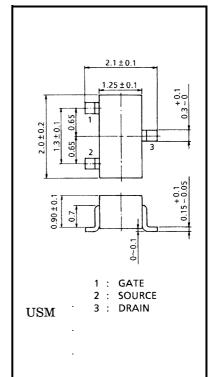


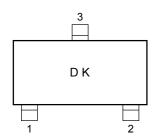
SSM3J09FU

Unit: mm

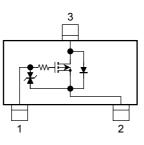

- Small package
- Low on resistance: $R_{on} = 2.7 \Omega (max) (@V_{GS} = -10 V)$: $R_{on} = 4.2 \Omega (max) (@V_{GS} = -4 V)$

Maximum Ratings (Ta = 25°C)

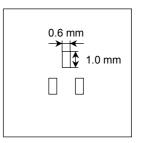
Characteristics		Symbol	Rating	Unit	
Drain-Source voltage		V _{DS}	-30	V	
Gate-Source voltage		V _{GSS}	±20	V	
Drain current	DC	۱ _D	-200	mA	
	Pulse	I _{DP}	-400		
Drain power dissipation (Ta = 25° C)		P _D (Note1)	150	mW	
Channel temperature		T _{ch}	150	°C	
Storage temperature		T _{stg}	-55~150	°C	


Note 1: Mounted on FR4 board

(25.4 mm \times 25.4 mm \times 1.6 t, Cu Pad: 0.6 mm $^2 \times$ 3) Figure 1.



Weight: 0.006 g (typ.)


Marking

Equivalent Circuit (top view)

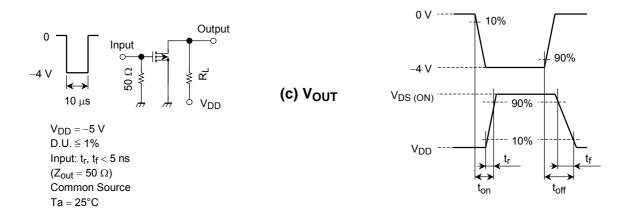
Figure 1: 25.4 mm \times 25.4 mm \times 1.6 t, Cu Pad: 0.6 mm² \times 3

Handling Precaution

When handling individual devices (which are not yet mounting on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.

SSM3J09FU

Electrical Characteristics (Ta = 25°C)


Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS}=\pm 16~V,~V_{DS}=0$			±1	μA
Drain-Source breakdown voltage		V (BR) DSS	$I_D = -1 \text{ mA}, V_{GS} = 0$	-30			V
Drain cut-off current		I _{DSS}	$V_{DS} = -30 \text{ V}, \text{ V}_{GS} = 0$	_		-1	μA
Gate threshold voltage		V _{th}	$V_{DS} = -5 V$, $I_D = -0.1 mA$	-1.1		-1.8	V
Forward transfer admittance		Y _{fs}	$V_{DS} = -5 V, I_D = -100 mA$ (Note2)	115			mS
Drain-Source ON resistance			$I_D = -100 \text{ mA}, V_{GS} = -10 \text{ V}$ (Note2)	_	2.1	2.7	Ω
		R _{DS (ON)}	$I_D = -100 \text{ mA}, V_{GS} = -4 \text{ V}$ (Note2)	_	3.3	4.2	
			$I_D = -100 \text{ mA}, V_{GS} = -3.3 \text{ V}$ (Note2)		4.0	6.0	
Input capacitance		C _{iss}	$V_{DS} = -5 V$, $V_{GS} = 0$, f = 1 MHz		22		pF
Reverse transfer capacitance		C _{rss}	$V_{DS} = -5 V$, $V_{GS} = 0$, f = 1 MHz		5		pF
Output capacitance		C _{oss}	$V_{DS} = -5 V$, $V_{GS} = 0$, f = 1 MHz	_	14		pF
Switching time	Turn-on time	t _{on}	$V_{DD} = -5 V$, $I_D = -100 mA$,	_	85	—	ns
	Turn-off time	t _{off}	V _{GS} = 0~-4 V	_	85	_	ns

Note 2: Pulse test

Switching Time Test Circuit

(a) Test circuit

(b) V_{IN}

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is I_D = $-100~\mu A$ for this product. For normal switching operation, V_{GS} (on) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} .

(relationship can be established as follows: $V{\rm GS}~({\rm off}) < V{\rm th} < V{\rm GS}~({\rm on})$)

Please take this into consideration for using the device.

VGS recommended voltage of $-4.0\ V$ or higher to turn on this product.