ODIN MIR4 02

Fiber Optic Receiver for MOST®

AIM DS

ODIN MIR4 02

Revision	History:	2006-11-28	V2
Previous V	revious Version: V1 age Subjects (major changes since last revision) I capability to handle 3.3V and 5V added able 4 typical values for t _{PUO} , t _{PU} and t _{LPM} updated; Footnote 3) updated		
Page	Subjects (m	najor changes since last revision)	
all	capability to	handle 3.3V and 5V added	
Table 4	typical value	es for $t_{\mathrm{PUO}},t_{\mathrm{PU}}$ and t_{LPM} updated; Footnote 3) updated	
Table 4	Footnote 5)	added for 2UI and 3UI pulses	

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com

Direct contact:

email: pof@infineon.com

Internet: http://www.infineon.com/most

MOST® is a registered trademark of Oasis Silicon Systems.

Edition 2006-11-28

Published by Infineon Technologies AG, Am Campeon 1-12 D-85579 Neubiberg, Germany © Infineon Technologies AG 2006.

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Fiber Optic Receiver for MOST®

ODIN MIR4 02

ODIN MIR4 02

Features

Excellent solution for converting high speed data from Plastic Optical Fiber (POF) to digital output.

- Operating @ 3.3V or 5V Power Supply
- High speed receiver up to 25 Mbit/s net data rate (50 MBaud)
- 95°C operating temperature over whole life time
- Photo current sensing, network activity detection and Low Power Mode (I_{CC} < 10 μ A)
- Signal detect and Status Output
- Low power consumption
- Pulse width control
- -25dBm guaranteed sensitivity @ 650nm for working in a low attenuation range of PMMA Fiber
- Fully compliant to "MOST[®] Specification of Physical Layer Rev 1.1"
- RoHS compliant (Lead free and halogen free)

Applications

Optical Receiver for MOST Systems

Description

The 4-pin MOST Optical Receiver (ODIN MIR4 02) is a highly integrated CMOS IC combined with a high speed PIN diode designed to receive up to 25 Mbit/s optical data which is biphase coded (up to 50 Mbaud) and convert this optical data to a rail-to-rail data stream. During the low power mode, the PIN diode is still being observed and if activity is detected, the receiver will switch to full power mode. A STATUS-pin indicates if modulated light is received (Light on -> STATUS = low). With the STATUS-pin the power supply of the whole MOST device can be switched ON. The power supply voltage is either 3.3V or 5V.

Table 1 Absolute Maximum Ratings

Parameter	Symbol	Limi	Unit	
		min.	max.	
Supply Voltage ¹⁾	V_{CCMax}	-0.5	6.0	٧
Storage Temperature Range	T_{STG}	-40	100	°C
Soldering Temperature (>2.5 mm from case bottom t ≤ 10s)	$T_{\mathbb{S}}$	_	260	°C
Voltage at any PIN		-0.5	V _{CC} +0.5	٧
Electrostatic Discharge Voltage Capability ²⁾	ESD	_	2.0	kV

¹⁾ maximum supply voltage without causing damage

Attention: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2 Recommended Operating Conditions

Parameter	Symbol	Limit	Unit	
		min.	max.	
Supply Voltage low	V_{CC_I}	3.135	3.465	٧
Supply Voltage high	V_{CC_h}	4.75	5.25	٧
Operating Temperature Range (ambient) ¹⁾	T_{A}	-40	95	°C

¹⁾ For details see application note "Handling, Storage, Operating and Processing Application Note of ODIN MOST4 Transceiver"

All the data in this specification refers to the operating conditions above and over life time unless otherwise stated.

Table 3 Optical Signal Characteristics

 $(22.5 \text{ Mbit MOST Data}, V_{CC} = 3.135 \dots 3.465 \text{ V or } 4.75 \dots 5.25 \text{ V})$

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
Peak wavelength of input signal	λ_{Peak}	630	650	685	nm
FWHM of input signal	Δλ	_	_	30	
Receivable optical power range for data recovery ¹⁾²⁾	P_{opt}	-25	-	-2	dBm
Receivable optical power for switching to low power mode ¹⁾	P_{OFF}	-40	_	-25	dBm

²⁾ ESD Capability for all Pins HBM (human body model) according JESD22-A114B.

- 1) Optical power data are average values when using a MxT4 xx optical transmitter, measured at the end of a plastic optical fiber with metal insert (diameter 2.90 +/- 0.02 mm). The transmitted data is biphase coded.
- ²⁾ Measured with worst case pattern. A BER $\leq 10^{-9}$ can be reached.

Table 4 AC Electrical Characteristics

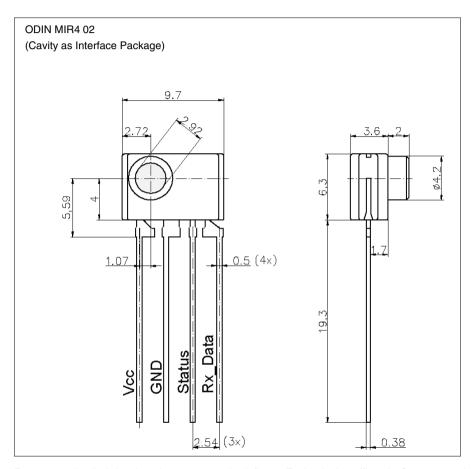
Parameter	Symbol	Li	Unit		
		min.	typ.	max.	
Output Rise Time ^{1) 4)}	t_{r}	_	6	9	ns
Output Fall Time ^{1) 4)}	t_{f}	-	6	9	ns
Output Pulse Width Variation 1UI 1) 2) 3) 4) 5)	t_{PWV}	16.5	_	31.0	ns
Output Average Pulse Width Distortion ^{1) 2) 3) 4)}	t_{APWD}	-3.3	_	7.0	ns
Data Dependent Link Jitter ^{2) 3) 4)}	t_{DDJ}	_	_	3.3	ns
Uncorrelated Link Jitter ^{2) 3) 4)}	t_{UJ}	_	_	1.0	ns
Power-up time at detection of rising $V_{ m CC}$	t_{PUO}	-	0.1	6	ms
Power-up time from low power mode	t_{PU}	-	0.5	6	ms
Low Power mode timer delay	t_{LPM}	_	0.005	2	ms

¹⁾ Capacitive Load is max. 10pF

Table 5 DC Electrical Characteristics

Parameter	Symbol	Li	mit Valu	Unit	
		min.	typ.	max.	
Supply Voltage low	V_{CC_I}	3.135	3.3	3.465	٧
Supply Voltage high	V_{CC_h}	4.75	5	5.25	٧
Low Level Output Voltage Data and Status Pin1)	V_{OL}	_	-	0.4	٧
High Level Output Voltage Data Pin1)	V_{OH}	2.5	3.3	3.7	٧
High Level Output Voltage Status Pin ¹⁾	V_{OH}	2.5	-	$V_{\sf CC}$	٧
Supply Current Full Power Mode	$I_{\rm CC,FPM}$	_	-	20	mA
Supply Current LowPower Mode	$I_{\rm CC,LPM}$	-	-	10	μΑ

²⁾ MOST Data 44.1 kHz FS corresponds to a 45 MBaud data stream.


³⁾ The optical input signal has to fulfill following requirements: t_{PWV(min)} = 20.0 ns, t_{PWV(max)} = 24.3 ns, t_{APWD(min)} = -1.4 ns and t_{APWD(max)} = 1.4 ns, t_{DDJ(max)} = 0.77 ns, t_{UJ(max)} = 0.33 ns, Positive Overshoot within 0UI...2/3UI = -20...40%, Extinction Ratio min = 10dB. Variation within those limits does not significantly change t_{PWV}

⁴⁾ Characterized with Infineon Characterization Boards as described in the Application note "Application Note MOST circuit for Infineon ODIN Transceiver"

 $^{^{5)}}$ Limits for 2UI are 38.6 ... 53.1ns and for 3UI they are 60.8 ... 75.2ns

1) Resistor load must not be smaller than 50kOhm

For a more detailed drawing please contact the Infineon Technologies offices in Germany or the Infineon Technologies companies and representatives worldwide.

Notes: