAM size in words)
    mtctr       r6                  # Move to counter for use with "bdnz"
    
# Fill SRAM with known values not registers ###############
# Never write content of uninitialised registers to SRAM ####
sram_loop1:
    e_lis       r0,0x0
    e_stw       r0,0x0(r5)          # Write all 32 registers to SRAM
    e_addi      r5,r5,4             # Increment the RAM pointer to next 128byte
    e_bdnz      sram_loop1          # Loop for all of SRAM

# Service the watchdog now (doing the entire SRAM init is too long)
e_lis       r1,0xfff3
e_or2i      r1,0x8010
e_li        r2,0xA602# SR sequence value 1
se_stw      r2,0x0(r1)
e_li        r2,0xB480# SR sequence value 2
se_stw      r2,0x0(r1)

# Finish initializing SRAM
    mtctr       r6                  # r6 still contains half the SRAM size in words
sram_loop2:
    e_lis     r0,0x0
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    e_stw       r0,0x0(r5)          # Write all 32 registers to SRAM
    e_addi      r5,r5,4             # Increment the RAM pointer to next 128byte
    e_bdnz      sram_loop2           # Loop for all of SRAM

##---------------------------------------------------------------------------
       
    e_lis       r1, __SP_INIT@h     # Initialize stack pointer r1 to
    e_or2i      r1, __SP_INIT@l     # value in linker command file.

    e_lis       r13, _SDA_BASE_@h   # Initialize r13 to sdata base
    e_or2i      r13, _SDA_BASE_@l  # (provided by linker).

    e_lis       r2, _SDA2_BASE_@h   # Initialize r2 to sdata2 base
    e_or2i      r2, _SDA2_BASE_@l   # (provided by linker).
    
    e_stwu      r0,-64(r1)          # Terminate stack.
    
##--------- Load Initialised Data Values from Flash into RAM ----------------
#--------- Load ".data" section value into RAM (un-initialised) -------------
# Set GPR9 to the count of the SRAM load size

e_lis r9, __DATA_SIZE@h  # Load upper SRAM load size (# of bytes) into R9
e_or2ir9, __DATA_SIZE@l # Load lower SRAM load size into R9                                 

e_cmp16ir9,0 # Compare to see if equal to 0                                  
    e_beq ROMSDATACOPY            # Exit cfg_ROMCPY if size is zero
                                        
    mtctr  r9                      # Store # of bytes to be moved in spr CTR
                                    
    e_lis   r10, __DATA_ROM_ADDR@h  # Load address of first SRAM load into R10
    e_or2i r10, __DATA_ROM_ADDR@l  # Load lower address of SRAM load into R10
    e_subi  r10,r10, 1       # Decrement address to prepare for ROMCPYLOOP

# Load SRAM base address (__DATA_SRAM_ADDR) for loading instructions into R5        
#    (__SRAM_CPY_START = ADDR(.data))
    e_lis   r5, __DATA_SRAM_ADDR@h  # Load upper SRAM address into R5
    e_or2i   r5, __DATA_SRAM_ADDR@l # Load lower SRAM address into R5
    e_subi  r5, r5, 1          # Decrement address to prepare for ROMCPYLOOP

ROMDATACPYLOOP:
    e_lbzu   r4, 1(r10) # Load data byte at R10 into R4,incrementing (update) ROM 
address
    e_stbu   r4, 1(r5)  # Store R4 data byte into SRAM at R5 and update SRAM address 
    e_bdnz   ROMDATACPYLOOP          # Branch if more bytes to load from ROM

##--------- Load ".sdata" section value into RAM (un-initialised) ------------------

ROMSDATACOPY:
e_lis r9, __SDATA_SIZE@h  # Load upper SRAM load size (# of bytes) into R9
e_or2ir9, __SDATA_SIZE@l # Load lower SRAM load size into R9                                 

e_cmp16ir9,0 # Compare to see if equal to 0                                  
    e_beq ROMCPYEND               # Exit cfg_ROMCPY if size is zero
                                        
    mtctr  r9                      # Store # of bytes to be moved in spr CTR
                                    
    e_lis   r10, __SDATA_ROM_ADDR@h # Load address of first SRAM load into R10
    e_or2i r10, __SDATA_ROM_ADDR@l  # Load lower address of SRAM load into R10
    e_subi  r10,r10, 1# Decrement address to prepare for ROMCPYLOOP

# Load SRAM base address (__SDATA_SRAM_ADDR) for loading instructions into R5
#    (__SDATA_SRAM_ADDR = ADDR(.data))
    e_lis   r5, __SDATA_SRAM_ADDR@h  # Load upper SRAM address into R5
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    e_or2i   r5, __SDATA_SRAM_ADDR@l  # Load lower SRAM address into R5
    e_subi  r5, r5, 1          # Decrement address to prepare for ROMCPYLOOP

ROMSDATACPYLOOP:
    e_lbzu   r4, 1(r10) # Load data byte at R10 into R4,incrementing (update) ROM 
address
    e_stbu   r4, 1(r5)  # Store R4 data byte into SRAM at R5 and update SRAM address 
    e_bdnz   ROMSDATACPYLOOP          # Branch if more bytes to load from ROM

ROMCPYEND: 
##--------- end Load un-initialised values into RAM ---------------------  

.if __ghs__
e_bl main
.else
bl          __init_main
.endif
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Appendix B Additional information

B.1 Reference documents
● Safety application guide for SPC56EL60 (AN3077, Doc ID 16384).

● SPC56EL60 32-bit MCU family built on the embedded Power Architecture® (RM0032, 
Doc ID 15265).

● Getting started tutorial for SPC56EL60 (AN3121, Doc ID 16853).

● 32-bit Power Architecture® microcontroller for automotive SIL3/ASILD chassis and 
safety applications (SPC56EL60L3, SPC56EL60L5 datasheet, Doc ID 15457).

B.2 Acronyms
         

Table 4. Acronyms

Acronym Name

ADC Analog to Digital Converter

BAM Boot Assist Module

BIST Built In Self Test

BIU Bus Interface Unit

CF Critical Fault

CMU Clock Monitor Unit

CRC Cyclic Redundancy Check

DMA Direct memory access

ECC Error Correction Code

ECU Electronic COntrol Unit

EEPROM Electrically Erasable Programmable Read Only Memory

FCCU Fault Collection and Control Unit

FMPLL Frequency Modulated Phase-Locked Loop

HVD High Voltage Detector

INTC Interrupt controller

IRC Internal RC Oscillator

LVD Low Voltage Detector

MCU Microcontroller unit

NCF Non Critical Fault

PMU Power Management Unit

RCCU Redundancy Control Checking Unit

RGM Reset Generation Module

SAG Safety Application Guide
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SIF Safety Integrity Function

SSCM System Status and Configuration Module

STCU Self Test Control Unit

SWT Software Watchdog Timer

XOSC External Oscillator

Table 4. Acronyms

Acronym Name
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Table 5. Document revision history

Date Revision Changes

03-Jan-2011 1 Initial release.

25-Sep-2013 2 Updated Disclaimer.
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