

ESD5Z2.5--7.0 SERIES

Micro-Packaged Diodes for ESD Protection

The ESD5Z Series is designed to protect voltage sensitive components from ESD and transient voltage events. Excellent clamping capability, low leakage, and fast response time, make these parts ideal for ESD protection on designs where board space is at a premium. Because of its small size, it is suited for use in cellular phones, portable devices, digital cameras, power supplies and many other portable applications.

Specification Features:

Small Body Outline Dimensions:

0.047, x 0.032, (1.20 mm x 0.80 mm)

ω Low Body Height: 0.028, (0.7 mm)

ω Stand-off Voltage: 2.5 V - 7.0 V

ω Peak Power up to 200 Watts @ 8 x 20 μs Pulse

ω Low Leakage

ω Response Time is Typically < 1 ns

(i) ESD Rating of Class 3 (> 16 kV) per Human Body Model

ω IEC61000-4-2 Level 4 ESD Protection

ω IEC61000-4-4 Level 4 EFT Protection

• Mechanical Characteristics:

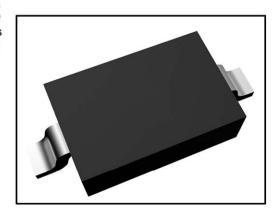
CASE: Void-free, transfer-molded, thermosetting plastic

Epoxy Meets UL 94 V-0

LEAD FINISH: 100% Matte Sn (Tin)

MOUNTING POSITION: Any

QUALIFIED MAX REFLOW TEMPERATURE: 2605C


Device Meets MSL 1 Requirements

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IEC 61000-4-2 (ESD) Air Contact		+30 +30	kV
IEC 61000-4-4 (EFT)		40	Α
ESD Voltage Per Human Body Model Per Machine Model		16 400	kV V
Total Power Dissipation on FR-5 Board (Note 1) @ T _A = 255C	P _D	100	mW
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	5C
Lead Solder Temperature – Maximum (10 Second Duration)	TL	260	5C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. $FR-5 = 1.0 \times 0.75 \times 0.62$ in.

ORDERING INFORMATION

Device	Package	Shipping [†]		
ESD5ZxxxT1	SOD-523	3000/Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

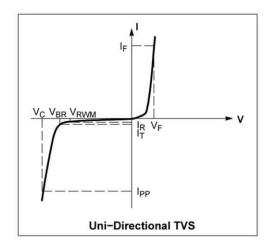
DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the Electrical Characteristics tables starting on page 2 of this data sheet.

SK MAKE CONSCIOUS PRODUCT

CONSCIOUS PRODUCTS BEGIN WITH CONSCIOUS PEOPLE

Rev:06 1 of 3



ESD5Z2.5--7.0 SERIES

ELECTRICAL CHARACTERISTICS

(T_A = 255C unless otherwise noted)

Symbol	Parameter				
I _{PP}	Maximum Reverse Peak Pulse Current				
V _C	Clamping Voltage @ IPP				
V _{RWM} Working Peak Reverse Voltage					
I _R	Maximum Reverse Leakage Current @ V _{RWM}				
V _{BR}	Breakdown Voltage @ I _T				
I _T	Test Current				
I _F	Forward Current				
V _F	Forward Voltage @ I _F				
P _{pk}	Peak Power Dissipation				
C Max. Capacitance @V _R = 0 and f = 1 MHz					

ELECTRICAL CHARACTERISTICS (T_A = 255C unless otherwise noted, V_F = 0.9 V Max. @ I_F = 10 mA for all types)

	Device	V _{RWM} (V)	I _R (μA) @ V _{RWM}	V _{BR} (V) @ I _T (Note 2)	I _T	V _C (V) @ I _{PP} = 5.0 A*	V _C (V) @ Max I _{PP} *	I _{PP} (A)*	P _{pk} (W)*	C (pF)
Device**	Marking	Max	Max	Min	mA	Тур	Max	Max	Max	Тур
ESD5Z2.5T1	ZD	2.5	6.0	4.0	1.0	6.5	10.9	11.0	120	145
ESD5Z3.3T1	ZE	3.3	0.05	5.0	1.0	8.4	14.1	11.2	158	105
ESD5Z5.0T1	ZF	5.0	0.05	6.2	1.0	11.6	18.6	9.4	174	80
ESD5Z6.0T1	ZG	6.0	0.01	6.8	1.0	12.4	20.5	8.8	181	70
ESD5Z7.0T1	ZH	7.0	0.01	7.5	1.0	13.5	22.7	8.8	200	65

^{**}Other voltages available upon request.

^{2.} V_{BR} is measured with a pulse test current I_T at an ambient temperature of 255C.

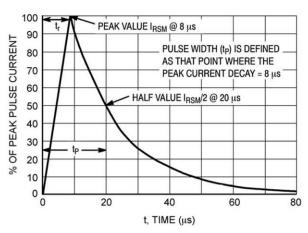
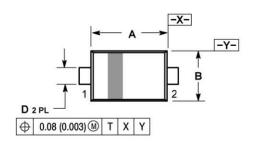
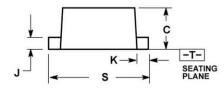
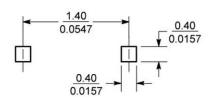



Figure 1. 8 x 20 µs Pulse Waveform

^{*}Surge current waveform per Figure 1.


ESD5Z2.5--7.0 SERIES


SOD-523 CASE 502-01 ISSUE A

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

DIM	MI	LLIMETE	RS	INCHES			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.10	1.20	1.30	0.043	0.047	0.051	
В	0.70	0.80	0.90	0.028	0.032	0.035	
C	0.50	0.60	0.70	0.020	0.024	0.028	
D	0.25	0.30	0.35	0.010	0.012	0.014	
J	0.07	0.14	0.20	0.0028	0.0055	0.0079	
K	0.15	0.20	0.25	0.006	0.008	0.010	
S	1.50	1.60	1.70	0.059	0.063	0.067	

SOLDERING FOOTPRINT

SCALE 10:1 $\left(\frac{\text{mm}}{\text{inches}}\right)$

